organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(2-Hydroxy-5-methoxyphenyl)ethan-1one N-[(E)-1-(2-hydroxy-5-methoxyphenyl)ethylidene]hydrazone

Jin-Hua Zhang,^a Wen-Liang Dong,^b Yan-Qing Ge^a and **Bao-Xiang Zhao**^a*

^aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China, and ^bShandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China Correspondence e-mail: sduzhao@hotmail.com

Received 20 November 2007; accepted 29 November 2007

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.047; wR factor = 0.178; data-to-parameter ratio = 16.4.

In the title molecule, C18H20N2O4, which resides on a crystallographic centre of inversion (at the centre of the N-N bond), all non-H atoms apart from the methoxy substituent are approximately coplanar. The structure displays intramolecular $O-H \cdots N$ hydrogen bonding.

Related literature

For related literature, see: Saroja et al. (1995); Sreerama et al. (2007); Sreerama & Pal (2005); Tian et al. (2007).

Experimental

Crystal data $C_{18}H_{20}N_2O_4$ $M_r = 328.36$ Monoclinic, $P2_1/c$ a = 8.5545 (7) Å b = 6.4614 (4) Å

c = 14.3548 (10) Å $\beta = 91.243 \ (5)^{\circ}$ V = 793.26 (10) Å³ Z = 2Mo $K\alpha$ radiation

 $0.39 \times 0.23 \times 0.06 \text{ mm}$

 $\mu = 0.10 \text{ mm}^{-1}$ T = 296 (2) K

Data collection

Bruker APEXII CCD area-detector	7584 measured reflections
diffractometer	1837 independent reflections
Absorption correction: multi-scan	1306 reflections with $I > 2\sigma(I)$
(APEX2; Bruker, 2005)	$R_{\rm int} = 0.023$
$T_{\rm min} = 0.963, \ T_{\rm max} = 0.995$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ 112 parameters $wR(F^2) = 0.178$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.31 \text{ e} \text{ Å}^{-3}$ S = 1.05 $\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$ 1837 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1−H1···N1	0.82	1.83	2.5523 (18)	146

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This study was supported by the Natural Science Foundation of Shandong Province (grant No. Y2005B12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GG2057).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Version 2.0-2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Saroja, J., Manivannan, V., Chakraborty, P. & Pal, S. (1995). Inorg. Chem. 34, 3099-3101.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Sreerama, S. G., Mukhopadhyay, A. & Pal, S. (2007). Polyhedron, 26, 4101-4106
- Sreerama, S. G. & Pal, S. (2005). Inorg. Chem. 44, 6299-6307.
- Tian, L., Hu, Z., Shi, P., Zhou, H., Wu, J., Tian, Y., Zhou, Y., Tao, X. & Jiang, M. (2007). J. Lumin. 127, 423-430.

supporting information

Acta Cryst. (2008). E64, o166 [https://doi.org/10.1107/S1600536807064409]

1-(2-Hydroxy-5-methoxyphenyl)ethan-1-one *N*-[(*E*)-1-(2-hydroxy-5-methoxy-phenyl)ethylidene]hydrazone

Jin-Hua Zhang, Wen-Liang Dong, Yan-Qing Ge and Bao-Xiang Zhao

S1. Comment

In bis Schiff base systems derived from hydrazine, the two chelating sites are connected directly by a single bond, (Saroja *et al.* 1995, Sreerama *et al.* 2005, 2007, Tian *et al.* 2007). However, To date, there has been no crystal structure report of the compound 2,2'-(1E,1'E)-1,1'-(hydrazine-1,2-diylidene)bis(ethan-1-yl-1-ylidene)bis(4-methoxyphenol). We report here the crystal structure of the title compound (Fig. 1).

In the title compound (Fig. 1), all bond lengths and angles are normal. Apart from the methoxy substituent, all non-H atoms of the molecule are coplanar to within 0.029 Å. In the crystal structure, intramolecular O—H…N hydrogen bonds are observed.

S2. Experimental

A mixture of 1-(2-hydroxy-5-methoxyphenyl)ethanone (166 mg, 1 mmol), hydrazine sulfate (67 mg, 0.5 mmol) and triethylamine (153 mg, 1.5 mmol) in alcohol (10 ml) was heated to reflux for 32 h. After cooling, the precipitate was filtrated and washed with water to afford the product in 60% yield. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a solution of the solid in ethyl acetate at room temperature for 10 d.

S3. Refinement

All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H = 0.97 Å (for CH₂ groups) and 0.96 Å (for CH₃ groups), their isotropic displacement parameters were set to 1.2 times (1.5 times for CH₃ groups) the equivalent displacement parameter of their parent atoms.

Figure 1

The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

Figure 2

Packing view of (I), shown along the b axis direction.

1-(2-Hydroxy-5-methoxyphenyl)ethan-1-one *N*-[(*E*)-1-(2-hydroxy-5-methoxyphenyl)ethylidene]hydrazone

Crystal data

$C_{18}H_{20}N_{2}O_{4}$ $M_{r} = 328.36$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc a = 8.5545 (7) Å b = 6.4614 (4) Å c = 14.3548 (10) Å $\beta = 91.243$ (5)° V = 793.26 (10) Å ³ Z = 2	F(000) = 348 $D_x = 1.375 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1667 reflections $\theta = 2.4-27.6^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 296 K Plate, orange-yellow $0.39 \times 0.23 \times 0.06 \text{ mm}$
Data collectionBruker APEXII CCD area-detector diffractometerRadiation source: fine-focus sealed tubeGraphite monochromator φ and ω scansAbsorption correction: multi-scan $(APEX2; Bruker, 2005)$ $T_{min} = 0.963, T_{max} = 0.995$	7584 measured reflections 1837 independent reflections 1306 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.023$ $\theta_{\text{max}} = 27.6^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$ $h = -11 \rightarrow 9$ $k = -8 \rightarrow 8$ $l = -18 \rightarrow 18$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: inferred from
$wR(F^2) = 0.178$	neighbouring sites
S = 1.05	H-atom parameters constrained
1837 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1017P)^2 + 0.1301P]$
112 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.31 \ m e \ m \AA^{-3}$
direct methods	$\Delta ho_{ m min} = -0.25 \mathrm{e} \mathrm{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.0145 (3)	0.1588 (3)	0.15985 (12)	0.0546 (5)
H1A	-0.0618	0.0500	0.1561	0.082*
H1B	-0.0328	0.2815	0.1842	0.082*
H1C	0.0996	0.1168	0.2003	0.082*
C2	0.0749 (2)	0.2025 (2)	0.06448 (11)	0.0371 (4)
C3	0.17276 (19)	0.3862 (2)	0.04965 (11)	0.0356 (4)
C4	0.2295 (2)	0.4376 (3)	-0.03962 (11)	0.0413 (4)
C5	0.3199 (2)	0.6135 (3)	-0.05005 (13)	0.0528 (5)
Н5	0.3562	0.6473	-0.1087	0.063*
C6	0.3574 (2)	0.7398 (3)	0.02449 (13)	0.0500 (5)
H6	0.4185	0.8570	0.0159	0.060*
C7	0.3037 (2)	0.6916 (3)	0.11227 (12)	0.0417 (4)
C8	0.2134 (2)	0.5179 (3)	0.12370 (11)	0.0398 (4)
H8	0.1779	0.4868	0.1829	0.048*
C9	0.4389 (3)	0.9765 (3)	0.18430 (16)	0.0620 (6)
H9A	0.5389	0.9266	0.1650	0.093*
H9B	0.4503	1.0430	0.2439	0.093*
H9C	0.3989	1.0740	0.1393	0.093*
N1	0.04606 (16)	0.0865 (2)	-0.00768 (9)	0.0394 (4)
O1	0.19804 (19)	0.3216 (2)	-0.11624 (9)	0.0595 (5)
H1	0.1487	0.2184	-0.1014	0.089*
O2	0.33331 (18)	0.8075 (2)	0.19129 (9)	0.0572 (4)

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0789 (14)	0.0512 (10)	0.0339 (9)	-0.0200 (9)	0.0095 (9)	0.0003 (8)
C2	0.0445 (10)	0.0346 (8)	0.0322 (8)	-0.0006 (6)	0.0023 (7)	0.0020 (6)
C3	0.0387 (9)	0.0346 (8)	0.0334 (8)	0.0006 (6)	0.0017 (6)	0.0019 (6)
C4	0.0461 (10)	0.0440 (9)	0.0340 (9)	-0.0039 (7)	0.0047 (7)	-0.0005 (7)
C5	0.0597 (12)	0.0576 (12)	0.0415 (10)	-0.0159 (9)	0.0113 (8)	0.0027 (8)
C6	0.0524 (12)	0.0466 (10)	0.0514 (11)	-0.0145 (8)	0.0065 (9)	0.0038 (8)
C7	0.0463 (10)	0.0363 (8)	0.0423 (9)	-0.0012 (7)	-0.0017 (7)	-0.0014 (7)
C8	0.0487 (10)	0.0379 (8)	0.0330 (8)	-0.0020 (7)	0.0031 (7)	0.0005 (7)
C9	0.0744 (14)	0.0471 (11)	0.0641 (13)	-0.0195 (10)	-0.0072 (11)	-0.0069 (9)
N1	0.0482 (9)	0.0351 (7)	0.0351 (7)	-0.0052 (6)	0.0049 (6)	-0.0007 (6)
01	0.0799 (11)	0.0644 (9)	0.0348 (7)	-0.0262 (7)	0.0129 (6)	-0.0073 (6)
02	0.0758 (10)	0.0464 (7)	0.0494 (8)	-0.0202(6)	0.0028 (7)	-0.0088 (6)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

C1—C2	1.501 (2)	C6—C7	1.386 (3)
C1—H1A	0.9600	С6—Н6	0.9300
C1—H1B	0.9600	С7—С8	1.374 (2)
C1—H1C	0.9600	C7—O2	1.378 (2)
C2—N1	1.298 (2)	С8—Н8	0.9300
C2—C3	1.471 (2)	C9—O2	1.422 (2)
C3—C8	1.400 (2)	С9—Н9А	0.9600
C3—C4	1.420 (2)	С9—Н9В	0.9600
C4—O1	1.353 (2)	С9—Н9С	0.9600
C4—C5	1.385 (2)	N1—N1 ⁱ	1.388 (3)
C5—C6	1.378 (3)	O1—H1	0.8200
С5—Н5	0.9300		
C2—C1—H1A	109.5	C5—C6—C7	119.81 (16)
C2—C1—H1B	109.5	С5—С6—Н6	120.1
H1A—C1—H1B	109.5	С7—С6—Н6	120.1
C2—C1—H1C	109.5	C8—C7—O2	116.04 (15)
H1A—C1—H1C	109.5	C8—C7—C6	119.35 (16)
H1B—C1—H1C	109.5	O2—C7—C6	124.61 (16)
N1—C2—C3	116.73 (14)	C7—C8—C3	122.47 (16)
N1-C2-C1	123.78 (15)	С7—С8—Н8	118.8
C3—C2—C1	119.50 (15)	С3—С8—Н8	118.8
C8—C3—C4	117.32 (15)	O2—C9—H9A	109.5
C8—C3—C2	120.91 (15)	O2—C9—H9B	109.5
C4—C3—C2	121.77 (15)	H9A—C9—H9B	109.5
O1—C4—C5	117.95 (15)	O2—C9—H9C	109.5
O1—C4—C3	122.54 (15)	Н9А—С9—Н9С	109.5
C5—C4—C3	119.51 (16)	H9B—C9—H9C	109.5
C6—C5—C4	121.54 (17)	C2-N1-N1 ⁱ	115.92 (16)
С6—С5—Н5	119.2	C4—O1—H1	109.5

supporting information

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C5—H5	119.2	С7—О2—С9	117.68 (16)	
O1-C4-C5-C6 $-179.92 (18)$ $C8-C7-O2-C9$ $173.87 (16)$ $C3-C4-C5-C6$ $0.5 (3)$ $C6-C7-O2-C9$ $-6.6 (3)$ $C4-C5-C6-C7$ $-0.2 (3)$	N1-C2-C3-C8 C1-C2-C3-C8 N1-C2-C3-C4 C1-C2-C3-C4 C8-C3-C4-O1 C2-C3-C4-O1 C2-C3-C4-O1 C8-C3-C4-C5 C2-C3-C4-C5 C2-C3-C4-C5 O1-C4-C5-C6 C3-C4-C5-C6 C4-C5-C6-C7	-178.44 (15) 1.5 (3) 1.7 (2) -178.35 (17) 179.88 (15) -0.2 (3) -0.6 (3) 179.33 (16) -179.92 (18) 0.5 (3) -0.2 (3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.0 (3) \\ -179.58 (17) \\ 179.54 (15) \\ 0.0 (3) \\ 0.3 (3) \\ -179.56 (15) \\ 179.83 (16) \\ -0.2 (3) \\ 173.87 (16) \\ -6.6 (3) \end{array}$	

Symmetry code: (i) -x, -y, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D····A	<i>D</i> —H··· <i>A</i>
O1—H1…N1	0.82	1.83	2.5523 (18)	146