

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-Allyl-1-(2-cyanobenzyl)-2-methylbenzimidazol-3-ium bromide

Xiong-Bin Xu and Qiong Ye*

Ordered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: yegiong@seu.edu.cn

Received 13 October 2007; accepted 19 November 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.045; wR factor = 0.143; data-to-parameter ratio = 20.3.

In the title compound, $C_{19}H_{18}N_3^+ \cdot Br^-$, both the allyl and cyanophenyl groups are approximately perpendicular to the central benzimidazole unit, making dihedral angles of 89.7 (2) and 85.09 (13)°, respectively. The crystal packing is dominated by $C-H \cdot \cdot \cdot Br$ interactions, with each anion interacting with five neighboring cations.

Related literature

For olefin-copper coordination compounds, see: Ye *et al.* (2005). For the synthesis, see: Aakeroy *et al.* (2005). For a similar structure, see: Herrmann *et al.* (1997).

Experimental

Crystal data $C_{19}H_{18}N_3^+ \cdot Br^ M_r = 368.27$

Triclinic, $P\overline{1}$ a = 9.123 (5) Å

b = 10.100 (4) A	
c = 10.520 (4) Å	
$\alpha = 98.924 \ (2)^{\circ}$	
$\beta = 108.490 \ (18)^{\circ}$	
$\gamma = 102.851 \ (11)^{\circ}$	
V = 869.2 (7) Å ³	

Data collection

Rigaku Mercury2 CCD	9212 measured reflections
diffractometer	4233 independent reflections
Absorption correction: multi-scan	3434 reflections with $I > 2\sigma(I)$
(CrystalClear; Rigaku, 2005)	$R_{\rm int} = 0.035$
$T_{\rm min} = 0.872, \ T_{\rm max} = 1.000$	
(expected range = 0.739 - 0.847)	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	209 parameters
$wR(F^2) = 0.143$	H-atom parameters constrained
S = 0.92	$\Delta \rho_{\rm max} = 0.38 \text{ e } \text{\AA}^{-3}$
4233 reflections	$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C13-H13ABr1	0.93	2.91	3.738 (4)	149
$C14-H14A\cdots Br1^{i}$	0.97	2.82	3.740 (3)	158
C20−H20A···Br1 ⁱⁱ	0.93	2.91	3.787 (4)	158
C29−H29A···Br1 ⁱⁱⁱ	0.97	2.90	3.798 (3)	155
$C29-H29B\cdots Br1^{ii}$	0.97	2.91	3.848 (3)	164

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) x, y - 1, z; (iii) -x, -y + 1, -z.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 1999); software used to prepare material for publication: *SHELXTL*.

This work was supported by a Start-up Grant from SEU to YQ.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2171).

References

- Aakeroy, C. B., Desper, J. & &Urbina, J. F. (2005). Cryst. Growth Des. 5, 1283–1293.
- Herrmann, W. A., Goossen, L. J., Artus, G. R. J. & Kocher, C. (1997). Organometallics, 16, 2472–2474.

Rigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (1999). SHELXTL/PC. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Ye, Q., Wang, X.-S., Zhao, H. & Xiong, R.-G. (2005). Chem. Soc. Rev. 34, 208– 225.

organic compounds

Z = 2

Mo $K\alpha$ radiation

 $\mu = 2.37 \text{ mm}^{-1}$

T = 293 (2) K $0.15 \times 0.10 \times 0.07 \text{ mm}$

supporting information

Acta Cryst. (2008). E64, o23 [https://doi.org/10.1107/S1600536807060874] 3-Allyl-1-(2-cyanobenzyl)-2-methylbenzimidazol-3-ium bromide

Xiong-Bin Xu and Qiong Ye

S1. Comment

It has been almost a century since the discovery of olefin- copper coordination compounds. We are interested in obtaining stable olefin- copper(I) coordination compounds under solvothermal conditions since these compounds display novel cluster structures and interesting physical properties such as fluorescence, SHG and ferroelectric(Ye *et al.* (2005)). The title compound (Fig 1) was synthesized as part of this project. No unexpected bond distances and angles were found in (I). Both the allyl and cyano-phenyl groups are approximately perpendicular to the central benzimidazole moiety with dihedral angles of 89.72 (23)° and 85.09 (13)° respectively such that the phenyl ring and the olefin moeity are almost parallel to one another in a conformation similar to that found by Herrmann *et al.* (1997). Thus, the molecule could adopt an end-to-head or parallel packing mode to form tight stacking. However, no π - π interactions are found. Crystal packing is dominated by C—H…Br interactions with each anion cation interacting with five neighboring cations.

S2. Experimental

2-((2-methyl-1H-benzo[d]) midazol-1-yl)methyl) benzonitrile (2.48 g) synthesized according to the procedure reported by (Aakeroy, *et al.*(2005) was dissolved in THF (30 ml) and allyl bromide;3- bromopropene (3.7 g) was added. The solution was stirred at 50° C for two days. The resulting white solid resultant was filterered out and washed twice with acetone to get 1.94 g of (I), (yield 66.7%). Colorless crystals suitable for X-ray diffraction were obtained by evaporation from methanol/water.

S3. Refinement

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with $U_{iso}(H) = 1.2$ Ueq.

Figure 1

A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level

Figure 2

Packing and cell box view of the title compound.

3-Allyl-1-(2-cyanobenzyl)-2-methylbenzimidazol-3-ium bromide

Crystal data

C₁₉H₁₈N₃⁺·Br⁻ $M_r = 368.27$ Triclinic, *P*1 Hall symbol: -P 1 a = 9.123 (5) Å b = 10.100 (4) Å c = 10.520 (4) Å a = 98.924 (2)° $\beta = 108.490$ (18)° $\gamma = 102.851$ (11)° V = 869.2 (7) Å³

Data collection

Rigaku Mercury2 CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 13.6612 pixels mm⁻¹ CCD_Profile_fitting scans Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{min} = 0.872, T_{max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.143$ S = 0.924233 reflections 209 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 376 $D_x = 1.407 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2405 reflections $\theta = 3.2-28.2^{\circ}$ $\mu = 2.37 \text{ mm}^{-1}$ T = 293 KPrism, colorless $0.15 \times 0.10 \times 0.07 \text{ mm}$

Z = 2

9212 measured reflections 4233 independent reflections 3434 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$ $\theta_{max} = 28.3^\circ, \theta_{min} = 2.6^\circ$ $h = -12 \rightarrow 12$ $k = -13 \rightarrow 13$ $l = -13 \rightarrow 13$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.38$ e Å⁻³ $\Delta\rho_{min} = -0.40$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	0.28828 (4)	0.88178 (3)	0.19130 (3)	0.04548 (14)
N1	-0.1709 (5)	0.4159 (4)	0.1763 (4)	0.0776 (11)
N4	-0.1796 (3)	0.1568 (3)	0.4110 (3)	0.0405 (6)
N6	-0.0363 (3)	0.1395 (3)	0.2796 (2)	0.0363 (5)
C2	-0.3282 (6)	0.3088 (6)	0.4888 (5)	0.0740 (12)
H2A	-0.4050	0.3187	0.5274	0.089*
C3	0.3772 (5)	0.3551 (5)	0.1240 (5)	0.0682 (11)
H3A	0.4730	0.3470	0.1146	0.082*
C4	0.3403 (5)	0.4803 (5)	0.1239 (5)	0.0705 (12)
H4A	0.4108	0.5561	0.1133	0.085*
C6	-0.2509 (8)	0.4191 (6)	0.4705 (6)	0.0950 (17)
H6A	-0.1700	0.4139	0.4312	0.114*
H6B	-0.2708	0.5071	0.4951	0.114*
C8	-0.3359 (4)	0.0951 (5)	0.1562 (4)	0.0572 (9)
H8A	-0.4256	0.0966	0.1849	0.086*
H8B	-0.3539	0.0031	0.1023	0.086*
H8C	-0.3255	0.1618	0.1015	0.086*
C11	-0.0554 (5)	0.3978 (4)	0.1660 (4)	0.0568 (9)
C13	0.1989 (6)	0.4936 (4)	0.1394 (4)	0.0619 (10)
H13A	0.1752	0.5787	0.1416	0.074*
C14	-0.3138 (4)	0.1649 (4)	0.4574 (4)	0.0530 (9)
H14A	-0.2991	0.1291	0.5396	0.064*
H14B	-0.4139	0.1050	0.3861	0.064*
C17	0.2104 (5)	0.2193 (4)	0.6974 (4)	0.0584 (9)
H17A	0.2618	0.2399	0.7929	0.070*
C18	0.3013 (4)	0.2017 (4)	0.6138 (4)	0.0562 (9)
H18A	0.4098	0.2076	0.6551	0.067*
C20	0.2714 (4)	0.2415 (4)	0.1381 (4)	0.0525 (8)
H20A	0.2975	0.1576	0.1383	0.063*
C22	0.0487 (4)	0.2073 (4)	0.6436 (3)	0.0499 (8)
H22A	-0.0116	0.2162	0.6993	0.060*
C26	0.2329 (4)	0.1757 (4)	0.4708 (3)	0.0471 (7)
H26A	0.2925	0.1642	0.4149	0.056*
C29	0.0100 (4)	0.1207 (3)	0.1566 (3)	0.0395 (6)
H29A	-0.0867	0.0945	0.0741	0.047*
H29B	0.0584	0.0444	0.1556	0.047*
C30	0.0921 (4)	0.3786 (4)	0.1518 (3)	0.0470 (7)
C32	-0.1857 (4)	0.1316 (3)	0.2799 (3)	0.0398 (6)
C34	-0.0194 (4)	0.1809 (3)	0.5002 (3)	0.0390 (6)
C36	0.0703 (3)	0.1677 (3)	0.4164 (3)	0.0375 (6)
C38	0.1274 (4)	0.2503 (3)	0.1520 (3)	0.0391 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
Br1	0.0481 (2)	0.0486 (2)	0.0420 (2)	0.01498 (14)	0.01626 (15)	0.01637 (14)
N1	0.092 (3)	0.078 (2)	0.094 (3)	0.050 (2)	0.051 (2)	0.034 (2)
N4	0.0351 (13)	0.0511 (15)	0.0358 (13)	0.0106 (11)	0.0139 (10)	0.0129 (11)
N6	0.0338 (12)	0.0422 (13)	0.0345 (12)	0.0112 (10)	0.0135 (10)	0.0118 (10)
C2	0.062 (3)	0.086 (3)	0.079 (3)	0.025 (2)	0.034 (2)	0.011 (2)
C3	0.054 (2)	0.082 (3)	0.076 (3)	0.011 (2)	0.032 (2)	0.032 (2)
C4	0.068 (3)	0.063 (3)	0.069 (3)	-0.008(2)	0.022 (2)	0.028 (2)
C6	0.117 (5)	0.085 (4)	0.096 (4)	0.044 (3)	0.050 (4)	0.015 (3)
C8	0.0373 (17)	0.084 (3)	0.0443 (19)	0.0105 (17)	0.0088 (14)	0.0216 (18)
C11	0.071 (2)	0.055 (2)	0.061 (2)	0.0308 (18)	0.0323 (19)	0.0238 (17)
C13	0.079 (3)	0.0445 (19)	0.062 (2)	0.0124 (18)	0.026 (2)	0.0195 (17)
C14	0.0428 (18)	0.076 (2)	0.0447 (19)	0.0134 (16)	0.0240 (15)	0.0161 (17)
C17	0.055 (2)	0.071 (2)	0.0361 (18)	0.0108 (17)	0.0047 (15)	0.0113 (16)
C18	0.0442 (19)	0.066 (2)	0.050(2)	0.0148 (16)	0.0039 (15)	0.0172 (17)
C20	0.0500 (19)	0.059 (2)	0.057 (2)	0.0203 (16)	0.0238 (16)	0.0241 (17)
C22	0.055 (2)	0.0531 (19)	0.0370 (16)	0.0115 (15)	0.0142 (14)	0.0107 (14)
C26	0.0394 (16)	0.0554 (19)	0.0463 (18)	0.0166 (14)	0.0118 (14)	0.0158 (15)
C29	0.0415 (15)	0.0431 (16)	0.0354 (15)	0.0120 (12)	0.0161 (12)	0.0100 (12)
C30	0.0554 (19)	0.0478 (18)	0.0404 (17)	0.0164 (14)	0.0184 (15)	0.0143 (14)
C32	0.0357 (14)	0.0451 (16)	0.0380 (15)	0.0087 (12)	0.0117 (12)	0.0164 (12)
C34	0.0389 (15)	0.0416 (15)	0.0342 (15)	0.0108 (12)	0.0106 (12)	0.0102 (12)
C36	0.0364 (14)	0.0368 (14)	0.0375 (15)	0.0103 (11)	0.0089 (12)	0.0143 (12)
C38	0.0415 (15)	0.0428 (16)	0.0332 (14)	0.0121 (12)	0.0123 (12)	0.0130 (12)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

N1—C11	1.144 (5)	C11—C30	1.451 (5)
N4—C32	1.344 (4)	C13—C30	1.393 (5)
N4—C34	1.406 (4)	C13—H13A	0.9300
N4C14	1.468 (4)	C14—H14A	0.9700
N6-C32	1.348 (4)	C14—H14B	0.9700
N6-C36	1.400 (4)	C17—C22	1.371 (5)
N6-C29	1.482 (4)	C17—C18	1.405 (6)
C2—C6	1.256 (7)	C17—H17A	0.9300
C2-C14	1.484 (7)	C18—C26	1.389 (5)
C2—H2A	0.9300	C18—H18A	0.9300
C3—C4	1.379 (7)	C20—C38	1.388 (5)
C3—C20	1.387 (5)	C20—H20A	0.9300
С3—НЗА	0.9300	C22—C34	1.392 (4)
C4—C13	1.383 (6)	C22—H22A	0.9300
C4—H4A	0.9300	C26—C36	1.389 (4)
С6—Н6А	0.9600	C26—H26A	0.9300
С6—Н6В	0.9600	C29—C38	1.514 (4)
C8—C32	1.484 (4)	C29—H29A	0.9700
C8—H8A	0.9600	C29—H29B	0.9700

C8—H8B	0.9600	C30—C38	1.403 (5)
C8—H8C	0.9600	C34—C36	1.391 (4)
C32—N4—C34	108.8 (3)	С22—С17—Н17А	118.8
C32—N4—C14	126.9 (3)	C18—C17—H17A	118.8
C34—N4—C14	124.3 (3)	C26—C18—C17	121.6 (3)
C32—N6—C36	108.6 (2)	C26—C18—H18A	119.2
C32—N6—C29	126.6 (2)	C17—C18—H18A	119.2
C36—N6—C29	124.8 (2)	C3—C20—C38	121.4 (4)
C6—C2—C14	128.9 (5)	С3—С20—Н20А	119.3
C6—C2—H2A	115.5	C38—C20—H20A	119.3
C14—C2—H2A	115.5	C17—C22—C34	115.8 (3)
C4—C3—C20	120.0 (4)	C17—C22—H22A	122.1
С4—С3—Н3А	120.0	C34—C22—H22A	122.1
С20—С3—НЗА	120.0	C36—C26—C18	116.0 (3)
C3—C4—C13	120.3 (3)	С36—С26—Н26А	122.0
C3—C4—H4A	119.9	C18—C26—H26A	122.0
C13—C4—H4A	119.9	N6-C29-C38	113.6 (2)
С2—С6—Н6А	118.5	N6—C29—H29A	108.9
С2—С6—Н6В	121.6	С38—С29—Н29А	108.9
H6A—C6—H6B	120.0	N6—C29—H29B	108.9
С32—С8—Н8А	109.5	С38—С29—Н29В	108.9
C32—C8—H8B	109.5	H29A—C29—H29B	107.7
H8A—C8—H8B	109.5	C13—C30—C38	121.1 (3)
С32—С8—Н8С	109.5	C13—C30—C11	117.2 (3)
H8A—C8—H8C	109.5	C38—C30—C11	121.7 (3)
H8B—C8—H8C	109.5	N4—C32—N6	109.3 (3)
N1—C11—C30	178.4 (4)	N4—C32—C8	124.5 (3)
C4—C13—C30	119.5 (4)	N6—C32—C8	126.2 (3)
C4—C13—H13A	120.3	C36—C34—C22	122.4 (3)
С30—С13—Н13А	120.3	C36—C34—N4	106.4 (3)
N4—C14—C2	113.6 (3)	C22—C34—N4	131.2 (3)
N4—C14—H14A	108.8	C26—C36—C34	121.7 (3)
C2-C14-H14A	108.8	C26—C36—N6	131.3 (3)
N4—C14—H14B	108.8	C34—C36—N6	106.9 (2)
C2C14H14B	108.8	C20—C38—C30	117.8 (3)
H14A—C14—H14B	107.7	C20—C38—C29	119.5 (3)
C22—C17—C18	122.4 (3)	C30—C38—C29	122.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C13—H13A…Br1	0.93	2.91	3.738 (4)	149
$C14$ — $H14A$ ···B $r1^i$	0.97	2.82	3.740 (3)	158
C20—H20A···Br1 ⁱⁱ	0.93	2.91	3.787 (4)	158

			supportin	g information
C29—H29A····Br1 ⁱⁱⁱ	0.97	2.90	3.798 (3)	155
C29—H29 <i>B</i> ···Br1 ⁱⁱ	0.97	2.91	3.848 (3)	164

Symmetry codes: (i) -*x*, -*y*+1, -*z*+1; (ii) *x*, *y*-1, *z*; (iii) -*x*, -*y*+1, -*z*.