Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(Croconato- $\kappa^{2} O, O^{\prime}$)bis(1,10-phenanthro-line- $\kappa^{2} N, N^{\prime}$)manganese(II)

Hong-Feng Chen, ${ }^{\text {a }}$ Hong-Yu Chen, ${ }^{\text {b }}$ Xia Chen, ${ }^{\text {a }}$ Andrei S. Batsanov ${ }^{\text {c }}$ and Qi Fang ${ }^{\text {a* }}$
${ }^{\text {a State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, }}$ Shandong Province, People's Republic of China, ${ }^{\mathbf{b}}$ Faculty of Chemistry and Chemical Engineering, Taishan Medical University, Taian 271000, Shandong Province, People's Republic of China, and ${ }^{\text {c }}$ Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, England
Correspondence e-mail: fangqi@sdu.edu.cn

Received 20 November 2007; accepted 5 December 2007
Key indicators: single-crystal X-ray study; $T=120 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$;
R factor $=0.026 ; w R$ factor $=0.081$; data-to-parameter ratio $=16.0$.

The title complex, $\left[\mathrm{Mn}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$, lies across a crystallographic twofold axis which passes through the Mn atom and bisects the croconate ligand. The two 1,10phenanthroline (phen) ligands are arranged in a propeller manner and the local molecular geometry of the $\mathrm{MnN}_{4} \mathrm{O}_{2}$ unit is severely distorted octahedral. This may be interpreted as a structural perturbation of the MnN_{4} square by the croconate ligand. In the crystal structure, the dipole moments of the molecules are arranged alternately along the $+b$ and $-b$ directions. All the phen ligands are involved in π stacking interactions, alternately along the [110] and [$\overline{1} 10$] directions. The alternate spacings between the neighbouring phen planes in the one-dimensional π stacks are 3.361 (2) and 3.526 (2) \AA.

Related literature

For related literature, see: Chen et al. (2005, 2007); Coronado et al. (2007); Maji et al. (2003); Sletten et al. (1998); Wang et al. (2002).

Experimental

Crystal data
$\left[\mathrm{Mn}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$
$M_{r}=555.40$
Monoclinic, C2/c
$a=14.9185$ (6) \AA
$b=10.3749$ (4) \AA
$c=16.0859$ (6) \AA
$\beta=109.885(1)^{\circ}$

Data collection

Siemens SMART 1K CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2006)
$T_{\text {min }}=0.617, T_{\text {max }}=0.746$
$($ expected range $=0.722-0.873)$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.081$
$S=1.06$
3356 reflections

$$
\begin{aligned}
& V=2341.30(16) \AA^{3} \\
& Z=4 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.62 \mathrm{~mm}^{-1} \\
& T=120(2) \mathrm{K} \\
& 0.44 \times 0.33 \times 0.22 \mathrm{~mm}
\end{aligned}
$$

16256 measured reflections 3356 independent reflections 3214 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.020$

210 parameters
All H -atom parameters refined
$\Delta \rho_{\text {max }}=0.50 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.22 \mathrm{e}^{-3}$

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China (grant Nos. 50673054 and 20472044).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2088).

References

Bruker (1997). SMART (Version 5.054) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT. Version 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2006). SADABS. Version 2006/1. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, X., Chen, H.-F., Xue, G., Chen, H.-Y., Yu, W.-T. \& Fang, Q. (2007). Acta Cryst. C63, m166-m168.
Chen, H.-Y., Fang, Q., Xue, G. \& Yu, W.-T. (2005). Acta Cryst. C61, m535m537.
Coronado, E., Curreli, S., Giménez-Saiz, C., Gómez-García, C.-J., Deplano, P., Mercuri, M.-L., Serpe, A., Pilia, L., Faulmann, C. \& Canadell, E. (2007). Inorg. Chem. 46, 4446-4457.
Maji, T. K., Konar, S., Mostafa, G., Zangrando, E., Lu, T.-H. \& Chaudhuri, N. R. (2003). Dalton Trans. pp. 171-175.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sletten, J., Daraghmeh, H., Lloret, F. \& Julve, M. (1998). Inorg. Chim. Acta, 279, 127-135.
Wang, C. C., Yang, C.-H. \& Lee, G.-H. (2002). Inorg. Chem. 41, 1015-1018.

supporting information

Acta Cryst. (2008). E64, m172 [https://doi.org/10.1107/S1600536807065841]

(Croconato- $\kappa^{2} O, O^{\prime}$)bis(1,10-phenanthroline- $\kappa^{2} N, N^{\prime}$)manganese(II)

Hong-Feng Chen, Hong-Yu Chen, Xia Chen, Andrei S. Batsanov and Qi Fang

S1. Comment

The croconate $\mathrm{C}_{5} \mathrm{O}_{5}{ }^{2-}$ anion has attracted increasing attention in recent years because this polydentate ligand gave rise to a variety of interesting complexes (Coronado et al., 2007; Chen et al., 2005; Maji et al., 2003; Wang et al., 2002; Sletten et al., 1998). Typically, the $\mathrm{C}_{5} \mathrm{O}_{5}{ }^{2-}$ anion can serve as a terminal bidentate ligand and a bridging ligand utilizing more than two O atoms for coordination. By comparison, the coordination chemistry of the neutral 1,10-phenanthroline bidentate ligand has been well studied.
Recently, we reported three mixed-ligand complexes $\left[M(\text { phen })_{2}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\right](M=\mathrm{Co}, \mathrm{Ni}, \mathrm{Cu})(\mathrm{Chen} \mathrm{et} \mathrm{al.}, \mathrm{2007)} \mathrm{which} \mathrm{have}$, both croconate and 1,10-phenanthroline ligands. In this study, we report a new member of this family: $\left[\mathrm{Mn}(\mathrm{phen})_{2}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\right]$ which is isostructural to $\left[\mathrm{Cu}(\text { phen })_{2}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\right]$.
$\left[\mathrm{Mn}(\text { phen })_{2}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\right]$ shows following common features with other three known $\left[M(\mathrm{phen})_{2}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\right]$ complexes: the molecule lies across twofold axis which is along the direction of the molecular dipole moment. Around the molecular axis, two phen ligands are arranged in a chiral propeller manner. The $\mathrm{C}-\mathrm{O}$ bond lengths involving coordinated O atoms are longer than those of other $\mathrm{C}-\mathrm{O}$ bonds.
The mean $\mathrm{M}-\mathrm{N}$ bond lengths in $\left[M(\text { phen })_{2}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\right]$ series are 2.2515 (9), 2.124 (2), 2.080 (3), and 2.065 (2) \AA for the $\mathrm{Mn}, \mathrm{Co}, \mathrm{Ni}$, and Cu complexes respectively, showing monotonous shortening with increasing the atomic number. The M -O lengths in $\left[M(\text { phen })_{2}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\right]$ are 2.2163 (8), 2.120 (2), 2.098 (3), and 2.303 (2) \AA for the $\mathrm{Mn}, \mathrm{Co}, \mathrm{Ni}$, and Cu complexes respectively, showing a similar shortening tendency except for Cu complex which has the longest $\mathrm{M}-\mathrm{O}$ length.
The molecular conformation of $\left[\mathrm{Mn}(\text { phen })_{2}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\right]$ is close to $\left[\mathrm{Cu}(\mathrm{phen})_{2}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\right]$ while different from
$\left[\mathrm{Co}(\text { phen })_{2}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\right]$ and $\left[\mathrm{Ni}(\text { phen })_{2}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\right]$. The dihedral angles between the two phen planes for the $\mathrm{Mn}, \mathrm{Co}, \mathrm{Ni}$, and Cu complexes are $46.5(1), 85.7(1), 86.0(1)$, and $40.7(1)^{\circ}$, respectively. In fact, the local polyhedral $\mathrm{CoN}_{4} \mathrm{O}_{2}$ and $\mathrm{NiN}_{4} \mathrm{O}_{2}$ in $\left[M(\text { phen })_{2}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\right]$ is close to the octahedral while $\mathrm{MnN}_{4} \mathrm{O}_{2}$ and $\mathrm{CuN}_{4} \mathrm{O}_{2}$ in their complexes is severely distorted from the octahedral. We can suppose that the $\mathrm{Mn}(\mathrm{II})(\mathrm{Cu}(\mathrm{II}))$ ion intially combines two phen ligands forming a $\mathrm{MnN}_{4}\left(\mathrm{CuN}_{4}\right)$ square, and then this square is distorted by adding the croconato ligand. This supposition may be supported by the relatively longest $\mathrm{Mn}-\mathrm{O}$ and $\mathrm{Cu}-\mathrm{O}$ bond length mentioned above in these complexes.

As shown in Fig.2, the dipole moments of $\left[\mathrm{Mn}(\text { phen })_{2}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\right]$ molecules are arranged alternatively along +b and- b directions. All phen ligands are parallel packed with the π-stacks being alternatively along the [110] and [-110] directions. The spacings between the neighboring phen planes in this kind of 1-D π-stacks are 3.361 (2) and 3.526 (2) \AA (alternatively spaced).
Both in the molecular view and in the crystal view, four $\left[M(\text { phen })_{2}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\right]$ members can be classified into two groups: the octahedral and Pbcn symmetric isostructural pair of $\left[\mathrm{Co}(\mathrm{phen})_{2}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\right]$ and $\left[\mathrm{Ni}(\mathrm{phen})_{2}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\right]$; the non-octahedral and $C 2 / c$ symmetric isostructural pair of $\left[\mathrm{Mn}(\text { phen })_{2}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\right]$ and $\left[\mathrm{Cu}(\text { phen })_{2}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\right]$. The similarity between Mn and Cu complexes here may be related to the fact that the d-shell is half-filled for $\mathrm{Mn}(\mathrm{II})$ and almost full-filled for $\mathrm{Cu}(\mathrm{II})$ ions.

S2. Experimental

$\left[\mathrm{K}_{2}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\right](0.10 \mathrm{~g})$ and $\mathrm{MnCl}_{2} .4 \mathrm{H}_{2} \mathrm{O}(0.09 \mathrm{~g})$ were dissolved in mixed solvent of water $(15 \mathrm{ml})$ and dimethylformamide $(10 \mathrm{ml})$. Then $1,10-\mathrm{phenanthroline}(0.15 \mathrm{~g})$ was added. The mixture was heated to $340-350 \mathrm{~K}$ under continuous stirring for 20 min and then filtered. The green prisms crystals were obtained by slow evaporation at 313 K .

S3. Refinement

All the H atoms were located in a difference Fourier map and refined in the isotropic approximation.

Figure 1
The molecular structure of $\left[\mathrm{Mn}(\mathrm{phen})_{2}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\right]$. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted. [symmetry code: (i) $-x, y,-z+1 / 2$.]

Figure 2
A packing plot of $\left[\mathrm{Mn}(\text { phen })_{2}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\right]$.

(Croconato- $\left.\kappa^{2} O, O^{\prime}\right)$ bis(1,10-phenanthroline- $\kappa^{2} N, N^{\prime}$) manganese(II)

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Mn}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]} \\
& M_{r}=555.40 \\
& \text { Monoclinic, } C 2 / c \\
& \text { Hall symbol: }-\mathrm{C} 2 \mathrm{yc} \\
& a=14.9185(6) \AA \\
& b=10.3749(4) \AA \\
& c=16.0859(6) \AA \\
& \beta=109.885(1)^{\circ} \\
& V=2341.30(16) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
\begin{aligned}
& F(000)=1132 \\
& D_{\mathrm{x}}=1.576 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 6761 \text { reflections } \\
& \theta=2.4-30.0^{\circ} \\
& \mu=0.62 \mathrm{~mm}^{-1} \\
& T=120 \mathrm{~K} \\
& \text { Parallelepiped, green } \\
& 0.44 \times 0.33 \times 0.22 \mathrm{~mm}
\end{aligned}
$$

Data collection

Siemens SMART 1K CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 8 pixels mm^{-1}
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
$T_{\min }=0.617, T_{\max }=0.746$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.081$
$S=1.06$
3356 reflections
210 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

> 16256 measured reflections
> 3356 independent reflections
> 3214 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.020$
> $\theta_{\max }=30.0^{\circ}, \theta_{\min }=2.4^{\circ}$
> $h=-20 \rightarrow 20$
> $k=-14 \rightarrow 14$
> $l=-22 \rightarrow 22$

Secondary atom site location: difference Fourier map
Hydrogen site location: difference Fourier map
All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0494 P)^{2}+1.5339 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.50 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.22$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Mn1	0.5000	$0.26400(2)$	0.2500	$0.01622(7)$
O1	$0.59885(5)$	$0.43062(7)$	$0.28042(5)$	$0.02103(16)$
O2	$0.67021(6)$	$0.70377(9)$	$0.30364(6)$	$0.02748(18)$
O3	0.5000	$0.87022(11)$	0.2500	$0.0219(2)$
N1	$0.62594(6)$	$0.15684(8)$	$0.34684(6)$	$0.01795(16)$
N2	$0.46304(6)$	$0.23245(8)$	$0.37113(6)$	$0.01674(17)$
C1	$0.70739(7)$	$0.12417(11)$	$0.33554(7)$	$0.0215(2)$
H1	$0.7115(10)$	$0.1353(15)$	$0.2787(10)$	$0.025(4)^{*}$
C2	$0.78638(8)$	$0.07591(11)$	$0.40428(8)$	$0.0236(2)$
H2	$0.8456(12)$	$0.0555(17)$	$0.3931(11)$	$0.035(4)^{*}$
C3	$0.78032(7)$	$0.05937(10)$	$0.48675(8)$	$0.0216(2)$
H3	$0.8314(10)$	$0.0290(15)$	$0.5356(10)$	$0.023(3)^{*}$
C10	$0.69459(7)$	$0.09129(10)$	$0.50113(7)$	$0.01780(18)$
C9	$0.61971(7)$	$0.14089(9)$	$0.42867(6)$	$0.01610(18)$
C11	$0.53204(6)$	$0.17845(9)$	$0.44123(6)$	$0.01574(18)$
C12	$0.52078(7)$	$0.15896(10)$	$0.52374(6)$	$0.01709(18)$

C5	$0.59808(7)$	$0.10556(10)$	$0.59570(7)$	$0.01991(19)$
H5	$0.5877(11)$	$0.0922(15)$	$0.6492(11)$	$0.030(4)^{*}$
C4	$0.68188(7)$	$0.07441(10)$	$0.58486(7)$	$0.02041(19)$
H4	$0.7324(11)$	$0.0420(15)$	$0.6319(10)$	$0.023(3)^{*}$
C6	$0.43206(7)$	$0.19283(10)$	$0.53119(7)$	$0.01892(19)$
H6	$0.4204(11)$	$0.1750(15)$	$0.5844(11)$	$0.027(4)^{*}$
C7	$0.36277(8)$	$0.24697(10)$	$0.45998(7)$	$0.0194(2)$
H7	$0.3036(12)$	$0.2722(14)$	$0.4624(11)$	$0.025(4)^{*}$
C8	$0.38134(7)$	$0.26697(10)$	$0.38121(7)$	$0.01831(19)$
H8	$0.3372(10)$	$0.3074(14)$	$0.3314(10)$	$0.020(3)^{*}$
C13	$0.55136(6)$	$0.53447(10)$	$0.26577(6)$	$0.01663(18)$
C14	$0.58663(7)$	$0.66724(10)$	$0.27693(6)$	$0.01791(18)$
C15	0.5000	$0.75179(14)$	0.2500	$0.0172(3)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	$0.01278(11)$	$0.02053(12)$	$0.01434(11)$	0.000	$0.00330(8)$	0.000
O1	$0.0128(3)$	$0.0224(4)$	$0.0243(4)$	$0.0014(3)$	$0.0017(3)$	$-0.0019(3)$
O2	$0.0147(3)$	$0.0294(4)$	$0.0350(4)$	$-0.0044(3)$	$0.0041(3)$	$-0.0040(3)$
O3	$0.0248(5)$	$0.0215(5)$	$0.0198(5)$	0.000	$0.0083(4)$	0.000
N1	$0.0156(4)$	$0.0193(4)$	$0.0190(4)$	$0.0014(3)$	$0.0061(3)$	$0.0006(3)$
N2	$0.0132(4)$	$0.0201(4)$	$0.0156(4)$	$0.0011(3)$	$0.0031(3)$	$0.0006(3)$
C1	$0.0192(5)$	$0.0234(5)$	$0.0236(5)$	$0.0032(4)$	$0.0094(4)$	$0.0018(4)$
C2	$0.0167(4)$	$0.0249(5)$	$0.0301(5)$	$0.0047(4)$	$0.0090(4)$	$0.0017(4)$
C3	$0.0147(4)$	$0.0218(5)$	$0.0256(5)$	$0.0033(3)$	$0.0034(4)$	$0.0011(4)$
C10	$0.0144(4)$	$0.0173(4)$	$0.0193(4)$	$0.0003(3)$	$0.0025(3)$	$-0.0004(3)$
C9	$0.0136(4)$	$0.0160(4)$	$0.0175(4)$	$-0.0001(3)$	$0.0037(3)$	$-0.0007(3)$
C11	$0.0130(4)$	$0.0167(4)$	$0.0160(4)$	$-0.0004(3)$	$0.0030(3)$	$-0.0010(3)$
C12	$0.0155(4)$	$0.0186(4)$	$0.0155(4)$	$-0.0010(3)$	$0.0032(3)$	$-0.0021(3)$
C5	$0.0198(4)$	$0.0228(5)$	$0.0147(4)$	$0.0001(4)$	$0.0027(3)$	$-0.0005(3)$
C4	$0.0174(4)$	$0.0219(5)$	$0.0176(4)$	$0.0012(3)$	$0.0003(3)$	$0.0003(3)$
C6	$0.0179(4)$	$0.0228(5)$	$0.0161(4)$	$-0.0019(4)$	$0.0060(3)$	$-0.0030(4)$
C7	$0.0150(4)$	$0.0239(5)$	$0.0196(5)$	$0.0005(3)$	$0.0064(4)$	$-0.0022(3)$
C8	$0.0138(4)$	$0.0220(5)$	$0.0181(5)$	$0.0012(3)$	$0.0040(3)$	$0.0002(3)$
C13	$0.0119(4)$	$0.0230(4)$	$0.0134(4)$	$-0.0001(3)$	$0.0023(3)$	$-0.0011(3)$
C14	$0.0139(4)$	$0.0232(5)$	$0.0157(4)$	$-0.0009(3)$	$0.0040(3)$	$-0.0018(3)$
C15	$0.0150(6)$	$0.0234(6)$	$0.0130(6)$	0.000	$0.0046(5)$	0.000

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Mn} 1-\mathrm{O} 1$	$2.2163(8)$	$\mathrm{C} 10-\mathrm{C} 9$	$1.4091(13)$
$\mathrm{Mn} 1-\mathrm{O}^{\mathrm{i}}$	$2.2163(8)$	$\mathrm{C} 10-\mathrm{C} 4$	$1.4333(15)$
$\mathrm{Mn} 1-\mathrm{N} 2$	$2.2222(9)$	$\mathrm{C} 9-\mathrm{C} 11$	$1.4433(13)$
$\mathrm{Mn} 1-\mathrm{N} 2^{\mathrm{i}}$	$2.2222(9)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.4080(13)$
$\mathrm{Mn} 1-\mathrm{N} 1^{\mathrm{i}}$	$2.2807(9)$	$\mathrm{C} 12-\mathrm{C} 6$	$1.4134(13)$
$\mathrm{Mn} 1-\mathrm{N} 1$	$2.2807(9)$	$\mathrm{C} 12-\mathrm{C} 5$	$1.4383(13)$
$\mathrm{O} 1-\mathrm{C} 13$	$1.2668(12)$	$\mathrm{C} 5-\mathrm{C} 4$	$1.3587(15)$

O2-C14	1.2323 (12)	C5-H5	0.934 (17)
O3-C15	1.2287 (18)	C4-H4	0.931 (15)
N1-C1	1.3322 (13)	C6-C7	1.3750 (15)
N1-C9	1.3607 (13)	C6-H6	0.947 (16)
N2-C8	1.3321 (13)	C7- C 8	1.4015 (15)
N2-C11	1.3621 (12)	C7-H7	0.934 (17)
C1-C2	1.4055 (15)	C8-H8	0.945 (14)
C1-H1	0.944 (16)	C13-C13 ${ }^{\text {i }}$	1.4412 (18)
C2-C3	1.3709 (16)	C13-C14	1.4637 (14)
C2-H2	0.982 (17)	C14-C15	1.4989 (13)
C3-C10	1.4143 (14)	C15-C14	1.4989 (13)
C3-H3	0.943 (15)		
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{Ol}^{\text {i }}$	77.48 (4)	N1-C9-C10	123.29 (9)
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 2$	105.44 (3)	N1-C9-C11	117.77 (8)
$\mathrm{O} 1^{\text {i }}-\mathrm{Mn} 1-\mathrm{N} 2$	87.91 (3)	C10-C9-C11	118.94 (9)
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 2^{\text {i }}$	87.91 (3)	N2-C11-C12	122.72 (9)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{N} 2^{\text {i }}$	105.44 (3)	N2-C11-C9	117.44 (9)
$\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{N} 2^{\text {i }}$	163.06 (5)	C12-C11-C9	119.84 (8)
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 1^{\text {i }}$	149.62 (3)	C11-C12-C6	117.37 (9)
$\mathrm{Ol}{ }^{\mathrm{i}}-\mathrm{Mn1}-\mathrm{Nl}^{\mathrm{i}}$	84.13 (3)	C11-C12-C5	119.60 (9)
$\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{N} 1^{\text {i }}$	97.74 (3)	C6-C12-C5	123.03 (9)
$\mathrm{N} 2{ }^{\text {i }}-\mathrm{Mn} 1-\mathrm{N} 1^{\text {i }}$	73.85 (3)	C4-C5-C12	120.61 (9)
O1-Mn1-N1	84.13 (3)	C4- $\mathrm{C} 5-\mathrm{H} 5$	122.0 (10)
O1-Mn1-N1	149.62 (3)	C12-C5-H5	117.3 (10)
N2-Mn1-N1	73.85 (3)	C5-C4-C10	120.87 (9)
N 2 - $\mathrm{Mn} 1-\mathrm{N} 1$	97.74 (3)	C5-C4-H4	120.5 (9)
$\mathrm{N} 1{ }^{\text {i }}$-Mn1-N1	121.66 (5)	C10-C4-H4	118.6 (9)
C13-O1-Mn1	109.53 (6)	C7-C6-C12	119.42 (9)
C1-N1-C9	117.82 (9)	C7- $66-\mathrm{H} 6$	121.0 (9)
C1-N1-Mn1	127.48 (7)	C12-C6-H6	119.5 (9)
C9-N1-Mn1	114.11 (6)	C6-C7-C8	119.34 (10)
C8-N2-C11	118.35 (9)	C6-C7-H7	122.2 (10)
C8-N2-Mn1	125.26 (7)	C8-C7-H7	118.5 (10)
C11-N2-Mn1	116.32 (7)	N2-C8-C7	122.73 (10)
N1-C1-C2	122.87 (10)	N2-C8-H8	114.7 (9)
N1-C1-H1	117.6 (9)	C7-C8-H8	122.5 (9)
C2-C1-H1	119.5 (9)	O1-C13-C13 ${ }^{\text {i }}$	121.73 (5)
C3-C2-C1	119.50 (10)	O1-C13-C14	128.51 (8)
C3-C2-H2	120.6 (10)	C13-C13-C14	109.76 (5)
C1-C2-H2	119.9 (10)	O2-C14-C13	127.67 (10)
C2-C3-C10	119.33 (9)	$\mathrm{O} 2-\mathrm{C} 14-\mathrm{C} 15$	126.27 (10)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	123.1 (9)	C13-C14-C15	106.06 (8)
C10-C3-H3	117.5 (9)	O3-C15-C14	125.82 (6)
C9-C10-C3	117.18 (9)	O3-C15-C14	125.82 (6)

supporting information

$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 4$	$120.06(9)$	$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 14$	$108.36(12)$
$\mathrm{C} 3-\mathrm{C} 10-\mathrm{C} 4$	$122.76(9)$		

Symmetry code: (i) $-x+1, y,-z+1 / 2$.

