metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Sodium (1*R*,2*S*,5*S*)-2-hydroxy-6,6dimethylbicyclo[3.1.1]heptane-2carboxylate pentahydrate

Shi-Ying Ma,^a* Ze-Bao Zheng^a and Ji-Kun Li^b

^aDepartment of Chemistry, Taishan University, 271021 Taian, Shandong, People's Republic of China, and ^bDepartment of Materials and Chemical Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China Correspondence e-mail: mashy910@163.com

Received 30 October 2007; accepted 27 November 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.005 Å; R factor = 0.042; wR factor = 0.106; data-to-parameter ratio = 8.5.

In the title compound, $Na^+ \cdot C_{10}H_{15}O_3^- \cdot 5H_2O$, the vertices of a distorted octahedron centred on the Na^+ cation are defined by six O atoms of water molecules. The edge-sharing $Na(H_2O)_6$ octahedra form a chain extended along the *b*-axis direction with adjacent Na^+ cations related by a twofold screw symmetry operation. The organic anion, which is not in close contact with the Na^+ cation, is hydrogen-bonded to an uncoordinated water molecule and to water molecules of the $Na(H_2O)_6$ octahedra.

Related literature

For a crystal structure with similar chains of edge-sharing $Na(H_2O)_6$ octahedra, see: Huang *et al.* (2005).

Experimental

Crystal data Na⁺·C₁₀H₁₅O₃⁻·5H₂O $M_r = 296.29$ Monoclinic, $P_{2_1}^2$ a = 6.647 (3) Å

b = 6.976(3) A
c = 16.608 (7) Å
$\beta = 93.037 \ (7)^{\circ}$
V = 769.0 (6) Å ³

Z = 2
Mo $K\alpha$ radiation
$\mu = 0.13 \text{ mm}^{-1}$

Data collection

Bruker SMART CCD area-detector	4017 measured reflections
diffractometer	1479 independent reflections
Absorption correction: multi-scan	1284 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.039$
$T_{\min} = 0.981, T_{\max} = 0.987$	

Refinement

Table 1

 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.107$ S = 1.021479 reflections

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O8-H18\cdots O3^{i}$	0.85	1.90	2.737 (3)	170
O8−H17···O2	0.85	1.90	2.741 (3)	173
O7−H16···O1 ⁱⁱ	0.85	2.05	2.859 (4)	158
O7−H15···O4 ⁱⁱⁱ	0.85	2.12	2.887 (4)	150
$O6-H14\cdots O8^{iv}$	0.85	1.88	2.727 (3)	175
O6−H13···O2	0.85	1.96	2.776 (3)	161
$O5-H12\cdots O8^{iii}$	0.85	1.98	2.805 (3)	164
$O5-H11\cdots O1^{v}$	0.85	1.96	2.791 (3)	166
$O4-H10\cdots O2$	0.85	2.06	2.879 (3)	161
$O4 - H9 \cdots O1^{v}$	0.85	2.10	2.949 (4)	174
O3−H3···O7 ⁱⁱⁱ	0.82	2.02	2.809 (3)	161

T = 295 K

173 parameters

 $\Delta \rho_{\text{max}} = 0.21 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.24 \text{ e } \text{\AA}^{-3}$

H-atom parameters constrained

 $0.15 \times 0.12 \times 0.10 \text{ mm}$

Symmetry codes: (i) x, y + 1, z; (ii) $-x + 1, y + \frac{1}{2}, -z + 2$; (iii) $-x, y - \frac{1}{2}, -z + 2$; (iv) $-x + 1, y - \frac{1}{2}, -z + 2$; (v) x - 1, y, z.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

The authors thank Taishan University for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2115).

References

- Huang, W., Xie, X., Cui, K., Gou, S. & Li, Y. (2005). *Inorg. Chim. Acta*, 358, 875–884.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supporting information

Acta Cryst. (2008). E64, m92 [https://doi.org/10.1107/S1600536807063775]

Sodium (1*R*,2*S*,5*S*)-2-hydroxy-6,6-dimethylbicyclo[3.1.1]heptane-2-carboxylate pentahydrate

Shi-Ying Ma, Ze-Bao Zheng and Ji-Kun Li

S1. Comment

Sodium nopinate is an intermediate in the synthesis of nopinic acid. Hydroxyalkylamino salts of nopinic acid are new compounds useful in pharmaceutical compositions for alleviating ulcer conditions. In the course of synthesis of nopinic acid the crystal of sodium nopinate pentahydrate (I) was obtained in its crystallographic data are reported here (Fig.1). In the title compound the vertices of a distorted octahedron centred on Na⁺ cation are defined by six O atoms of water molecules. The edge-sharing Na(H₂O)₆ octahedra form a chain extended along the **b** axis with the adjacent Na⁺ cations related by twofold screw axis symmetry. Similar chains were observed in sodium pyridine-4-carboxylate tetrahydrate (Huang *et al.*, 2005).

S2. Experimental

Potassium permanganate (0.03 mol) and NaOH (0.015 mol) were dissolved in the mixture of water (21 ml) and t-butylalcohol (9 ml). While stirring vigorously, enantiomerically pure (-)- β -pinene (0.01 mol) was dropped. The reaction mixture was maintained during 1 to 2 h at temperature of 283–293 K. The reaction was completed when the potassium permanganate reacted completely. The mixture was heated to 353 K, then filtered and the precipitate was washed with hot water. The filtrate was concentrated under vacuum to a volume of 10 ml. After standing for one night in refrigerator the product, sodium nopinate, was filtered and washed with ice water. The crude sodium nopinate was recrystallized from water. Analysis calculated for C₁₀H₁₅O₃Na: C 58.25, H 7.28, Na11.17%; found: C 58.23, H 7.25, N 11.15%. Crystals of (I) suitable for single-crystal X-ray analysis were selected directly from the sample after recrystallization.

S3. Refinement

In the absence of signifcant anomalous scattering effects, Friedel pairs were averaged. The chirality of atoms C2, C3 and C5 were assigned from the known hand of the starting material. The H-atoms were included in the riding-model approximation with C—H = 0.96–0.98 Å and O—H = 0.82 Å (*O*-hydroxy) and 0.85 Å (O-water), and with $U_{iso}(H) = 1.2$ or 1.5 $U_{eq}(C)$ and $U_{iso}(H) = 1.5$ (*O*-hydroxy) or 1.2 (O-water) $U_{eq}(O)$. Friedel pairs were merged for the refinement process.

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are omitted and only asymmetric unit is labelled.

Sodium (1R,2S,5S)-2-hydroxy-6,6-dimethylbicyclo[3.1.1]heptane-2-carboxylate pentahydrate

Crystal data

Na⁺·C₁₀H₁₅O₃⁻·5H₂O $M_r = 296.29$ Monoclinic, $P2_1$ Hall symbol: P 2yb a = 6.647 (3) Å b = 6.976 (3) Å c = 16.608 (7) Å $\beta = 93.037$ (7)° V = 769.0 (6) Å³ Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.981, T_{\max} = 0.987$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.107$ S = 1.031479 reflections 173 parameters 0 restraints F(000) = 320 $D_x = 1.280 \text{ Mg m}^{-3}$ Melting point: 350 K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1420 reflections $\theta = 3.1-22.4^{\circ}$ $\mu = 0.13 \text{ mm}^{-1}$ T = 295 KBlock, colourless $0.15 \times 0.12 \times 0.10 \text{ mm}$

4017 measured reflections 1479 independent reflections 1284 reflections with $I > 2\sigma(I)$ $R_{int} = 0.039$ $\theta_{max} = 25.1^{\circ}, \theta_{min} = 2.5^{\circ}$ $h = -7 \rightarrow 7$ $k = -5 \rightarrow 8$ $l = -16 \rightarrow 19$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.069P)^{2} + 0.001P] \qquad \Delta \rho_{\max} = 0.21 \text{ e} \text{ Å}^{-3}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{\min} = -0.24 \text{ e} \text{ Å}^{-3}$ $(\Delta/\sigma)_{\max} < 0.001$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates	and isotropic of	or equivalent isotro	pic displacement	parameters	$(Å^2)$	ļ
-------------------------------	------------------	----------------------	------------------	------------	---------	---

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Na1	-0.00585 (18)	0.5552 (2)	1.00549 (8)	0.0409 (3)	
01	0.6546 (3)	0.2810 (4)	0.82272 (12)	0.0526 (6)	
O2	0.3527 (3)	0.4065 (3)	0.83467 (12)	0.0430 (6)	
O3	0.3247 (3)	-0.0018 (3)	0.77372 (14)	0.0440 (6)	
H3	0.2070	0.0084	0.7855	0.066*	
O4	-0.0358 (3)	0.5789 (4)	0.85286 (14)	0.0507 (6)	
H9	-0.1268	0.4968	0.8404	0.061*	
H10	0.0723	0.5321	0.8360	0.061*	
05	-0.2377 (3)	0.3046 (4)	0.98716 (11)	0.0426 (5)	
H11	-0.2909	0.2932	0.9397	0.051*	
H12	-0.3323	0.2808	1.0182	0.051*	
O6	0.2300 (3)	0.3093 (4)	0.98658 (11)	0.0417 (5)	
H13	0.2944	0.3309	0.9446	0.050*	
H14	0.3195	0.2885	1.0240	0.050*	
O7	0.0435 (3)	0.4926 (3)	1.15078 (13)	0.0474 (6)	
H15	0.0819	0.3783	1.1605	0.057*	
H16	0.1382	0.5627	1.1707	0.057*	
08	0.4976 (3)	0.7554 (3)	0.88678 (12)	0.0493 (6)	
H17	0.4586	0.6483	0.8672	0.059*	
H18	0.4541	0.8403	0.8536	0.059*	
C1	0.4727 (4)	0.2977 (5)	0.80066 (15)	0.0352 (6)	
C2	0.3845 (5)	0.1694 (4)	0.73196 (18)	0.0356 (7)	
C3	0.2004 (4)	0.2543 (5)	0.68807 (17)	0.0384 (7)	
H3A	0.0894	0.2849	0.7224	0.046*	
C4	0.1419 (5)	0.1285 (6)	0.6148 (2)	0.0527 (9)	
H4A	0.1791	-0.0053	0.6212	0.063*	
H4B	0.0028	0.1423	0.5948	0.063*	
C5	0.2921 (5)	0.2488 (6)	0.56934 (18)	0.0541 (10)	
Н5	0.2527	0.2741	0.5126	0.065*	
C6	0.4990 (6)	0.1655 (7)	0.58425 (18)	0.0586 (11)	
H6A	0.5982	0.2592	0.5692	0.070*	
H6B	0.5124	0.0540	0.5501	0.070*	

C7	0.5440 (5)	0.1063 (5)	0.67306 (18)	0.0451 (8)	
H7A	0.5565	-0.0321	0.6755	0.054*	
H7B	0.6730	0.1603	0.6913	0.054*	
C8	0.2550 (5)	0.4173 (5)	0.62814 (18)	0.0463 (8)	
С9	0.4265 (6)	0.5520 (6)	0.6499 (2)	0.0581 (9)	
H9A	0.3882	0.6371	0.6919	0.087*	
H9B	0.4581	0.6253	0.6033	0.087*	
H9C	0.5426	0.4794	0.6685	0.087*	
C10	0.0681 (7)	0.5319(7)	0.6031 (3)	0.0742 (12)	
H10A	0.0984	0.6187	0.5605	0.111*	
H10B	0.0250	0.6035	0.6485	0.111*	
H10C	-0.0373	0.4462	0.5845	0.111*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Na1	0.0433 (6)	0.0359 (7)	0.0437 (6)	0.0011 (5)	0.0047 (4)	-0.0013 (6)
O1	0.0472 (12)	0.0610 (16)	0.0483 (12)	0.0079 (13)	-0.0090 (9)	-0.0138 (12)
O2	0.0484 (12)	0.0462 (14)	0.0348 (11)	0.0040 (11)	0.0068 (9)	-0.0075 (10)
O3	0.0505 (13)	0.0341 (13)	0.0482 (13)	0.0017 (10)	0.0094 (10)	0.0087 (10)
O4	0.0494 (12)	0.0487 (15)	0.0547 (13)	0.0013 (12)	0.0076 (10)	-0.0040 (12)
O5	0.0366 (10)	0.0505 (13)	0.0409 (10)	-0.0013 (12)	0.0025 (8)	0.0008 (12)
O6	0.0373 (10)	0.0504 (13)	0.0378 (10)	0.0015 (11)	0.0056 (8)	0.0033 (12)
O7	0.0507 (13)	0.0440 (15)	0.0478 (13)	-0.0012 (11)	0.0050 (10)	-0.0024 (11)
08	0.0604 (13)	0.0484 (16)	0.0381 (11)	-0.0009 (12)	-0.0061 (9)	-0.0015 (11)
C1	0.0416 (15)	0.0360 (16)	0.0282 (13)	0.0043 (16)	0.0039 (11)	0.0026 (15)
C2	0.0421 (16)	0.0299 (17)	0.0352 (15)	-0.0014 (13)	0.0051 (12)	0.0011 (13)
C3	0.0433 (15)	0.038 (2)	0.0336 (14)	-0.0013 (14)	0.0033 (11)	0.0007 (14)
C4	0.059 (2)	0.053 (2)	0.0450 (19)	-0.0102 (18)	-0.0072 (15)	-0.0052 (17)
C5	0.073 (2)	0.062 (3)	0.0261 (15)	-0.011 (2)	0.0004 (14)	-0.0043 (17)
C6	0.070 (2)	0.072 (3)	0.0349 (17)	-0.006 (2)	0.0152 (16)	-0.0166 (18)
C7	0.0505 (17)	0.047 (2)	0.0384 (17)	0.0018 (16)	0.0111 (14)	-0.0071 (15)
C8	0.064 (2)	0.041 (2)	0.0325 (16)	-0.0047 (18)	-0.0039 (15)	0.0069 (15)
С9	0.093 (2)	0.044 (2)	0.0376 (17)	-0.016 (2)	0.0028 (16)	0.0096 (17)
C10	0.101 (3)	0.062 (3)	0.058 (2)	0.018 (3)	-0.014 (2)	0.010 (2)

Geometric parameters (Å, °)

Nal—O5	2.340 (3)	C2—C7	1.544 (4)	
Na1—O6	2.356 (3)	C3—C4	1.534 (5)	
Na1—O7	2.457 (3)	C3—C8	1.566 (4)	
Na1—O4	2.538 (3)	С3—НЗА	0.9800	
Na1—Na1 ⁱ	3.4939 (15)	C4—C5	1.533 (5)	
Na1—Na1 ⁱⁱ	3.4939 (15)	C4—H4A	0.9700	
01—C1	1.250 (3)	C4—H4B	0.9700	
O2—C1	1.257 (4)	C5—C6	1.502 (5)	
O3—C2	1.447 (4)	C5—C8	1.556 (5)	
О3—Н3	0.8200	С5—Н5	0.9800	

supporting information

04 110	0.8500	0(07	1 = 4 = (5)
04—H9	0.8500	C6C7	1.545 (5)
04—H10	0.8500	С6—Н6А	0.9700
O5—Nal ¹	2.375 (3)	С6—Н6В	0.9700
O5—H11	0.8500	С7—Н7А	0.9700
O5—H12	0.8499	С7—Н7В	0.9700
O6—Na1 ⁱ	2.324 (3)	C8—C9	1.507 (5)
O6—H13	0.8500	C8—C10	1.517 (6)
O6—H14	0.8499	С9—Н9А	0.9600
O7—H15	0.8500	С9—Н9В	0.9600
O7—H16	0.8501	С9—Н9С	0.9600
O8—H17	0.8499	C10—H10A	0.9600
08—H18	0 8498	C10—H10B	0 9600
C1-C2	1 541 (4)	C10 - H10C	0.9600
$C_2 = C_3$	1.512(4)		0.9000
62-65	1.512 (4)		
06 ⁱⁱ —Na1—O5	99.06 (9)	O3—C2—C7	106.5 (3)
O5—Na1—O6	82.94 (9)	C3—C2—C7	111.8 (3)
O6 ⁱⁱ —Na1—O5 ⁱⁱ	82.86 (9)	C1—C2—C7	112.8 (3)
06—Na1—05 ⁱⁱ	94.79 (9)	C2-C3-C4	108.8 (3)
$O6^{ii}$ —Na1—O7	97 62 (9)	$C_{2}-C_{3}-C_{8}$	112.5(2)
05—Na1—07	92 74 (9)	C4-C3-C8	88 2 (2)
06-Na1-07	86.92 (8)	C2-C3-H3A	114.8
05^{ii} Na1-07	91 40 (9)	C4-C3-H3A	114.8
$O6^{ii}$ Na1 $O4$	91.40(9) 80 44 (0)	$C_8 C_3 H_{3A}$	114.0
00 - Na1 - 04	89.44 (9)	$C_{0} = C_{0} = C_{0}$	962(2)
O_5 No1 O_4	84.40 (9) 86.10 (0)	C_{5}	114.2
00 Na1 04	80.10 (9) 01.10 (0)	$C_3 = C_4 = H_4 A$	114.5
05 Na104	91.19 (9)	C3-C4-H4A	114.3
0/-Nal-04	1/2./3(11)	C5—C4—H4B	114.3
O6 ⁿ —Nal—Nal ¹	141.31 (8)	C3—C4—H4B	114.3
O5—Nal—Nal ¹	42.58 (6)	H4A—C4—H4B	111.4
O6—Na1—Na1 ¹	41.36 (6)	C6—C5—C4	108.8 (3)
O5 ⁱⁱ —Na1—Na1 ⁱ	135.80 (8)	C6—C5—C8	111.3 (3)
O7—Na1—Na1 ⁱ	82.63 (8)	C4—C5—C8	88.6 (3)
O4—Na1—Na1 ⁱ	90.79 (8)	С6—С5—Н5	115.1
O6 ⁱⁱ —Na1—Na1 ⁱⁱ	42.06 (6)	C4—C5—H5	115.1
O5—Na1—Na1 ⁱⁱ	139.07 (8)	С8—С5—Н5	115.1
O6—Na1—Na1 ⁱⁱ	134.67 (9)	C5—C6—C7	113.0 (3)
O5 ⁱⁱ —Na1—Na1 ⁱⁱ	41.80 (6)	С5—С6—Н6А	109.0
O7—Na1—Na1 ⁱⁱ	103.09 (8)	С7—С6—Н6А	109.0
O4—Na1—Na1 ⁱⁱ	83.32 (8)	С5—С6—Н6В	109.0
Na1 ⁱ —Na1—Na1 ⁱⁱ	173.37 (8)	С7—С6—Н6В	109.0
С2—О3—Н3	109.5	H6A—C6—H6B	107.8
Na1—O4—H9	102.5	C2—C7—C6	115.1 (3)
Na1-04-H10	106.3	С2—С7—Н7А	108.5
H9—O4—H10	105.3	С6—С7—Н7А	108.5
Na1-05-H11	115.4	C2—C7—H7B	108.5
$Na1^{i}$ 05 H11	103.2	C6—C7—H7B	108.5
Na1-05-H12	124.7	H7A - C7 - H7B	107.5
1,W1 VV 1114	· · · /		

Na1 ⁱ —O5—H12	110.5	C9—C8—C10	109.6 (3)
H11—O5—H12	105.0	C9—C8—C5	118.6 (3)
Na1 ⁱ O6H13	122.3	C10—C8—C5	112.4 (3)
Na1—O6—H13	110.3	C9—C8—C3	119.9 (3)
Na1 ⁱ —O6—H14	104.7	C10—C8—C3	110.1 (3)
Na1—O6—H14	118.1	C5—C8—C3	84.3 (2)
H13—O6—H14	105.5	С8—С9—Н9А	109.5
Na1—O7—H15	112.1	С8—С9—Н9В	109.5
Na1—O7—H16	109.8	H9A—C9—H9B	109.5
H15—O7—H16	104.8	С8—С9—Н9С	109.5
H17—O8—H18	106.1	Н9А—С9—Н9С	109.5
O1—C1—O2	123.5 (3)	H9B—C9—H9C	109.5
01—C1—O2	123.5 (3)	C8—C10—H10A	109.5
O1—C1—C2	119.1 (3)	C8-C10-H10B	109.5
O2—C1—C2	117.2 (2)	H10A—C10—H10B	109.5
O2—C1—C2	117.2 (2)	C8—C10—H10C	109.5
O3—C2—C3	108.6 (2)	H10A—C10—H10C	109.5
O3—C2—C1	103.2 (2)	H10B—C10—H10C	109.5
C3—C2—C1	113.3 (3)		
O6 ⁱⁱ —Na1—O5—Na1 ⁱ	-174.16 (10)	C1—C2—C3—C8	76.8 (3)
O6—Na1—O5—Na1 ⁱ	10.56 (7)	C7—C2—C3—C8	-52.0 (4)
O7—Na1—O5—Na1 ⁱ	-76.00 (9)	C2—C3—C4—C5	-86.5 (3)
O4—Na1—O5—Na1 ⁱ	97.30 (9)	C8—C3—C4—C5	26.7 (3)
Na1 ⁱⁱ —Na1—O5—Na1 ⁱ	170.35 (13)	C3—C4—C5—C6	85.2 (3)
O5—Na1—O6—Na1 ⁱ	-10.82(7)	C3—C4—C5—C8	-26.9(2)
O5 ⁱⁱ —Na1—O6—Na1 ⁱ	173.48 (10)	C4—C5—C6—C7	-42.5 (4)
O7—Na1—O6—Na1 ⁱ	82.33 (9)	C8—C5—C6—C7	53.6 (4)
O4—Na1—O6—Na1 ⁱ	-95.64 (9)	O3—C2—C7—C6	126.2 (3)
Na1 ⁱⁱ —Na1—O6—Na1 ⁱ	-172.26 (12)	C3—C2—C7—C6	7.8 (4)
O2—O2—C1—O1	0.0 (7)	C1—C2—C7—C6	-121.3 (3)
O2—O2—C1—C2	0.0 (6)	C5—C6—C7—C2	-8.5 (5)
O1—C1—C2—O3	87.1 (3)	C6—C5—C8—C9	37.7 (4)
O2—C1—C2—O3	-88.8 (3)	C4—C5—C8—C9	147.3 (3)
O2—C1—C2—O3	-88.8 (3)	C6—C5—C8—C10	167.4 (3)
O1—C1—C2—C3	-155.6(3)	C4—C5—C8—C10	-83.0(4)
O2—C1—C2—C3	28.4 (4)	C6—C5—C8—C3	-83.3(3)
O2—C1—C2—C3	28.4 (4)	C4—C5—C8—C3	26.3 (2)
O1—C1—C2—C7	-27.4(4)	C2—C3—C8—C9	-36.5(4)
O2—C1—C2—C7	156.7 (3)	C4—C3—C8—C9	-146.1(3)
02-C1-C2-C7	156.7 (3)	C2—C3—C8—C10	-164.9 (3)
03-C2-C3-C4	-73.2 (3)	C4—C3—C8—C10	85.4 (3)
C1—C2—C3—C4	172.8 (3)	C2—C3—C8—C5	83.3 (3)
C7—C2—C3—C4	44.0 (3)	C4—C3—C8—C5	-26.3(2)
03-C2-C3-C8	-169.2 (2)		(_)
· · · · · ·	···· (=)		

Symmetry codes: (i) -x, y-1/2, -z+2; (ii) -x, y+1/2, -z+2.

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O8—H18…O3 ⁱⁱⁱ	0.85	1.90	2.737 (3)	170
O8—H17…O2	0.85	1.90	2.741 (3)	173
O7—H16…O1 ^{iv}	0.85	2.05	2.859 (4)	158
O7—H15…O4 ⁱ	0.85	2.12	2.887 (4)	150
O6—H14···O8 ^v	0.85	1.88	2.727 (3)	175
O6—H13…O2	0.85	1.96	2.776 (3)	161
O5—H12…O8 ⁱ	0.85	1.98	2.805 (3)	164
O5—H11…O1 ^{vi}	0.85	1.96	2.791 (3)	166
O4—H10…O2	0.85	2.06	2.879 (3)	161
O4—H9…O1 ^{vi}	0.85	2.10	2.949 (4)	174
O3—H3…O7 ⁱ	0.82	2.02	2.809 (3)	161

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -*x*, *y*-1/2, -*z*+2; (iii) *x*, *y*+1, *z*; (iv) -*x*+1, *y*+1/2, -*z*+2; (v) -*x*+1, *y*-1/2, -*z*+2; (vi) *x*-1, *y*, *z*.