

metal-organic compounds

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Substitutional disorder in a hypervalent diorganotin(IV) dihalide

Adina Rotar, Richard A. Varga* and Cristian Silvestru

Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos Str. no. 11, RO-400028, Cluj Napoca, Romania Correspondence e-mail: richy@chem.ubbcluj.ro

Received 22 November 2007; accepted 26 November 2007

Key indicators: single-crystal X-ray study; T = 297 K; mean $\sigma(C-C) = 0.005$ Å; disorder in main residue; R factor = 0.026; wR factor = 0.060; data-to-parameter ratio = 16.2.

The structure of bromidochloridobis[2-(dimethylaminomethyl)phenyl]tin(IV), [SnBr_{0.65}Cl_{1.35}(C₉H₁₂N)₂], contains two 2-(Me₂NCH₂)C₆H₄ units bonded to a Sn atom which lies on a twofold axis. The compound exhibits substitutional disorder of the halide atoms bonded to the Sn, with 1.35 occupancy for Cl and 0.65 for Br; it is isomorphous with the corresponding dichloride. The Sn atom is hexacoordinated with a (C,N)₂Sn X_2 (X = Cl/Br) distorted octahedral core as a result of the strong intramolecular N \rightarrow Sn coordination *trans* to the Sn-X bonds (N1 $-\text{Sn1}-X1=165.8^{\circ}$). As a result of the intermolecular contacts, *viz.* H $\cdots X$ and H \cdots benzene interactions, the molecules are arranged in a three-dimensional supramolecular manner in the crystal structure.

Related literature

For related literature see Varga *et al.* (2001, 2005, 2006, 2007); Rotar *et al.* (2007); Emsley (1994); IUPAC (1979).

Experimental

Crystal data

[SnBr_{0.65}Cl_{1.35}(C₉H₁₂N)₂] $M_r = 486.89$ Monoclinic, C2/ca = 17.0221 (15) Å b = 8.2387 (7) Å c = 14.7510 (13) Å $\beta = 106.1050 (10)^{\circ}$ $V = 1987.5 (3) \text{ Å}^{3}$ Z = 4 Mo $K\alpha$ radiation $\mu = 2.78~\mathrm{mm}^{-1}$ $T = 297~(2)~\mathrm{K}$ $0.32~\times~0.25~\times~0.11~\mathrm{mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SAINT-Plus; Bruker, 2000) $T_{\min} = 0.452$, $T_{\max} = 0.738$ 6916 measured reflections 1746 independent reflections 1693 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.035$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.060$ S = 1.241746 reflections

108 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.36$ e Å⁻³ $\Delta \rho_{\rm min} = -0.47$ e Å⁻³

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	H···A	D···A	$D-H\cdots A$
$\begin{array}{c} \hline C3-H3\cdots Cg1^{ii} \\ C4-H4\cdots Cl1^{ii}/Br1^{ii} \\ C6-H6\cdots Cl1^{iii}/Br1^{iii} \\ \end{array}$	0.93	3.19	3.78 (1)	123
	0.93	2.87	3.798 (5)	173
	0.93	3.02	3.710 (3)	132

Symmetry code: (ii) $-\frac{1}{2}+x$, $\frac{1}{2}+y$, z, (iii) 2-x, 1-y, 1-z. Cg1 is the centroid of the benzene ring C1–C6.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT-Plus* (Bruker, 2000); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXTL* (Bruker, 2001); program(s) used to refine structure: *SHELXTL*; molecular graphics: *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2007).

Financial support from the National University Research Council (CEEX 63/2006) is greatly appreciated. We also thank the National Center for X-Ray Diffraction, Cluj-Napoca, for help with the solid-state structure determination.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GD2029).

References

Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Bruker (2000). *SMART* (Version 5.625) and *SAINT-Plus* (Version 6.29). Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2001). SHELXTL. Version 6.10.12. Bruker AXS Inc., Madison, Wisconsin, USA.

Emsley, J. (1994). Die Elemente. Berlin: Walter de Gruyter.

IUPAC (1979). Nomenclature of Organic Chemistry. Oxford: Pergamon Press.
Rotar, A., Varga, R. A. & Silvestru, C. (2007). Acta Cryst. C63, m355-m356.
Varga, R. A., Rotar, A., Schuermann, M., Jurkschat, K. & Silvestru, C. (2006).
Eur. J. Inorg. Chem. 7, 1475-1486.

Varga, R. A., Schuermann, M. & Silvestru, C. (2001). J. Organomet. Chem. 623, 161–167.

Varga, R. A. & Silvestru, C. (2007). Acta Cryst. C63, m48-m50.

Varga, R. A., Silvestru, C. & Deleanu, C. (2005). Appl. Organomet. Chem. 19, 153–160.

Westrip, S. P. (2007). publCIF. In preparation.

supporting information

Acta Cryst. (2008). E64, m45 [https://doi.org/10.1107/S1600536807063386]

Substitutional disorder in a hypervalent diorganotin(IV) dihalide

Adina Rotar, Richard A. Varga and Cristian Silvestru

S1. Comment

During our work on hypervalent organotin(IV) compounds with the [2-(Me₂NCH₂)C₆H₄]Sn fragment (Varga *et al.*, 2001, 2005, 2006, 2007, Rotar *et al.* 2007), the title compound (I) was isolated. It contains two 2-(Me₂NCH₂)C₆H₄ units bonded to a tin atom which lies on a twofold axis of the space group C2/c. The compound exhibits substitutional disorder of both halide atoms bonded to the Sn with chlorine being the major (1.35) and the bromine the minor (0.65) component.

The structure of $[2-(Me_2NCH_2)C_6H_4]_2SnCl_2$ was also determined (Varga *et al.*, 2001) and is isomorphous with the title compound. Both have space group C2/c; the cell constants as well as the volume differ slightly (0.39% increase for the title compound) as the result of the presence of a different halide in the molecular unit.

The molecules of the compound feature a metal atom strongly coordinated by two nitrogen atoms of the pendant arms [Sn—N1 = 2.64 (1) Å; the Sn—N distance exceeds the sum of the covalent radii for the corresponding atoms, $\Sigma_{cov}(Sn,N) = 2.1$ Å (Emsley, 1994)] *trans* to an Sn–halogen bond (N1—Sn1—X1 = 165.8°). This results in a $(C,N)_2SnX_2$ (X = Cl/Br) core in the title compound with a *trans*-SnC₂ fragment, while the N and X atoms are *cis* positions (Fig. 1). The octahedral geometry around the Sn atom is distorted from the ideal geometry as a consequence of the small 'bite' of the pendant arm ligand [C1—Sn1—N1 = 71.4°] and the steric repulsion between the organic groups bonded to the Sn atoms. All these features are similar to the corresponding dichloride.

As a result of the intramolecular coordination of the nitrogen to the tin atom a five-membered SnC₃N ring is formed. This ring is not planar but is folded along the Sn(1)···C_{methylene} axis with the N atom out of the best plane defined by the residual SnC₃, thus inducing planar chirality, with the phenyl ring as chiral plane and the nitrogen as pilot atom (IUPAC, 1979). Indeed, the compound crystallizes as a racemate, *i.e.* a mixture of $R_{N1}R_{N1}^{i}$ and $S_{N1}S_{N1}^{i}$ [symmetry code: (i) 2 - x, y, 0.5 - z].

In the crystal of the title compound intermolecular interactions, *i.e.* hydrogen bond type interactions and H···phenyl interactions (Fig. 2), give rise to a supramolecular array. If only chlorine is considered than layers are built of the same type of isomer [H4···X1ⁱⁱ = 2.87 Å, H3··· $Cg1^{ii}$ = 3.19 Å; symmetry code: (ii) -1/2 + x, 1/2 + y, z] along the ab plane (Fig. 3). If bromine is taken into account, than alternating parallel layers of $R_{NI}R_{NI}^{i}$ and $S_{NI}S_{NI}^{i}$ isomers are bridged through weak H6···X1ⁱⁱⁱ [3.02 Å; symmetry code: (iii) 2 - x, 1 - y, 1 - z] interactions resulting in a three-dimensional supramolecular architecture (Fig. 4).

S2. Experimental

The title compound was isolated as a by-product of the reaction between $[2-(Me_2NCH_2)C_6H_4]SnCl_2$ and $[2,6-(Me)_2C_6H_3]MgBr$, due to partial halide exchange.

Acta Cryst. (2008). E64, m45 sup-1

S3. Refinement

All hydrogen atoms were placed in calculated positions using a riding model, with C—H = 0.93–0.97 Å and with U_{iso} = $1.5U_{eq}$ (C) for methyl H and U_{iso} = $1.2U_{eq}$ (C) for aryl H. The methyl groups were allowed to rotate but not to tip. The two halide atoms were refined as substitutional disorder between chlorine and bromine, with 1.35 occupancy for Cl and 0.65 occupancy for Br.

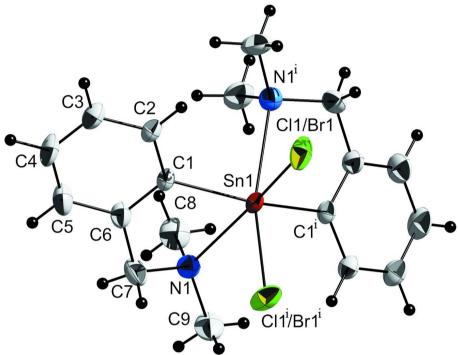


Figure 1
A view of title compound showing the atom-numbering scheme at 30% probability thermal ellipsoids for (R_N, R_N^i) -(I) isomer [symmetry code: (i) 2 - x, y, 0.5 - z]. H atoms are drawn as spheres of arbitrary radii.

Acta Cryst. (2008). E64, m45 sup-2

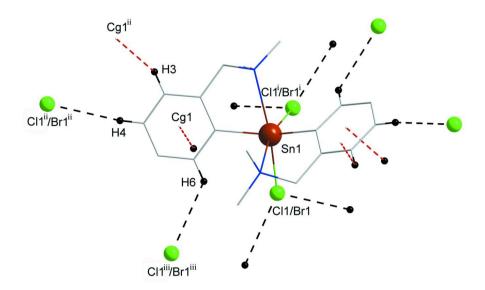


Figure 2 Intermolecular interactions [shown as dashed lines, black for $H \cdot \cdot \cdot X$ (X = Cl/Br), red for $H \cdot \cdot \cdot phenyl$]. Only H involved in interactions are showed. Symmetry codes: (i) 2 - x, y, 0.5 - z, (ii) -1/2 + x, 1/2 + y, z, (iii) 2 - x, 1 - y, 1 - z.

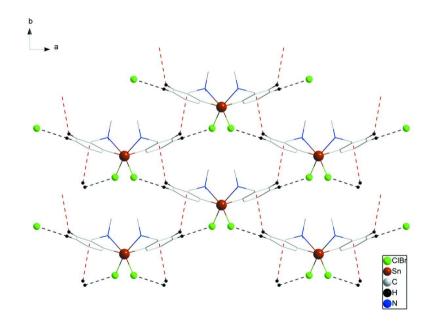


Figure 3 View of the two-dimensional layer formed through $H\cdots X$ and $H\cdots$ phenyl interactions along c axis. Only H involved in interactions are showed.

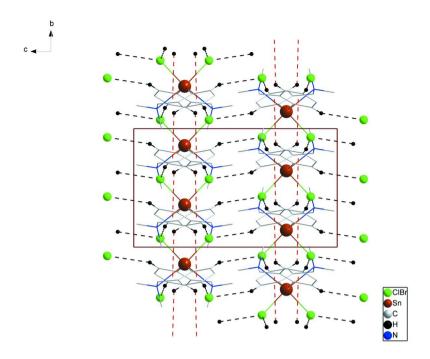


Figure 4
Crystal packing showing the three-dimensional supramolecular architecture along *a* axis. Only H involved in interactions are showed.

bromidochloridobis[2-(dimethylaminomethyl)phenyl]tin(IV)

Crystal data

[SnBr_{0.65}Cl_{1.35}(C₉H₁₂N)₂] $M_r = 486.89$ Monoclinic, C2/c Hall symbol: -C 2yc a = 17.0221 (15) Å b = 8.2387 (7) Å c = 14.7510 (13) Å $\beta = 106.105$ (1)° V = 1987.5 (3) Å³ Z = 4

Data collection

Bruker Smart APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans Absorption correction: multi-scan (SAINT-Plus; Bruker, 2000) $T_{\min} = 0.452$, $T_{\max} = 0.738$

F(000) = 966.8 $D_x = 1.627 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3754 reflections $\theta = 2.5 - 26.9^{\circ}$ $\mu = 2.78 \text{ mm}^{-1}$ T = 297 KBlock, colourless $0.32 \times 0.25 \times 0.11 \text{ mm}$

6916 measured reflections 1746 independent reflections 1693 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.035$ $\theta_{\text{max}} = 25.0^{\circ}, \, \theta_{\text{min}} = 2.5^{\circ}$ $h = -19 \rightarrow 20$ $k = -9 \rightarrow 9$ $l = -17 \rightarrow 17$

Acta Cryst. (2008). E64, m45 sup-4

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.060$ S = 1.241746 reflections 108 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.P)^2 + 3.2594P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta \alpha = 0.36 \text{ p.s.}^{3/2}$

nvariant $\Delta
ho_{\rm max} = 0.36 \ {\rm e \ \AA^{-3}} \ \Delta
ho_{\rm min} = -0.47 \ {\rm e \ \AA^{-3}}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and F-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	X	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Br1	1.04832 (5)	0.42622 (9)	0.36987 (5)	0.0721 (3)	0.325 (3)
Cl1	1.04832 (5)	0.42622 (9)	0.36987 (5)	0.0721 (3)	0.675 (3)
Sn1	1.0000	0.64336 (4)	0.2500	0.03453 (12)	
C1	0.89182 (18)	0.7072 (4)	0.2862(2)	0.0386 (7)	
C6	0.8831(2)	0.6785 (4)	0.3757 (2)	0.0455 (8)	
Н6	0.9254	0.6293	0.4212	0.055*	
C2	0.8274(2)	0.7761 (5)	0.2181 (3)	0.0517 (9)	
C5	0.8125(2)	0.7221 (5)	0.3982(3)	0.0589 (10)	
H5	0.8072	0.7022	0.4583	0.071*	
C4	0.7506(3)	0.7942 (6)	0.3318 (3)	0.0714 (12)	
H4	0.7035	0.8260	0.3472	0.086*	
C3	0.7572(2)	0.8206 (6)	0.2424 (3)	0.0707 (12)	
H3	0.7141	0.8688	0.1975	0.085*	
N1	0.91474 (19)	0.8322 (4)	0.1136(2)	0.0547 (8)	
C7	0.8321 (2)	0.7923 (6)	0.1177 (3)	0.0653 (11)	
H7A	0.8150	0.6911	0.0845	0.078*	
H7B	0.7947	0.8766	0.0860	0.078*	
C8	0.9324(3)	1.0031 (5)	0.1373 (3)	0.0785 (13)	
H8A	0.8954	1.0700	0.0915	0.118*	
H8B	0.9876	1.0269	0.1371	0.118*	
H8C	0.9259	1.0246	0.1987	0.118*	
C9	0.9204(3)	0.8054 (7)	0.0157(3)	0.0838 (15)	
H9A	0.8810	0.8724	-0.0273	0.126*	
H9B	0.9096	0.6934	-0.0012	0.126*	
H9C	0.9744	0.8331	0.0124	0.126*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0787 (5)	0.0714 (5)	0.0805 (6)	0.0373 (4)	0.0458 (4)	0.0378 (4)
C11	0.0787 (5)	0.0714 (5)	0.0805 (6)	0.0373 (4)	0.0458 (4)	0.0378 (4)
Sn1	0.03419 (18)	0.03473 (18)	0.04017 (19)	0.000	0.01949 (13)	0.000
C1	0.0344 (16)	0.0371 (17)	0.0486 (19)	0.0027 (13)	0.0187 (15)	-0.0014 (14)
C6	0.0446 (19)	0.048(2)	0.050(2)	0.0021 (15)	0.0240 (16)	-0.0028 (16)
C2	0.0413 (19)	0.061(2)	0.056(2)	0.0070 (17)	0.0187 (17)	0.0090 (18)
C5	0.058(2)	0.068(3)	0.063(2)	0.003(2)	0.036(2)	-0.002(2)
C4	0.052(2)	0.084(3)	0.093(3)	0.015(2)	0.045 (2)	0.002(3)
C3	0.044(2)	0.082(3)	0.089(3)	0.018(2)	0.023(2)	0.013(2)
N1	0.0518 (18)	0.068(2)	0.0470 (17)	0.0091 (15)	0.0181 (14)	0.0161 (15)
C7	0.045(2)	0.088(3)	0.059(2)	0.009(2)	0.0076 (18)	0.019(2)
C8	0.090(3)	0.062(3)	0.085(3)	0.004(2)	0.026(3)	0.022(2)
C9	0.084(3)	0.121 (4)	0.050(2)	0.019(3)	0.024(2)	0.030(3)

Geometric parameters (Å, °)

		<u> </u>	Geometric parameters (A, °)
0.9300	C4—H4	2.4893 (7)	Br1—Sn1
0.9300	C3—H3	2.121 (3)	Sn1—C1
1.462 (5)	N1—C7	2.121 (3)	Sn1—C1 ⁱ
1.462 (5)	N1—C8	2.4893 (7)	Sn1—Cl1 ⁱ
1.491 (5)	N1—C9	2.4893 (7)	Sn1—Br1 ⁱ
0.9700	C7—H7A	1.387 (5)	C1—C2
0.9700	C7—H7B	1.389 (5)	C1—C6
0.9600	C8—H8A	1.380 (5)	C6—C5
0.9600	C8—H8B	0.9300	C6—H6
0.9600	C8—H8C	1.389 (5)	C2—C3
0.9600	C9—H9A	1.510 (5)	C2—C7
0.9600	C9—H9B	1.360 (6)	C5—C4
0.9600	C9—H9C	0.9300	C5—H5
		1.372 (6)	C4—C3
120.8 (4)	C4—C3—C2	151.30 (17)	C1—Sn1—C1 ⁱ
119.6	C4—C3—H3	102.61 (9)	C1—Sn1—Cl1 ⁱ
119.6	C2—C3—H3	97.93 (9)	C1 ⁱ —Sn1—Cl1 ⁱ
110.1 (3)	C7—N1—C8	102.61 (9)	C1—Sn1—Br1 ⁱ
` '		` /	C1 ⁱ —Sn1—Br1 ⁱ
	C8—N1—C9	` '	Cl1 ⁱ —Sn1—Br1 ⁱ
` '	N1—C7—C2	` '	C1—Sn1—Br1
109.2	N1—C7—H7A	102.61 (9)	C1 ⁱ —Sn1—Br1
109.2	C2—C7—H7A	` /	Cl1i—Sn1—Br1
109.2	N1—C7—H7B	88.11 (4)	Br1 ⁱ —Sn1—Br1
109.2	C2—C7—H7B	119.2 (3)	C2—C1—C6
107.9	H7A—C7—H7B	119.1 (2)	C2—C1—Sn1
109.5	N1—C8—H8A	121.8 (2)	C6—C1—Sn1
109.5	N1—C8—H8B	120.9 (3)	C5—C6—C1
109.2 109.2 109.2 107.9 109.5	N1—C7—C2 N1—C7—H7A C2—C7—H7A N1—C7—H7B C2—C7—H7B H7A—C7—H7B N1—C8—H8A	119.2 (3) 119.1 (2) 121.8 (2)	i—Sn1—Br1i —Sn1—Br1 i—Sn1—Br1 i—Sn1—Br1 li—Sn1—Br1 —C1—C6 —C1—Sn1 —C1—Sn1

supporting information

C5—C6—H6	119.6	H8A—C8—H8B	109.5
C1—C6—H6	119.6	N1—C8—H8C	109.5
C1—C2—C3	119.0 (4)	H8A—C8—H8C	109.5
C1—C2—C7	120.0 (3)	H8B—C8—H8C	109.5
C3—C2—C7	120.9 (3)	N1—C9—H9A	109.5
C4—C5—C6	119.6 (4)	N1—C9—H9B	109.5
C4—C5—H5	120.2	H9A—C9—H9B	109.5
C6—C5—H5	120.2	N1—C9—H9C	109.5
C5—C4—C3	120.5 (4)	H9A—C9—H9C	109.5
C5—C4—H4	119.7	H9B—C9—H9C	109.5
C3—C4—H4	119.7		
C1 ⁱ —Sn1—C1—C2	70.1 (3)	C6—C1—C2—C7	-173.7(4)
Cl1 ⁱ —Sn1—C1—C2	-64.6(3)	Sn1—C1—C2—C7	4.9 (5)
Br1 ⁱ —Sn1—C1—C2	-64.6(3)	C1—C6—C5—C4	-0.1(6)
Br1—Sn1—C1—C2	-154.4(3)	C6—C5—C4—C3	1.5 (7)
C1 ⁱ —Sn1—C1—C6	-111.4 (3)	C5—C4—C3—C2	-0.8(7)
Cl1 ⁱ —Sn1—C1—C6	113.9 (3)	C1—C2—C3—C4	-1.3(7)
Br1 ⁱ —Sn1—C1—C6	113.9 (3)	C7—C2—C3—C4	175.0 (4)
Br1—Sn1—C1—C6	24.1 (3)	C8—N1—C7—C2	-75.8 (4)
C2—C1—C6—C5	-2.0(5)	C9—N1—C7—C2	165.8 (4)
Sn1—C1—C6—C5	179.5 (3)	C1—C2—C7—N1	-37.0(5)
C6—C1—C2—C3	2.6 (6)	C3—C2—C7—N1	146.8 (4)
Sn1—C1—C2—C3			
5111 C1 C2 C3	-178.8(3)		

Symmetry code: (i) -x+2, y, -z+1/2.