organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(6E)-N-[(4Z)-2,5-Dimethyl-4-(p-tolylimino)cyclohexa-2,5-dienylidene]-4methylaniline

Fang-Fang Jian,* Rui-Rui Zhuang, Ke-Fei Wang and Jing Wang

New Materials and Function Coordination Chemistry Laboratory, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China Correspondence e-mail: ffj2003@163169.net

Received 25 October 2007; accepted 20 November 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.072; wR factor = 0.233; data-to-parameter ratio = 17.8.

The title compound, $C_{22}H_{22}N_2$, was prepared by the reaction of 4-aminotoluene with sodium carbonate, sodium hydroxide and potassium permanganate. The molecule is disposed about a crystallographic inversion centre with one half-molecule comprising the asymmetric unit. The dihedral angle between the terminal and central benzene rings is $88.05 (1)^{\circ}$. The crystal packing is stabilized by van der Waals forces.

Related literature

For related literature, see: Boyer et al. (2000); Hadek (1968); Hadek et al. (1969)

Experimental

Crystal data

CaaHaaNa	Z = 9
$M_r = 314.42$	Mo $K\alpha$ radiation
Trigonal, $R\overline{3}$	$\mu = 0.07 \text{ mm}^{-1}$
a = 21.173 (8) Å	T = 293 (2) K
c = 10.476 (2) Å	$0.21 \times 0.18 \times 0.1$
$V = 4067 (2) \text{ Å}^3$	

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: none 6148 measured reflections 1956 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.072$	110 parameters
$wR(F^2) = 0.233$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.19 \text{ e } \text{\AA}^{-3}$
1956 reflections	$\Delta \rho_{\min} = -0.14 \text{ e} \text{ Å}^{-3}$

793 reflections with $I > 2\sigma(I)$

3 standard reflections

every 100 reflections

intensity decay: none

 $R_{\rm int} = 0.075$

 \times 0.15 mm

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1990); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the Natural Science Foundation of Shandong Province (grant No. Y2006B08).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2328).

References

Boyer, I., Quillard, S., Corraze, B., Deniard, P. & Evain, M. (2000). Acta Cryst. C56, e159.

- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
- Hadek, V. (1968). Solid State Commun. 6, 337-340.
- Hadek, V., Zach, P., Ulbert, K. & Honzl, J. (1969). Collect. Czech. Chem. Commun. 34, 3139-3144.

Sheldrick, G. M. (1990). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

supporting information

Acta Cryst. (2008). E64, o78 [https://doi.org/10.1107/S1600536807061028]

(6*E*)-*N*-[(4*Z*)-2,5-Dimethyl-4-(*p*-tolylimino)cyclohexa-2,5-dienylidene]-4-methyl-aniline

Fang-Fang Jian, Rui-Rui Zhuang, Ke-Fei Wang and Jing Wang

S1. Comment

It is now well established that conformational characteristics of the polyaniline polymer play a crucial role for its physical properties, including transport characteristics (Boyer *et al.*, 2000). Detailed analysis of the crystal structures of polyaniline oligomers containing alternating benzoid and quinoid rings with amine and/or imine groups can help in the understanding of the spectroscopic behaviour of the compounds and possibles mechanism for their electrical conductivity (Hadek,1968; Hadek *et al.*, 1969). Here we report the crystal structure of the title compound, (I).

The structure of (I) consists of discrete molecules disposed about a crystallographic inversion centre with half the molecule comprising the asymmetric unit (Fig. 1). The atoms (N1, C1 - C7) are planar with the greatest deviation from planarity for N1 of 0.042 (1) Å). The bond lengths and angles are usual for this type of compound (Boyer *et al.*, 2000). The mean planes p1(C2 - C7) and p2(C8 - C10,C8a - C10a) make a dihedral angle of 88.06 (1)°. The dihedral angle formed by ring (N1,C1 - C7)and ring (N1,C5 - C11,N1a,C5a) is 1.52 (1)°. The crystal packing (Fig.2) is stabilized by van der Waals forces.

S2. Experimental

P-aminotoluene (2.14 g, 0.02 mol) was dissolved in water (100 ml), then sodium carbonate (0.53 g, 0.005 mol), sodium hydroxide (0.80 g, 0.02 mol) and potassium permanganate (1.58 g, 0.01 mol) was added with stirring. The mixture was allowed to react at room temperature for 12 h to give a precipitate which wasfiltered and recrystallized from acetone to afford the title compound (0.956 g, yield 89.5%). Single crystals suitable for X-ray measurements were obtained by recrystallization from acetone at room temperature.

S3. Refinement

H atoms were fixed geometrically and allowed to ride on their parent atoms, with C—H distances of 0.93–0.96 Å and with $U_{iso}=1.2-1.5 U_{eq}$ of the parent atoms.

Figure 1

The molecular structure and atom-labeling scheme for (I), with displacement ellipsoids drawn at the 30% probability level. 'A' atoms were generated by symmetry (-x + 1/3, -y + 2/3, -z - 1/3).

Figure 2 The crystal packing of (I),viewed down the *c* axis.

 $(6E) \text{-} N \text{-} [(4Z) \text{-} 2, 5 \text{-} Dimethyl \text{-} 4 \text{-} (p \text{-} tolylimino) cyclohexa \text{-} 2, 5 \text{-} dienylidene] \text{-} 4 \text{-} methylaniline}$

Crystal data

$C_{22}H_{22}N_2$	V = 4067 (2) Å ³
$M_r = 314.42$	Z = 9
Trigonal, $R\overline{3}$	F(000) = 1512
Hall symbol: -R 3	$D_{\rm x} = 1.155 {\rm ~Mg} {\rm m}^{-3}$
a = 21.173 (8) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 10.476 (2) Å	Cell parameters from 25 reflections

 $\theta = 4 - 14^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 293 K

Data collection

Enraf-Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans 6148 measured reflections 1956 independent reflections 793 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.072$ $wR(F^2) = 0.233$ S = 1.021956 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.19 \text{ e} \text{ Å}^{-3}$ 110 parameters $\Delta \rho_{\rm min} = -0.14 \text{ e} \text{ Å}^{-3}$ 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

Block, red $0.21 \times 0.18 \times 0.15 \text{ mm}$

 $R_{\rm int} = 0.075$ $\theta_{\rm max} = 27.0^\circ, \ \theta_{\rm min} = 1.9^\circ$ $h = -26 \rightarrow 26$ $k = -26 \rightarrow 26$ $l = -12 \rightarrow 0$ 3 standard reflections every 100 reflections intensity decay: none

Hydrogen site location: inferred from H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1023P)^2 + 1.7438P]$ where $P = (F_o^2 + 2F_c^2)/3$ Extinction correction: SHELXL, $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0029 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit *S* are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.17771 (14)	0.28153 (14)	0.0673 (3)	0.0845 (9)	
C1	-0.0660(2)	0.1028 (3)	0.3942 (4)	0.1275 (17)	
H1B	-0.0769	0.1330	0.4474	0.191*	
H1C	-0.0529	0.0740	0.4468	0.191*	
H1D	-0.1081	0.0712	0.3441	0.191*	
C2	-0.00306 (19)	0.1504 (2)	0.3064 (3)	0.0882 (11)	
C3	0.0232 (2)	0.1207 (2)	0.2204 (5)	0.1262 (16)	
H3A	0.0010	0.0702	0.2149	0.151*	
C4	0.0822 (2)	0.1636 (2)	0.1401 (5)	0.1197 (15)	
H4A	0.0988	0.1413	0.0836	0.144*	
C5	0.11505 (18)	0.23690 (19)	0.1441 (3)	0.0743 (9)	
C6	0.0891 (2)	0.2665 (2)	0.2299 (4)	0.1182 (15)	

H6A	0.1111	0.3170	0.2358	0.142*	
C7	0.0306 (3)	0.2232 (3)	0.3089 (4)	0.1189 (15)	
H7A	0.0141	0.2456	0.3656	0.143*	
C8	0.10079 (16)	0.28723 (16)	-0.1018 (3)	0.0740 (9)	
H8A	0.0579	0.2564	-0.0583	0.089*	
C9	0.16973 (16)	0.30428 (16)	-0.0440 (3)	0.0707 (9)	
C10	0.23710 (16)	0.35227 (17)	-0.1164 (3)	0.0730 (9)	
C11	0.30536 (15)	0.36974 (17)	-0.0619 (3)	0.0810 (10)	
H11A	0.3439	0.4007	-0.1192	0.122*	
H11B	0.3068	0.3257	-0.0474	0.122*	
H11C	0.3115	0.3946	0.0178	0.122*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0729 (18)	0.093 (2)	0.092 (2)	0.0442 (16)	-0.0040 (15)	0.0096 (17)
C1	0.103 (3)	0.172 (4)	0.109 (3)	0.070 (3)	0.021 (3)	0.052 (3)
C2	0.082 (2)	0.112 (3)	0.081 (2)	0.055 (2)	-0.003 (2)	0.018 (2)
C3	0.105 (3)	0.081 (3)	0.179 (4)	0.036 (2)	0.031 (3)	0.017 (3)
C4	0.111 (3)	0.089(3)	0.150 (4)	0.043 (3)	0.028 (3)	-0.012 (3)
C5	0.071 (2)	0.078 (2)	0.081 (2)	0.0428 (19)	-0.0086 (18)	0.0033 (19)
C6	0.139 (4)	0.081 (3)	0.140 (4)	0.059 (3)	0.036 (3)	0.006 (3)
C7	0.142 (4)	0.104 (3)	0.115 (3)	0.064 (3)	0.043 (3)	0.011 (3)
C8	0.0603 (19)	0.075 (2)	0.090 (2)	0.0369 (16)	0.0000 (17)	0.0017 (18)
C9	0.070 (2)	0.068 (2)	0.082 (2)	0.0400 (17)	-0.0039 (18)	-0.0034 (17)
C10	0.065 (2)	0.074 (2)	0.086 (2)	0.0388 (17)	-0.0052 (17)	-0.0016 (17)
C11	0.0528 (18)	0.093 (2)	0.097 (2)	0.0360 (17)	0.0036 (17)	0.0140 (19)

Geometric parameters (Å, °)

N1—C9	1.305 (4)	C6—C7	1.388 (5)	
N1—C5	1.430 (4)	C6—H6A	0.9300	
C1—C2	1.516 (5)	C7—H7A	0.9300	
C1—H1B	0.9600	C8-C10 ⁱ	1.360 (4)	
C1—H1C	0.9600	C8—C9	1.449 (4)	
C1—H1D	0.9600	C8—H8A	0.9300	
C2—C7	1.336 (5)	C9—C10	1.481 (4)	
C2—C3	1.365 (5)	C10-C8 ⁱ	1.360 (4)	
C3—C4	1.399 (6)	C10—C11	1.420 (4)	
С3—НЗА	0.9300	C11—H11A	0.9600	
C4—C5	1.347 (5)	C11—H11B	0.9600	
C4—H4A	0.9300	C11—H11C	0.9600	
C5—C6	1.359 (5)			
C9—N1—C5	119.9 (3)	С5—С6—Н6А	119.2	
C2—C1—H1B	109.5	С7—С6—Н6А	119.2	
C2C1H1C	109.5	C2—C7—C6	122.4 (4)	
H1B—C1—H1C	109.5	С2—С7—Н7А	118.8	

C2—C1—H1D	109.5	С6—С7—Н7А	118.8
H1B—C1—H1D	109.5	C10 ⁱ —C8—C9	122.7 (3)
H1C—C1—H1D	109.5	C10 ⁱ —C8—H8A	118.6
C7—C2—C3	116.0 (4)	С9—С8—Н8А	118.6
C7—C2—C1	122.6 (4)	N1-C9-C8	125.6 (3)
C3—C2—C1	121.3 (4)	N1-C9-C10	116.9 (3)
C2—C3—C4	122.3 (4)	C8—C9—C10	117.5 (3)
С2—С3—НЗА	118.8	C8 ⁱ —C10—C11	121.6 (3)
С4—С3—НЗА	118.8	C8 ⁱ —C10—C9	119.8 (3)
C5—C4—C3	120.6 (4)	C11—C10—C9	118.6 (3)
C5—C4—H4A	119.7	C10-C11-H11A	109.5
C3—C4—H4A	119.7	C10-C11-H11B	109.5
C4—C5—C6	117.2 (4)	H11A—C11—H11B	109.5
C4—C5—N1	121.2 (3)	C10—C11—H11C	109.5
C6—C5—N1	121.5 (3)	H11A—C11—H11C	109.5
C5—C6—C7	121.5 (4)	H11B—C11—H11C	109.5

Symmetry code: (i) -x+1/3, -y+2/3, -z-1/3.