metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis[bis(1H-benzimidazol-2-vlmethyl)amine]copper(II) dichloride methanol disolvate dihydrate

Xian-you Xia, Yong Zhang,* Yuan Qu, Xue-mei Chen and **Ting Liu**

School of Chemical and Materials Engineering, Huangshi Institute of Technology, Huangshi 435003, People's Republic of China Correspondence e-mail: zy0340907@yahoo.com.cn

Received 16 November 2007; accepted 5 December 2007

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.005 Å; R factor = 0.051; wR factor = 0.123; data-to-parameter ratio = 16.6.

In the title compound, $[Cu(C_{16}H_{14}N_5)_2]Cl_2 \cdot 2CH_4O \cdot 2H_2O$, the cationic metal complex resides on a crystallographic centre of inversion, with the Cu²⁺ bonded to two bis(1H-benzimidazol-2-ylmethyl)amines (IDB). The coordination geometry of the Cu²⁺ ion is distorted octahedral with an N₆ ligand set. A threedimensional framework structure is formed by means of hydrogen bonds and $\pi - \pi$ interactions formed between imidazole and phenyl rings, and between phenyl and phenyl rings, with centroid-to-centroid distances of 3.690 (2)-3.977 (2) Å and interplanar spacings of 3.445 (2)-3.502 (2) Å.

Related literature

For related literature, see: Adams et al. (1990); Qin et al. (2005); Santoro et al. (2000); Suresh et al. (2006); Yan et al. (2004); Yu et al. (2006). For the treatment of disordered solvent, see: Spek (2003).

Experimental

Crystal data

[Cu(C16H14N5)2]Cl2·2CH4O·2H2O $\gamma = 87.073 (5)^{\circ}$ $M_r = 725.13$ V = 977.1 (5) Å³ Triclinic, P1 Z = 1a = 9.653 (3) Å Mo $K\alpha$ radiation b = 9.921 (3) Å $\mu = 0.74 \text{ mm}^{-1}$ c = 10.316 (3) Å T = 292 (2) K $\alpha = 82.095 \ (5)^{\circ}$ $0.23 \times 0.22 \times 0.20$ mm $\beta = 88.441 \ (5)^{\circ}$

Data collection

r

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.051$	H atoms treated by a mixture of
$wR(F^2) = 0.123$	independent and constrained
S = 0.97	refinement
3799 reflections	$\Delta \rho_{\rm max} = 0.60 \ {\rm e} \ {\rm \AA}^{-3}$
229 parameters	$\Delta \rho_{\rm min} = -0.60 \text{ e } \text{\AA}^{-3}$
6 restraints	

3799 independent reflections 2937 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.099$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N4-H4\cdotsO1$ $O1-H1B\cdotsCl1$ $N1-H1C\cdotsCl1^{i}$	0.860 (10) 0.81 (4) 0.855 (10)	2.027 (15) 2.59 (4) 2.455 (12)	2.839 (4) 3.206 (4) 3.296 (3)	157 (3) 134 (5) 168 (3)

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: Bruker SMART CCD (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GG2050).

References

- Adams, H., Bailey, N. A., Carane, J. D. & Fenton, D. E. (1990). J. Chem. Soc. Dalton Trans. pp. 1727-1735.
- Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS Inc., Madison, Wisconsin, USA.
- Qin, S.-D., Feng, S.-S., Zhang, H.-M., Yang, P. & Zhu, M.-L. (2005). Acta Cryst. E61, o1574-o1576.
- Santoro, S. W., Joyce, G. F., Sakthivel, K., Gramatikova, S. & Barbas, C. F. (2000). J. Am. Chem. Soc. 122, 2433-2439.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Suresh, J., Alex Raja, V. P., Perumal, S. & Natarajan, S. (2006). Acta Cryst. E62, 03307-03309.

Yan, X.-X., Lu, L.-P. & Zhu, M.-L. (2004). Acta Cryst. C60, m221-m223.

Yu, B.-B., Meng, X.-G. & Liao, Z.-R. (2006). Acta Cryst. E62, m1519-m1521.

supporting information

Acta Cryst. (2008). E64, m190 [https://doi.org/10.1107/S1600536807065816]

Bis[bis(1*H*-benzimidazol-2-ylmethyl)amine]copper(II) dichloride methanol disolvate dihydrate

Xian-you Xia, Yong Zhang, Yuan Qu, Xue-mei Chen and Ting Liu

S1. Comment

Imidazole (Im) and benzimidazole (Bzim) are common species having biological and biochemical structure and function (Santoro *et al.*, 2000). Several compounds containing more than one benzimidazole moiety have been reported recently, *e.g.* Yan *et al.* (2004), Qin *et al.* (2005), and Yu *et al.* (2006). The title compound, (I), was prepared in a series of syntheses to produce new benzimidazole derivatives, and we report the crystal stucture herein.

The main geometric parameters of (I) are listed in Table 1, and the molecule structure is illustrated in Fig. 1. In (I), the Cu atom displays a distorted octahedral coordination geometry provided by two tridentate IDB ligands: one amine N atom and one benzimidazolyl N atom of each ligand make up the equatorial plane and another benzimidazolyl N atom of each ligand occupies the axial position. As shown in Table 2 and Fig. 2, the molecules are stablized by intermolecular Cl…H—N, Cl…H—O and O…H—N hydrogen bonds and π … π stacking, leading to the formation of a three dimension network.

S2. Experimental

All reagents and solvents were used as obtained without further purification. Bis(benzimidazol-2-yl-methyl)amine (IDB) was prepared according to the method described by Adams *et al.* (1990). Compound (I) was synthesized by reaction of IDB (0.54 g, 2 mmol) and copper(II) chloride dihydrate (0.17 g, 1 mmol) in methanol (40 ml) at 333 K for 8 h. The resulting solution was filtered and purple crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of the filtrate at room temperature after one week (yield 55%).

S3. Refinement

All H atoms bonded to C atoms were placed in calculated positions and constrained to ride on their parent atoms, with C —H distances in the range 0.93–0.97 Å, with $U_{iso}(H) = 1.2U_{eq}(C)$. H atoms bonded to N atoms were located in a difference map and were refined with distance restraints of N—H = 0.86 (1)Å and $U_{iso}(H) = 1.2U_{eq}(N)$. Similarly located water H atoms were refined with distance restraints of O—H = 0.82 (1) Å, H…H = 1.35 (1)Å and $U_{iso}(H) = 1.5U_{eq}(O)$. During the refinement of the structure, electron-density peaks were located that were believed to be highly disordered solvent molecule molecules (possibly methanol and water solvent). Attempts made to model the solvent molecules were not successful. The SQUEEZE option in *PLATON* (Spek, 2003) indicated there was a solvent cavity of volume 209 Å³ containing approximately 18 electrons. In the final cycles of refinement, this contribution to the electron density was removed from the observed data. The density, the F(000) value, the molecular weight and the formula are given without taking into account the results obtained with the SQUEEZE option *PLATON* (Spek, 2003). Similar treatment of disordered solvent molecules were carried out by Suresh *et al.* (2006, and references therein).

Figure 1

Molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Figure 2

Plot of the crystal packing showing the linkage of the molecules by H-bonding and π - π interactions shown as dashed lines.

Bis[bis(1*H*-benzimidazol-2-ylmethyl)amine]copper(II) dichloride methanol disolvate dihydrate

Crystal data	
$[Cu(C_{16}H_{14}N_5)_2]Cl_2 \cdot 2CH_4O \cdot 2H_2O$ $M_r = 725.13$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 9.653 (3) Å b = 9.921 (3) Å c = 10.316 (3) Å a = 82.095 (5)° $\beta = 88.441$ (5)° $\gamma = 87.073$ (5)° V = 977.1 (5) Å ³	Z = 1 F(000) = 375 $D_x = 1.232 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3239 reflections $\theta = 1.6-25.5^{\circ}$ $\mu = 0.74 \text{ mm}^{-1}$ T = 292 K Block, purple $0.23 \times 0.22 \times 0.20 \text{ mm}$
Data collection	
CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator	φ and ω scans 9121 measured reflections 3799 independent reflections 2937 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.099$	$k = -12 \rightarrow 12$
$\theta_{\rm max} = 26.0^{\circ}, \theta_{\rm min} = 2.0^{\circ}$	$l = -12 \rightarrow 12$
$h = -11 \rightarrow 11$	

Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.051$	Hydrogen site location: inferred from
$wR(F^2) = 0.123$	neighbouring sites
S = 0.97	H atoms treated by a mixture of independent
3799 reflections	and constrained refinement
229 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0459P)^2]$
6 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.60 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.60 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	y	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cul	0.5000	0.5000	1.0000	0.02773 (17)	
N1	0.4996 (3)	0.5259 (2)	0.7434 (2)	0.0378 (6)	
H1C	0.530 (3)	0.597 (2)	0.696 (2)	0.045*	
N2	0.1441 (3)	0.4115 (3)	0.8191 (3)	0.0434 (7)	
H2	0.106 (3)	0.406 (4)	0.746 (2)	0.052*	
N3	0.3091 (2)	0.4492 (2)	0.9528 (2)	0.0337 (6)	
N4	0.6536 (3)	0.1732 (3)	0.8228 (3)	0.0384 (6)	
H4	0.678 (3)	0.154 (3)	0.7466 (17)	0.046*	
N5	0.5738 (2)	0.3203 (2)	0.9531 (2)	0.0308 (5)	
C1	0.0971 (3)	0.3621 (3)	0.9427 (3)	0.0410 (8)	
C2	-0.0207 (4)	0.2958 (4)	0.9870 (4)	0.0536 (10)	
H2A	-0.0891	0.2804	0.9297	0.064*	
C3	-0.0330 (4)	0.2534 (4)	1.1187 (4)	0.0652 (11)	
H3	-0.1117	0.2092	1.1520	0.078*	
C4	0.0712 (4)	0.2759 (4)	1.2042 (4)	0.0604 (10)	
H4A	0.0607	0.2452	1.2930	0.072*	
C5	0.1892 (4)	0.3426 (4)	1.1598 (3)	0.0467 (9)	
Н5	0.2577	0.3575	1.2172	0.056*	
C6	0.2023 (3)	0.3866 (3)	1.0261 (3)	0.0351 (7)	
C7	0.2717 (3)	0.4620 (3)	0.8288 (3)	0.0362 (7)	
C8	0.3527 (4)	0.5231 (3)	0.7149 (3)	0.0467 (9)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

H8A	0.3423	0.4713	0.6428	0.056*	
H8B	0.3164	0.6154	0.6878	0.056*	
С9	0.5817 (4)	0.4056 (3)	0.7148 (3)	0.0472 (9)	
H9A	0.6722	0.4331	0.6808	0.057*	
H9B	0.5365	0.3659	0.6472	0.057*	
C10	0.6004 (3)	0.3008 (3)	0.8311 (3)	0.0332 (7)	
C11	0.6591 (3)	0.1038 (3)	0.9456 (3)	0.0358 (7)	
C12	0.7028 (4)	-0.0289 (3)	0.9947 (4)	0.0478 (9)	
H12	0.7384	-0.0894	0.9394	0.057*	
C13	0.6915 (4)	-0.0673 (3)	1.1271 (4)	0.0512 (9)	
H13	0.7205	-0.1552	1.1623	0.061*	
C14	0.6370 (4)	0.0231 (3)	1.2104 (3)	0.0465 (8)	
H14	0.6298	-0.0062	1.2998	0.056*	
C15	0.5939 (3)	0.1543 (3)	1.1627 (3)	0.0392 (7)	
H15	0.5565	0.2135	1.2183	0.047*	
C16	0.6075 (3)	0.1957 (3)	1.0300 (3)	0.0307 (6)	
Cl1	0.37341 (12)	0.23380 (10)	0.47316 (9)	0.0656 (3)	
01	0.6586 (3)	0.0805 (3)	0.5743 (3)	0.0720 (9)	
H1B	0.624 (5)	0.138 (3)	0.520 (4)	0.108*	
H1A	0.628 (5)	0.009 (3)	0.588 (5)	0.108*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0332 (3)	0.0220 (3)	0.0305 (3)	-0.00342 (19)	-0.0075 (2)	-0.01034 (19)
N1	0.0506 (17)	0.0288 (13)	0.0344 (14)	-0.0086 (12)	-0.0034 (12)	-0.0028 (11)
N2	0.0460 (16)	0.0366 (14)	0.0493 (18)	-0.0054 (12)	-0.0220 (14)	-0.0071 (13)
N3	0.0357 (14)	0.0305 (13)	0.0373 (14)	-0.0051 (10)	-0.0075 (11)	-0.0104 (11)
N4	0.0492 (16)	0.0336 (14)	0.0354 (15)	-0.0016 (12)	0.0020 (13)	-0.0164 (12)
N5	0.0380 (14)	0.0249 (12)	0.0316 (13)	-0.0010 (10)	-0.0036 (11)	-0.0108 (10)
C1	0.0386 (18)	0.0319 (16)	0.054 (2)	0.0019 (13)	-0.0136 (16)	-0.0111 (14)
C2	0.039 (2)	0.054 (2)	0.070 (3)	-0.0086 (16)	-0.0110 (18)	-0.0128 (19)
C3	0.041 (2)	0.072 (3)	0.085 (3)	-0.0179 (19)	0.008 (2)	-0.015 (2)
C4	0.057 (2)	0.074 (3)	0.052 (2)	-0.015 (2)	0.0098 (18)	-0.013 (2)
C5	0.0430 (19)	0.055 (2)	0.046 (2)	-0.0066 (16)	-0.0051 (16)	-0.0175 (17)
C6	0.0345 (16)	0.0269 (14)	0.0467 (19)	0.0031 (12)	-0.0068 (14)	-0.0152 (13)
C7	0.0421 (18)	0.0271 (14)	0.0407 (17)	-0.0034 (13)	-0.0115 (14)	-0.0070 (13)
C8	0.057 (2)	0.0439 (19)	0.0391 (18)	-0.0100 (16)	-0.0185 (17)	0.0000 (15)
C9	0.069 (2)	0.0408 (18)	0.0341 (17)	-0.0025 (17)	0.0002 (16)	-0.0120 (14)
C10	0.0404 (17)	0.0268 (15)	0.0350 (16)	-0.0049 (12)	-0.0030 (13)	-0.0116 (12)
C11	0.0361 (17)	0.0305 (15)	0.0433 (18)	-0.0044 (13)	-0.0023 (14)	-0.0124 (14)
C12	0.054 (2)	0.0313 (17)	0.059 (2)	0.0059 (15)	-0.0006 (17)	-0.0131 (16)
C13	0.057 (2)	0.0276 (17)	0.067 (2)	0.0062 (15)	-0.0059 (19)	-0.0015 (16)
C14	0.052 (2)	0.0384 (18)	0.047 (2)	-0.0027 (15)	-0.0065 (17)	0.0012 (15)
C15	0.0443 (18)	0.0322 (16)	0.0427 (18)	-0.0009 (13)	-0.0058 (15)	-0.0106 (14)
C16	0.0293 (15)	0.0256 (14)	0.0387 (16)	-0.0028 (11)	-0.0048 (13)	-0.0082 (12)
C11	0.0962 (8)	0.0549 (6)	0.0461 (5)	-0.0196 (5)	-0.0092 (5)	-0.0009 (4)
01	0.084 (2)	0.076 (2)	0.064 (2)	-0.0184 (18)	0.0032 (16)	-0.0355 (17)

Geometric parameters (Å, °)

Cu1—N1	2.624 (3)	С3—Н3	0.9300
Cu1—N3 ⁱ	2.024 (2)	C4—C5	1.382 (5)
Cu1—N3	2.024 (2)	C4—H4A	0.9300
Cu1—N5 ⁱ	2.002 (2)	C5—C6	1.392 (5)
Cu1—N5	2.002 (2)	С5—Н5	0.9300
N1—C9	1.459 (4)	C7—C8	1.470 (5)
N1—C8	1.459 (4)	C8—H8A	0.9700
N1—H1C	0.855 (10)	C8—H8B	0.9700
N2—C7	1.365 (4)	C9—C10	1.484 (5)
N2—C1	1.375 (4)	С9—Н9А	0.9700
N2—H2	0.858 (10)	С9—Н9В	0.9700
N3—C7	1.326 (4)	C11—C12	1.393 (4)
N3—C6	1.384 (4)	C11—C16	1.408 (4)
N4	1.354 (4)	C12—C13	1.369 (5)
N4—C11	1.357 (4)	C12—H12	0.9300
N4—H4	0.860 (10)	C13—C14	1.400 (5)
N5-C10	1.316 (4)	C13—H13	0.9300
N5-C16	1.402 (4)	C14—C15	1.374 (4)
C1—C2	1.378 (5)	C14—H14	0.9300
C1—C6	1.400 (4)	C15—C16	1.379 (4)
C2—C3	1.370 (6)	C15—H15	0.9300
C2—H2A	0.9300	O1—H1A	0.778 (17)
C3—C4	1.401 (5)		
N5 ⁱ —Cu1—N5	180.00 (13)	C6—C5—H5	121.1
N5 ⁱ —Cu1—N3 ⁱ	88.03 (9)	N3—C6—C5	131.1 (3)
N5—Cu1—N3 ⁱ	91.97 (9)	N3—C6—C1	109.4 (3)
N5 ⁱ —Cu1—N3	91.97 (9)	C5—C6—C1	119.4 (3)
N5—Cu1—N3	88.03 (9)	N3—C7—N2	110.7 (3)
N3 ⁱ —Cu1—N3	180.00 (12)	N3—C7—C8	126.1 (3)
N5 ⁱ —Cu1—N1	105.57 (9)	N2—C7—C8	123.2 (3)
N5—Cu1—N1	74.43 (9)	N1—C8—C7	112.1 (3)
N3 ⁱ —Cu1—N1	105.76 (9)	N1—C8—H8A	109.2
N3—Cu1—N1	74.24 (9)	C7—C8—H8A	109.2
C9—N1—C8	114.0 (2)	N1—C8—H8B	109.2
C9—N1—Cu1	102.82 (18)	C7—C8—H8B	109.2
C8—N1—Cu1	102.97 (19)	H8A—C8—H8B	107.9
C9—N1—H1C	109 (2)	N1—C9—C10	113.0 (3)
C8—N1—H1C	106 (2)	N1—C9—H9A	109.0
Cu1—N1—H1C	122 (2)	С10—С9—Н9А	109.0
C7—N2—C1	108.6 (2)	N1—C9—H9B	109.0
C7—N2—H2	124 (2)	С10—С9—Н9В	109.0
C1—N2—H2	128 (2)	H9A—C9—H9B	107.8
C7—N3—C6	106.4 (2)	N5-C10-N4	112.0 (3)
C7—N3—Cu1	120.7 (2)	N5-C10-C9	125.3 (3)
C6—N3—Cu1	132.5 (2)	N4—C10—C9	122.7 (3)

C10—N4—C11	108.2 (2)	N4—C11—C12	133.0 (3)
C10—N4—H4	118 (2)	N4—C11—C16	106.0 (3)
C11—N4—H4	134 (2)	C12—C11—C16	120.9 (3)
C10—N5—C16	105.9 (2)	C13—C12—C11	117.7 (3)
C10—N5—Cu1	122.1 (2)	C13—C12—H12	121.2
C16—N5—Cu1	131.95 (19)	C11—C12—H12	121.2
N2—C1—C2	132.2 (3)	C12—C13—C14	121.3 (3)
N2—C1—C6	104.9 (3)	C12—C13—H13	119.3
C2-C1-C6	122.8 (3)	C14—C13—H13	119.3
C3—C2—C1	117.4 (3)	C15—C14—C13	121.3 (3)
C3—C2—H2A	121.3	C15—C14—H14	119.4
C1—C2—H2A	121.3	C13—C14—H14	119.4
$C_{2} - C_{3} - C_{4}$	120.9(4)	C14-C15-C16	118 2 (3)
С2—С3—Н3	119.5	C14—C15—H15	120.9
C4—C3—H3	119.5	C16—C15—H15	120.9
$C_{5} - C_{4} - C_{3}$	121 7 (4)	$C_{15} - C_{16} - N_{5}$	120.9 131.6 (3)
C_{5} C_{4} H_{4A}	119.1	$C_{15} - C_{16} - C_{11}$	120.6(3)
$C_3 - C_4 - H_{4A}$	119.1	N5-C16-C11	120.0(3) 107.8(3)
C4-C5-C6	117.8 (3)		107.8(3)
$C_{4} = C_{5} = C_{6}$	121.1	IIID—01—IIIA	120 (3)
C+C3115	121.1		
N5 ⁱ —Cu1—N1—C9	167.82 (19)	C6—N3—C7—N2	0.6 (3)
N5—Cu1—N1—C9	-12.18 (19)	Cu1—N3—C7—N2	174.94 (19)
N3 ⁱ —Cu1—N1—C9	75.4 (2)	C6—N3—C7—C8	179.9 (3)
N3—Cu1—N1—C9	-104.6 (2)	Cu1—N3—C7—C8	-5.8 (4)
N5 ⁱ —Cu1—N1—C8	-73.47 (19)	C1—N2—C7—N3	-0.7(4)
N5—Cu1—N1—C8	106.53 (19)	C1—N2—C7—C8	179.9 (3)
N3 ⁱ —Cu1—N1—C8	-165.85 (18)	C9—N1—C8—C7	90.9 (3)
N3—Cu1—N1—C8	14.15 (18)	Cu1—N1—C8—C7	-19.7(3)
N5 ⁱ —Cu1—N3—C7	100.4 (2)	N3—C7—C8—N1	20.5 (5)
N5—Cu1—N3—C7	-79.6(2)	N2-C7-C8-N1	-160.3(3)
N1—Cu1—N3—C7	-5.3 (2)	C8—N1—C9—C10	-95.4(3)
$N5^{i}$ —Cu1—N3—C6	-87.1(3)	Cu1—N1—C9—C10	15.3 (3)
N5-Cu1-N3-C6	92.9 (3)	C16—N5—C10—N4	-2.0(3)
N1— $Cu1$ — $N3$ — $C6$	167.3 (3)	Cu1—N5—C10—N4	178.00 (18)
$N3^{i}$ —Cu1—N5—C10	-99.2 (2)	C16—N5—C10—C9	-179.4(3)
N3— $Cu1$ — $N5$ — $C10$	80.8 (2)	Cu1—N5—C10—C9	0.7 (4)
N1— $Cu1$ — $N5$ — $C10$	6.6 (2)	C11—N4—C10—N5	1.6 (3)
$N_{3^{i}}$ Cu1 N5 C16	80.8 (2)	$C_{11} = N_4 = C_{10} = C_9$	179.0(3)
N_3 — C_{11} — N_5 — C_{16}	-99.2(2)	N1-C9-C10-N5	-13.7(4)
N1 - Cu1 - N5 - C16	-1733(3)	N1-C9-C10-N4	169.2 (3)
C7-N2-C1-C2	-176.6(4)	C10 - N4 - C11 - C12	1794(3)
C7 - N2 - C1 - C6	0.5(3)	C10 - N4 - C11 - C16	-0.4(3)
$N_2 - C_1 - C_2 - C_3$	176 8 (4)	N4-C11-C12-C13	-1787(3)
C6-C1-C2-C3	0.2(5)	C16-C11-C12-C13	11(5)
C1 - C2 - C3 - C4	-0.6(6)	C11 - C12 - C13 - C14	0.5(5)
$C_{2} = C_{3} = C_{4} = C_{5}$	0.7(0)	C_{12} C_{13} C_{14} C_{15}	-0.6(5)
$C_2 = C_3 = C_4 = C_5$	-0.4(6)	$C_{12} - C_{13} - C_{14} - C_{15}$	-0.9(5)
$C_{J} = C_{J} = C_{J} = C_{J}$	0, – (0)		0.9 (5)

supporting information

C7—N3—C6—C5	176.4 (3)	C14—C15—C16—N5	180.0 (3)
Cu1—N3—C6—C5	3.0 (5)	C14-C15-C16-C11	2.5 (4)
C7—N3—C6—C1	-0.3 (3)	C10-N5-C16-C15	-176.0 (3)
Cu1—N3—C6—C1	-173.7 (2)	Cu1—N5—C16—C15	3.9 (5)
C4—C5—C6—N3	-176.5 (3)	C10-N5-C16-C11	1.7 (3)
C4—C5—C6—C1	-0.1 (5)	Cu1—N5—C16—C11	-178.31 (18)
N2-C1-C6-N3	-0.1 (3)	N4-C11-C16-C15	177.2 (3)
C2-C1-C6-N3	177.3 (3)	C12-C11-C16-C15	-2.6 (4)
N2-C1-C6-C5	-177.2 (3)	N4-C11-C16-N5	-0.8 (3)
C2—C1—C6—C5	0.2 (5)	C12—C11—C16—N5	179.3 (3)

Symmetry code: (i) -x+1, -y+1, -z+2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A	
N4—H4…O1	0.86(1)	2.03 (2)	2.839 (4)	157 (3)	
O1—H1 <i>B</i> …Cl1	0.81 (4)	2.59 (4)	3.206 (4)	134 (5)	
N1—H1C···Cl1 ⁱⁱ	0.86(1)	2.46 (1)	3.296 (3)	168 (3)	

Symmetry code: (ii) -x+1, -y+1, -z+1.