metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[2,6-Dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylato(2—)]bis(pyrazino-[2,3-*f*][1,10]phenanthroline)cobalt(II) dihydrate

Rentao Wu,^a Jikun Li,^b* Zebao Zheng^a and Wenzeng Duan^a

^aDepartment of Chemistry, Taishan University, 271021 Taian, Shandong, People's Republic of China, and ^bDepartment of Materials Science and Chemical Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China Correspondence e-mail: imlijikun@163.com

Received 18 October 2007; accepted 29 November 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.030; wR factor = 0.105; data-to-parameter ratio = 11.5.

The title complex, $[Co(C_5H_2N_2O_4)(C_{14}H_8N_4)_2]\cdot 2H_2O$, features a slightly distorted octahedral geometry for Co due to the sterical requirements of the orotic acid and pyrazino[2,3-*f*]-[1,10]phenanthroline ligands. Intermolecular hydrogen bonding between the uncoordinated water molecules and the ligand stablizes the structure of the complex.

Related literature

For related literature, see: Darensbourg *et al.* (1998); Lieberman *et al.* (1955); Lalioti *et al.* (1998).

Experimental

Crystal data

 $\begin{array}{l} [\text{Co}(\text{C}_5\text{H}_2\text{N}_2\text{O}_4)(\text{C}_{14}\text{H}_8\text{N}_4)_2]\cdot 2\text{H}_2\text{O}\\ M_r = 713.54\\ \text{Monoclinic, } P_{2_1}/c\\ a = 15.9468 \ (7) \text{ Å}\\ b = 13.3765 \ (6) \text{ Å}\\ c = 15.5661 \ (7) \text{ Å}\\ \beta = 117.5610 \ (10)^\circ \end{array}$

Data collection

Bruker SMART CCD area-detector diffractometer

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.903, T_{max} = 0.938$

V = 2943.6 (2) Å³

Mo $K\alpha$ radiation

0.16 \times 0.12 \times 0.10 mm

 $\mu = 0.65 \text{ mm}^{-1}$

T = 293 (2) K

Z = 4

32977 measured reflections 5185 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.030$	451 parameters
$wR(F^2) = 0.105$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.30 \text{ e} \text{ \AA}^{-3}$
5185 reflections	$\Delta \rho_{\rm min} = -0.44 \text{ e } \text{\AA}^{-3}$

4601 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.026$

Table 1

Selected geometric parameters (Å, °).

Co1-O1	2.0622 (13)	Co1-N1	2.1299 (14)
Co1-N3	2.1223 (15)	Co1-N4	2.1542 (15)
Co1-N7	2.1280 (15)	Co1-N8	2.1827 (15)
O1-Co1-N3	96.18 (5)	N7-Co1-N4	97.38 (6)
O1-Co1-N7	96.39 (5)	N1-Co1-N4	158.47 (5)
N3-Co1-N7	165.47 (5)	O1-Co1-N8	169.75 (6)
O1-Co1-N1	78.09 (5)	N3-Co1-N8	90.07 (5)
N3-Co1-N1	99.75 (5)	N7-Co1-N8	76.48 (5)
N7-Co1-N1	89.95 (6)	N1-Co1-N8	108.90 (6)
O1-Co1-N4	80.99 (5)	N4-Co1-N8	92.51 (6)
N3-Co1-N4	77.45 (5)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O5-H33\cdots O4^{i}$	0.85	2.22	3.007 (3)	155
O5−H34…O6 ⁱⁱ	0.85	2.16	2.903 (3)	146
O6−H35···O4 ⁱⁱⁱ	0.85	2.02	2.822 (2)	156
$O6-H36\cdots O3^{i}$	0.85	2.16	2.990 (2)	166
$N2-H2\cdots O3^{iv}$	0.83	2.03	2.850 (2)	169

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (iii) x + 1, y, z; (iv) -x, -y, -z + 1.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

The authors thank the Postgraduate Foundation of Taishan University (No. Y06–2–12) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2050).

References

- Darensbourg, D. J., Larkins, D. L. & Reibenspies, J. H. (1998). Inorg. Chem. 37, 6125–6128.
- Lalioti, N., Raptopoulou, C. P., Terzis, A., Panagiotopoulos, A., Perlepes, S. P. & Manessi-Zoupa, E. (1998). J. Chem. Soc. Dalton Trans. pp. 1335–1340. Lieberman, I., Komberg, A. & Simms, E. S. (1955). J. Biol. Chem. 215, 403–415.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supporting information

Acta Cryst. (2008). E64, m100 [https://doi.org/10.1107/S1600536807064495]

[2,6-Dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylato(2-)]bis(pyrazino[2,3-*f*] [1,10]phenanthroline)cobalt(II) dihydrate

Rentao Wu, Jikun Li, Zebao Zheng and Wenzeng Duan

S1. Comment

Orotic acid is an important pyrimidine derivative as the effective precursor in the biosythesis of the pyrimidine base of nucleic acids in living organisms and plays a unique role in bioinorganic and pharmaceutical chemistry (Lieberman *et al.*, 1955). Aside from the biological interest, orotic acid is also interesting in coordination chemistry (Lalioti *et al.*, 1998). In this contribution, the title compound (I) was synthesized and its crystal structure determined (Fig. 1 and Table 1). The central Co is coordinated by five nitrogen atoms (four from pyrazino[2,3-*f*][1,10]phenanthroline ligand and one from orotic acid ligand) and one carboxylate oxygen from the orotic acid ligand, yielding a slightly distorted octahedral coordination geometry. The geometric parameters are in good agreement with those found in literature (Darensbourg *et al.*, 1998). The intermolecular hydrogen bonding between the uncoordinated water molecules and the ligand stablizes the structure of the complex (Fig. 2).

S2. Experimental

The orotic acid (Lancaster, 98%) and solvents were commercially available, and they were used without further purification. The orotic acid (0.035 g, 0.2 mmol) $CoCl_2 6H_2O$ (0.047 g, 0.2 mmol) and pyrazino[2,3-*f*] [1,10]phenanthroline were added to 40 ml EtOH-water(1:2 V:V) and heated to 353 K and stirred for 20 min. A few drops of ammonia were added to adjust the pH value to about 6 and then the resulting mixture was filtered. Orange single crystals were obtained after a few days. Yield, 0.096 g, 75%. m.p. 450–452 K.

Analysis found: C 55.50, H 3.14, N 19.58, O 13.42%; C33H22N10O6Co requires: C 55.55, H 3.11, N 19.63, O 13.45%.

S3. Refinement

All H atoms were initially located in diffrence Fourier map. The C, O and N bound H atoms were then constrained to an ideal geometry, with C—H = 0.93 Å and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C\text{-aromatic})$ and with the O—H = 0.8494 - 0.8512 Å, N—H = 0.8321 Å and refined as riding with $U_{iso}(H) = 1.2U_{eq}(O, N)$.

Figure 1

The structure of (I) showing 30% probability displacement ellipsoids and the atom-numbering scheme. The H atoms are omitted for clarity.

Figure 2

The intermolecular hydrogen bonding in the complex.

[2,6-Dioxo-1,2,3,6-tetrahydropyrimidine-4- carboxylato(2-)](dipyrazino[2,3-*f*][1,10]phenanthroline)cobalt(II) dihydrate

Crystal data

```
[Co(C_5H_2N_2O_4)(C_{14}H_8N_4)_2] \cdot 2H_2O

M_r = 713.54

Monoclinic, P2_1/c

Hall symbol: -P 2ybc

a = 15.9468 (7) Å

b = 13.3765 (6) Å

c = 15.5661 (7) Å

\beta = 117.561 (1)°

V = 2943.6 (2) Å<sup>3</sup>

Z = 4
```

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: sealed tube Graphite monochromator $\varphi \& \omega$ scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.903, T_{\max} = 0.938$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.105$ S = 1.005185 reflections 451 parameters F(000) = 1460 $D_x = 1.610 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 14858 reflections $\theta = 2.6-28.1^{\circ}$ $\mu = 0.65 \text{ mm}^{-1}$ T = 293 KBlock, orange $0.16 \times 0.12 \times 0.10 \text{ mm}$

32977 measured reflections 5185 independent reflections 4601 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 1.4^{\circ}$ $h = -18 \rightarrow 18$ $k = -15 \rightarrow 15$ $l = -18 \rightarrow 18$

0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} = 0.001$
$w = 1/[\sigma^2(F_o^2) + (0.0839P)^2 + 0.3838P]$	$\Delta ho_{ m max} = 0.30 \ m e \ m \AA^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.44 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Col	0.302202 (16)	0.138211 (16)	0.366964 (15)	0.02739 (11)	
01	0.40452 (10)	0.12832 (10)	0.50951 (9)	0.0376 (3)	
O2	0.43227 (10)	0.09578 (13)	0.66013 (10)	0.0538 (4)	
O3	0.10352 (10)	-0.00194 (13)	0.60522 (10)	0.0557 (4)	
O4	0.07356 (9)	0.08288 (12)	0.31027 (9)	0.0472 (4)	
05	0.98177 (15)	0.12594 (16)	0.76679 (18)	0.0891 (7)	
H33	0.9531	0.0701	0.7512	0.107*	
H34	0.9388	0.1683	0.7580	0.107*	
O6	0.90804 (17)	0.18193 (17)	0.28686 (18)	0.1009 (8)	
H35	0.9491	0.1518	0.2759	0.121*	
H36	0.8946	0.1343	0.3145	0.121*	
N1	0.22079 (10)	0.09749 (11)	0.43806 (10)	0.0287 (3)	
N2	0.09212 (11)	0.04177 (12)	0.45940 (11)	0.0354 (4)	
H2	0.0343	0.0305	0.4329	0.042*	
N3	0.28705 (10)	0.29594 (11)	0.36494 (10)	0.0299 (3)	
N4	0.42213 (10)	0.18951 (11)	0.35070 (10)	0.0299 (3)	
N5	0.45316 (12)	0.60117 (12)	0.37989 (12)	0.0406 (4)	
N6	0.60438 (11)	0.48810 (13)	0.38628 (11)	0.0398 (4)	
N7	0.30777 (10)	-0.01439 (11)	0.33132 (10)	0.0311 (3)	
N8	0.21162 (11)	0.13331 (10)	0.21056 (11)	0.0303 (3)	
N9	0.17387 (14)	-0.25488 (13)	0.07249 (12)	0.0474 (4)	
N10	0.08181 (13)	-0.09711 (13)	-0.05752 (12)	0.0460 (4)	
C1	0.37945 (13)	0.10401 (14)	0.57318 (12)	0.0337 (4)	
C2	0.27470 (12)	0.08264 (12)	0.53502 (12)	0.0295 (4)	
C3	0.24123 (13)	0.04902 (14)	0.59542 (13)	0.0360 (4)	
H3A	0.2820	0.0402	0.6610	0.043*	
C4	0.14344 (13)	0.02734 (15)	0.55768 (13)	0.0370 (4)	
C5	0.12786 (13)	0.07517 (13)	0.39814 (12)	0.0317 (4)	
C6	0.21428 (14)	0.34805 (14)	0.36155 (14)	0.0353 (4)	
H6	0.1630	0.3133	0.3599	0.042*	
C7	0.21152 (14)	0.45158 (15)	0.36044 (14)	0.0395 (4)	
H7	0.1584	0.4851	0.3556	0.047*	

$\begin{array}{c} 0.0363 \ (4) \\ 0.044* \\ 0.0289 \ (4) \\ 0.0309 \ (4) \\ 0.0468 \ (5) \\ 0.056* \\ 0.0456 \ (5) \\ 0.055* \\ 0.0310 \ (4) \\ 0.0305 \ (4) \\ 0.0390 \ (4) \\ 0.047* \end{array}$
$\begin{array}{c} 0.044*\\ 0.0289\ (4)\\ 0.0309\ (4)\\ 0.0468\ (5)\\ 0.056*\\ 0.0456\ (5)\\ 0.055*\\ 0.0310\ (4)\\ 0.0305\ (4)\\ 0.0390\ (4)\\ 0.047*\\ \end{array}$
$\begin{array}{c} 0.0289\ (4)\\ 0.0309\ (4)\\ 0.0468\ (5)\\ 0.056*\\ 0.0456\ (5)\\ 0.055*\\ 0.0310\ (4)\\ 0.0305\ (4)\\ 0.0390\ (4)\\ 0.047*\\ \end{array}$
$\begin{array}{c} 0.0309\ (4)\\ 0.0468\ (5)\\ 0.056*\\ 0.0456\ (5)\\ 0.055*\\ 0.0310\ (4)\\ 0.0305\ (4)\\ 0.0390\ (4)\\ 0.047*\\ \end{array}$
$\begin{array}{c} 0.0468 \ (5) \\ 0.056* \\ 0.0456 \ (5) \\ 0.055* \\ 0.0310 \ (4) \\ 0.0305 \ (4) \\ 0.0390 \ (4) \\ 0.047* \end{array}$
0.056* 0.0456(5) 0.055* 0.0310(4) 0.0305(4) 0.0390(4) 0.047*
0.0456 (5) 0.055* 0.0310 (4) 0.0305 (4) 0.0390 (4) 0.047*
0.055* 0.0310 (4) 0.0305 (4) 0.0390 (4) 0.047*
0.0310 (4) 0.0305 (4) 0.0390 (4) 0.047*
0.0305 (4) 0.0390 (4) 0.047*
0.0390 (4) 0.047*
0.047*
0.0419 (5)
0.050*
0.0351 (4)
0.042*
0.0266 (4)
0.0270 (4)
0.0406 (5)
0.049*
0.0453 (5)
0.054*
0.0382 (4)
0.046*
0.0320 (4)
0.0345 (4)
0.0560 (6)
0.067*
0.0558 (6)
0.067*
0.0343 (4)
0.0323 (4)
0.0393 (4)
0.047*
0.0441 (5)
0.053*
0.0391 (4)
0.047*
0.0276 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	0.03091 (17)	0.02377 (17)	0.02886 (16)	-0.00288 (9)	0.01500 (12)	-0.00119 (8)
01	0.0316 (7)	0.0471 (8)	0.0316 (7)	-0.0091 (6)	0.0124 (6)	-0.0019 (5)
02	0.0407 (8)	0.0803 (12)	0.0311 (7)	-0.0083 (8)	0.0088 (6)	0.0007 (7)
03	0.0465 (9)	0.0841 (12)	0.0447 (8)	-0.0048 (8)	0.0280 (7)	0.0161 (8)

Acta Cryst. (2008). E**64**, m100

supporting information

O4	0.0330 (7)	0.0733 (11)	0.0317 (7)	-0.0048 (7)	0.0118 (6)	0.0063 (7)
O5	0.0666 (13)	0.0695 (13)	0.1107 (18)	-0.0005 (10)	0.0236 (12)	0.0099 (11)
O6	0.1180 (18)	0.0916 (15)	0.145 (2)	0.0530 (14)	0.1050 (17)	0.0658 (15)
N1	0.0301 (8)	0.0286 (7)	0.0285 (7)	-0.0021 (6)	0.0143 (6)	-0.0001 (6)
N2	0.0299 (8)	0.0425 (9)	0.0360 (8)	-0.0033 (7)	0.0172 (7)	0.0031 (7)
N3	0.0305 (8)	0.0281 (8)	0.0338 (8)	-0.0039 (6)	0.0173 (6)	-0.0042 (6)
N4	0.0339 (8)	0.0277 (8)	0.0309 (7)	0.0013 (6)	0.0173 (6)	0.0013 (6)
N5	0.0516 (10)	0.0265 (8)	0.0447 (9)	-0.0061 (7)	0.0233 (8)	-0.0001 (7)
N6	0.0373 (9)	0.0448 (10)	0.0393 (9)	-0.0107 (7)	0.0193 (7)	-0.0002(7)
N7	0.0358 (8)	0.0259 (7)	0.0305 (8)	0.0013 (6)	0.0145 (6)	0.0006 (6)
N8	0.0349 (9)	0.0254 (8)	0.0308 (8)	-0.0022 (6)	0.0155 (7)	0.0006 (6)
N9	0.0634 (11)	0.0342 (9)	0.0505 (10)	-0.0090 (8)	0.0314 (9)	-0.0114 (8)
N10	0.0582 (11)	0.0467 (10)	0.0352 (9)	-0.0150 (9)	0.0233 (8)	-0.0078(7)
C1	0.0361 (10)	0.0321 (9)	0.0296 (9)	-0.0044 (8)	0.0123 (8)	-0.0037(7)
C2	0.0339 (9)	0.0258 (9)	0.0289 (8)	-0.0007 (7)	0.0146 (7)	-0.0022(7)
C3	0.0391 (11)	0.0397 (10)	0.0288 (9)	-0.0008(8)	0.0155 (8)	0.0013 (8)
C4	0.0420 (11)	0.0369 (10)	0.0380 (10)	-0.0006 (8)	0.0235 (9)	0.0038 (8)
C5	0.0336 (10)	0.0312 (9)	0.0328 (9)	-0.0005(8)	0.0173 (8)	0.0013 (7)
C6	0.0322 (10)	0.0357 (10)	0.0440 (11)	-0.0016 (8)	0.0226 (9)	-0.0033 (8)
C7	0.0389 (11)	0.0366 (10)	0.0487 (11)	0.0072 (8)	0.0251 (9)	-0.0003(8)
C8	0.0435 (11)	0.0275 (10)	0.0411 (11)	0.0043 (8)	0.0222 (9)	-0.0002(7)
C9	0.0351 (10)	0.0264 (9)	0.0265 (8)	-0.0009(7)	0.0154 (7)	-0.0009(7)
C10	0.0387 (10)	0.0279 (9)	0.0255 (8)	-0.0049(7)	0.0143 (7)	-0.0003(7)
C11	0.0582 (14)	0.0322 (11)	0.0499 (12)	-0.0155(9)	0.0251 (11)	-0.0023(8)
C12	0.0473(12)	0.0467(13)	0.0448 (11)	-0.0188(10)	0.0228 (9)	-0.0017(9)
C13	0.0345 (10)	0.0338 (10)	0.0250 (8)	-0.0063(7)	0.0141 (7)	-0.0001(7)
C14	0.0313 (9)	0.0361 (10)	0.0266 (8)	0.0006 (8)	0.0154 (7)	0.0048 (7)
C15	0.0339 (10)	0.0451 (12)	0.0455 (11)	0.0006 (8)	0.0246 (9)	0.0044 (9)
C16	0.0404 (11)	0.0441 (12)	0.0510(11)	0.0115 (9)	0.0294 (9)	0.0059 (9)
C17	0.0426 (11)	0.0308 (10)	0.0372 (10)	0.0060 (8)	0.0229 (9)	0.0009 (7)
C18	0.0307 (9)	0.0268 (9)	0.0244 (8)	-0.0003 (7)	0.0144 (7)	0.0007 (6)
C19	0.0306 (9)	0.0281 (9)	0.0228 (8)	-0.0005 (7)	0.0129 (7)	0.0008 (6)
C20	0.0464 (12)	0.0337 (10)	0.0348 (10)	0.0060 (9)	0.0129 (8)	0.0030 (8)
C21	0.0561 (13)	0.0311 (10)	0.0461 (12)	0.0106 (9)	0.0214 (10)	0.0091 (9)
C22	0.0466 (11)	0.0245 (9)	0.0466 (11)	0.0021 (8)	0.0242 (9)	-0.0001 (8)
C23	0.0353 (10)	0.0283 (10)	0.0387 (10)	-0.0041 (7)	0.0224 (9)	-0.0034(7)
C24	0.0389 (10)	0.0335 (10)	0.0393 (10)	-0.0085 (8)	0.0250 (8)	-0.0079 (8)
C25	0.0813 (17)	0.0403 (12)	0.0524 (13)	-0.0186 (12)	0.0361 (12)	-0.0187 (10)
C26	0.0767 (16)	0.0548 (14)	0.0397 (11)	-0.0248 (12)	0.0301 (11)	-0.0182 (10)
C27	0.0387 (10)	0.0370 (10)	0.0328 (9)	-0.0106 (8)	0.0212 (8)	-0.0068 (8)
C28	0.0325 (10)	0.0343 (10)	0.0335 (9)	-0.0047 (7)	0.0182 (8)	-0.0010(7)
C29	0.0408 (11)	0.0436 (11)	0.0301 (9)	-0.0028 (9)	0.0135 (8)	0.0015 (8)
C30	0.0506 (12)	0.0379 (11)	0.0379 (10)	0.0045 (9)	0.0155 (9)	0.0104 (8)
C31	0.0507 (12)	0.0277 (9)	0.0364 (10)	0.0000 (8)	0.0180 (9)	0.0015 (8)
C32	0.0292 (9)	0.0272 (9)	0.0296 (8)	-0.0035 (7)	0.0164 (7)	-0.0015 (7)
C33	0.0287 (9)	0.0271 (9)	0.0326 (9)	-0.0012 (7)	0.0188 (7)	-0.0004 (7)
	× /		× /			. /

Geometric parameters (Å, °)

Co1-01	2.0622 (13)	C7—C8	1.378 (3)	
Co1—N3	2.1223 (15)	C7—H7	0.9300	
Co1—N7	2.1280 (15)	C8—C9	1.398 (3)	
Co1—N1	2.1299 (14)	C8—H8	0.9300	
Co1—N4	2.1542 (15)	C9—C19	1.397 (2)	
Co1—N8	2.1827 (15)	C9—C10	1.459 (2)	
O1—C1	1.271 (2)	C10—C13	1.403 (3)	
O2—C1	1.224 (2)	C11—C12	1.386 (3)	
O3—C4	1.242 (2)	C11—H11	0.9300	
O4—C5	1.239 (2)	C12—H12	0.9300	
O5—H33	0.8499	C13—C14	1.450 (3)	
O5—H34	0.8500	C14—C15	1.395 (3)	
O6—H35	0.8512	C14—C18	1.398 (2)	
O6—H36	0.8494	C15—C16	1.365 (3)	
N1—C5	1.349 (2)	C15—H15	0.9300	
N1—C2	1.362 (2)	C16—C17	1.391 (3)	
N2C4	1.374 (2)	C16—H16	0.9300	
N2—C5	1.392 (2)	C17—H17	0.9300	
N2—H2	0.8321	C18—C19	1.454 (2)	
N3—C6	1.334 (2)	C20—C21	1.380 (3)	
N3—C19	1.356 (2)	C20—H20	0.9300	
N4—C17	1.331 (2)	C21—C22	1.364 (3)	
N4—C18	1.347 (2)	C21—H21	0.9300	
N5—C11	1.330 (3)	C22—C23	1.400 (3)	
N5—C10	1.345 (2)	C22—H22	0.9300	
N6—C12	1.317 (3)	C23—C33	1.398 (2)	
N6—C13	1.351 (2)	C23—C24	1.446 (3)	
N7—C20	1.330 (2)	C24—C27	1.410 (3)	
N7—C33	1.350 (2)	C25—C26	1.392 (3)	
N8—C31	1.332 (2)	C25—H25	0.9300	
N8—C32	1.352 (2)	C26—H26	0.9300	
N9—C25	1.329 (3)	C27—C28	1.453 (3)	
N9—C24	1.350 (2)	C28—C32	1.395 (2)	
N10—C26	1.310 (3)	C28—C29	1.398 (3)	
N10—C27	1.351 (2)	C29—C30	1.362 (3)	
C1—C2	1.519 (3)	С29—Н29	0.9300	
C2—C3	1.355 (2)	C30—C31	1.391 (3)	
C3—C4	1.419 (3)	С30—Н30	0.9300	
С3—НЗА	0.9300	C31—H31	0.9300	
C6—C7	1.385 (3)	C32—C33	1.453 (2)	
С6—Н6	0.9300			
O1—Co1—N3	96.18 (5)	N5-C11-C12	121.89 (18)	
01—Co1—N7	96.39 (5)	N5-C11-H11	119.1	
N3—Co1—N7	165.47 (5)	C12—C11—H11	119.1	
O1—Co1—N1	78.09 (5)	N6-C12-C11	123.17 (19)	

N3—Co1—N1	99.75 (5)	N6-C12-H12	118.4
N7—Co1—N1	89.95 (6)	C11—C12—H12	118.4
O1—Co1—N4	80.99 (5)	N6-C13-C10	121.24 (17)
N3—Co1—N4	77.45 (5)	N6-C13-C14	118.61 (16)
N7—Co1—N4	97.38 (6)	C10—C13—C14	120.15 (15)
N1—Co1—N4	158.47 (5)	C15—C14—C18	117.16(17)
01-Co1-N8	169.75 (6)	C_{15} C_{14} C_{13}	123.36 (16)
N3—Co1—N8	90.07 (5)	C18 - C14 - C13	119 47 (16)
N7-Co1-N8	76 48 (5)	C16 - C15 - C14	120.07(18)
N1 Co1 N8	108.00 (6)	C16 C15 H15	120.07 (10)
N4 Col N8	100.00(0)	$C_{10} = C_{15} = H_{15}$	120.0
$\Gamma_{1} = C_{1} = \Gamma_{0}$	92.51(0) 118 54 (12)	$C_{14} = C_{15} = I_{115}$	120.0
1122 05 1124	110.34 (12)	C15 - C16 - C17	110.00 (10)
	104.0	С13—С16—Н16	120.0
H35-06-H36	98.5	C1/-C10-H10	120.6
C5—NI—C2	118.28 (14)	N4—C17—C16	122.72 (17)
C5—N1—Col	128.40 (11)	N4—C17—H17	118.6
C2—N1—Co1	112.90 (11)	С16—С17—Н17	118.6
C4—N2—C5	125.88 (16)	N4—C18—C14	122.96 (16)
C4—N2—H2	118.6	N4—C18—C19	116.83 (15)
C5—N2—H2	115.5	C14—C18—C19	120.21 (16)
C6—N3—C19	117.94 (15)	N3—C19—C9	122.54 (16)
C6—N3—Co1	127.68 (12)	N3—C19—C18	116.80 (15)
C19—N3—Co1	114.38 (11)	C9—C19—C18	120.65 (16)
C17—N4—C18	118.16 (16)	N7—C20—C21	122.59 (18)
C17—N4—Co1	127.17 (12)	N7—C20—H20	118.7
C18—N4—Co1	113.32 (11)	C21—C20—H20	118.7
C11—N5—C10	116.12 (17)	C22—C21—C20	119.74 (18)
C12—N6—C13	115.93 (18)	C22—C21—H21	120.1
C20—N7—C33	118.21 (15)	C20—C21—H21	120.1
C20—N7—Co1	125.81 (12)	C21—C22—C23	119.32 (17)
$C_{33} = N_{7} = C_{01}$	115 82 (11)	C21—C22—H22	120.3
$C_{31} = N_8 = C_{32}$	117 49 (15)	C^{23} C^{22} H^{22}	120.3
$C_{31} = N_8 = C_{01}$	128 53 (12)	C_{33} C_{23} C_{23} C_{22}	117 41 (17)
$C_{32} = N_8 = C_{01}$	113.94(11)	C_{33} C_{23} C_{24}	119.27 (16)
$C_{22} = N_0 = C_{24}$	115.47 (19)	C_{22} C_{23} C_{24} C_{24}	123 26 (16)
$C_{23} = N_{10} = C_{24}$	115.47(19) 116.04(10)	$N_{22} = C_{23} = C_{24}$	123.20(10) 121.07(18)
$C_{20} = N_{10} = C_{27}$	110.04(19) 125.55(19)	$N_{9} = C_{24} = C_{27}$	121.07(18)
02 - 01 - 01	123.33(10) 110.02(17)	$N_{9} = C_{24} = C_{23}$	110.01(10)
02C1C2	119.03 (17)	$C_2/-C_24-C_{23}$	120.28(17)
01 - 01 - 02	115.41 (15)	N9-C25-C26	123.1 (2)
C3—C2—N1	124.61 (16)	N9—C25—H25	118.4
C3—C2—C1	120.41 (16)	С26—С25—Н25	118.4
N1—C2—C1	114.96 (15)	N10—C26—C25	122.4 (2)
C2—C3—C4	119.40 (16)	N10—C26—H26	118.8
С2—С3—НЗА	120.3	C25—C26—H26	118.8
C4—C3—H3A	120.3	N10—C27—C24	121.89 (18)
O3—C4—N2	120.15 (17)	N10-C27-C28	118.03 (17)
O3—C4—C3	125.87 (18)	C24—C27—C28	120.08 (16)
N2—C4—C3	113.98 (15)	C32—C28—C29	117.91 (17)

O4—C5—N1	123.22 (16)	C32—C28—C27	119.42 (16)
O4—C5—N2	118.98 (16)	C29—C28—C27	122.67 (16)
N1—C5—N2	117.80 (15)	C30—C29—C28	119.07 (17)
N3—C6—C7	123.02 (17)	С30—С29—Н29	120.5
N3—C6—H6	118.5	С28—С29—Н29	120.5
С7—С6—Н6	118.5	C29—C30—C31	119.54 (18)
C8—C7—C6	119.25 (18)	С29—С30—Н30	120.2
С8—С7—Н7	120.4	C31—C30—H30	120.2
C6—C7—H7	120.4	N8-C31-C30	122.98 (18)
C7 - C8 - C9	119.05 (18)	N8-C31-H31	118 5
C7-C8-H8	120.5	C_{30} C_{31} H_{31}	118.5
C9-C8-H8	120.5	N8-C32-C28	122.98 (16)
C_{10} C_{0} C_{8}	118.06 (17)	N8 C32 C33	122.90(10) 116.77(15)
$C_{19} = C_{9} = C_{10}$	118.00 (17)	C_{28} C_{22} C_{23}	110.77(15) 120.22(16)
$C_{1}^{8} = C_{1}^{6} = C_{1}^{10}$	110.70(10) 122.16(17)	N7 C23 C23	120.22(10) 122.72(16)
10 - 10 - 10	123.10(17) 121.65(16)	N7 C22 C22	122.72(10)
N5C10C13	121.03(10) 117.92(10)	N = C32 = C32	110.04(13)
N3—C10—C9	117.83 (10)	C25-C55-C52	120.03 (10)
C13—C10—C9	120.52 (16)		
	00.01 (14)		0.4.(2)
N3-Col-Ol-Cl	99.21 (14)	C13 - N6 - C12 - C11	-0.4(3)
N/—Col—Ol—Cl	-88.09 (14)	N5-C11-C12-N6	1.1 (3)
NI-CoI-OI-CI	0.51 (13)	C12—N6—C13—C10	-0.6 (2)
N4—Co1—O1—C1	175.42 (14)	C12—N6—C13—C14	178.44 (16)
N8—Co1—O1—C1	-133.4 (3)	N5—C10—C13—N6	1.0 (3)
01—Co1—N1—C5	-174.59 (16)	C9—C10—C13—N6	-178.97 (15)
N3—Co1—N1—C5	91.09 (15)	N5-C10-C13-C14	-178.01 (16)
N7—Co1—N1—C5	-78.04 (15)	C9—C10—C13—C14	2.0 (2)
N4—Co1—N1—C5	171.59 (15)	N6-C13-C14-C15	-0.7 (3)
N8—Co1—N1—C5	-2.37 (16)	C10-C13-C14-C15	178.29 (16)
O1—Co1—N1—C2	-2.29 (11)	N6-C13-C14-C18	-179.48 (15)
N3—Co1—N1—C2	-96.62 (12)	C10-C13-C14-C18	-0.4 (2)
N7—Co1—N1—C2	94.25 (12)	C18—C14—C15—C16	1.6 (3)
N4—Co1—N1—C2	-16.1 (2)	C13—C14—C15—C16	-177.18 (17)
N8—Co1—N1—C2	169.93 (11)	C14—C15—C16—C17	0.3 (3)
O1—Co1—N3—C6	-108.60 (15)	C18—N4—C17—C16	0.7 (3)
N7—Co1—N3—C6	101.6 (2)	Co1—N4—C17—C16	-165.11 (14)
N1—Co1—N3—C6	-29.67 (15)	C15—C16—C17—N4	-1.5 (3)
N4—Co1—N3—C6	172.09 (15)	C17—N4—C18—C14	1.4 (2)
N8—Co1—N3—C6	79.53 (15)	Co1—N4—C18—C14	169.10 (12)
$01 - C_01 - N_3 - C_{19}$	72.07 (12)	C17 - N4 - C18 - C19	-17896(14)
N7-Co1-N3-C19	-77.7(3)	C_{01} N4 C_{18} C_{19}	-11.25(18)
$N_1 - C_0 - N_3 - C_{19}$	150.99 (11)	C15-C14-C18-N4	-25(2)
N4-Co1-N3-C19	-7 25 (11)	C13 - C14 - C18 - N4	176 31 (15)
$N_{1} = C_{1} = N_{3} = C_{1}$	-99.80 (12)	C15 - C14 - C18 - C19	177.85 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	77.88 (15)	$C_{13} = C_{14} = C_{16} = C_{19}$	-33(2)
$N_{1} = C_{1} = N_{4} = C_{1} / C_{1}$	176 33 (15)	$C_{13} - C_{14} - C_{10} - C_{19}$	3.5(2)
$\frac{113}{01} - \frac{114}{14} - \frac{17}{17}$	-17.47(15)	$C_0 = 103 - C_1 - C_9$	(2)
$\frac{1}{1} - \frac{1}{1} - \frac{1}$	-1/.4/(13)	$C(\mathbf{N}) = C(\mathbf{N}) = C(\mathbf{N})$	-1/1.0/(12)
INI-01-IN4-01/	91.0(2)	UU-NJ-U19-U18	-1/3.03(13)

N8—Co1—N4—C17	-94.15 (15)	Co1—N3—C19—C18	3.77 (18)
O1—Co1—N4—C18	-88.50 (12)	C8—C9—C19—N3	-3.3 (2)
N3—Co1—N4—C18	9.96 (11)	C10-C9-C19-N3	176.82 (15)
N7—Co1—N4—C18	176.16 (11)	C8—C9—C19—C18	175.84 (15)
N1—Co1—N4—C18	-74.8 (2)	C10-C9-C19-C18	-4.1 (2)
N8—Co1—N4—C18	99.47 (12)	N4—C18—C19—N3	5.2 (2)
O1—Co1—N7—C20	7.01 (17)	C14—C18—C19—N3	-175.14 (14)
N3—Co1—N7—C20	156.8 (2)	N4—C18—C19—C9	-173.98 (15)
N1—Co1—N7—C20	-71.00 (16)	C14—C18—C19—C9	5.7 (2)
N4—Co1—N7—C20	88.70 (16)	C33—N7—C20—C21	-1.2 (3)
N8—Co1—N7—C20	179.53 (17)	Co1—N7—C20—C21	173.85 (15)
O1—Co1—N7—C33	-177.80 (12)	N7—C20—C21—C22	0.6 (3)
N3—Co1—N7—C33	-28.0(3)	C20—C21—C22—C23	0.5 (3)
N1—Co1—N7—C33	104.20 (12)	C21—C22—C23—C33	-0.9 (3)
N4—Co1—N7—C33	-96.10 (12)	C21—C22—C23—C24	176.28 (19)
N8—Co1—N7—C33	-5.28 (12)	C25—N9—C24—C27	-1.2 (3)
O1—Co1—N8—C31	-127.7 (3)	C25—N9—C24—C23	-178.90 (18)
N3—Co1—N8—C31	0.04 (17)	C33—C23—C24—N9	178.66 (17)
N7—Co1—N8—C31	-174.40 (18)	C22—C23—C24—N9	1.5 (3)
N1—Co1—N8—C31	100.38 (17)	C33—C23—C24—C27	1.0 (3)
N4—Co1—N8—C31	-77.41 (17)	C22—C23—C24—C27	-176.18 (18)
O1—Co1—N8—C32	50.1 (3)	C24—N9—C25—C26	0.6 (3)
N3—Co1—N8—C32	177.92 (12)	C27—N10—C26—C25	-1.2(3)
N7—Co1—N8—C32	3.48 (12)	N9—C25—C26—N10	0.7 (4)
N1—Co1—N8—C32	-81.74 (13)	C26—N10—C27—C24	0.5 (3)
N4—Co1—N8—C32	100.47 (12)	C26—N10—C27—C28	-179.22 (18)
Co1—O1—C1—O2	-179.64 (16)	N9—C24—C27—N10	0.7 (3)
Co1-01-C1-C2	1.2 (2)	C23—C24—C27—N10	178.37 (17)
C5—N1—C2—C3	-1.7 (3)	N9—C24—C27—C28	-179.52 (17)
Co1—N1—C2—C3	-174.80 (15)	C23—C24—C27—C28	-1.9 (3)
C5—N1—C2—C1	176.70 (15)	N10-C27-C28-C32	179.74 (16)
Co1—N1—C2—C1	3.55 (18)	C24—C27—C28—C32	0.0 (3)
O2—C1—C2—C3	-4.0 (3)	N10-C27-C28-C29	-1.1(3)
Q1—C1—C2—C3	175.16 (17)	C24—C27—C28—C29	179.19 (18)
02—C1—C2—N1	177.54 (17)	C32—C28—C29—C30	-0.4(3)
01—C1—C2—N1	-3.3(2)	C27—C28—C29—C30	-179.66 (18)
N1—C2—C3—C4	-0.3(3)	C_{28} C_{29} C_{30} C_{31}	-1.0(3)
C1—C2—C3—C4	-178.53 (17)	C32—N8—C31—C30	0.0 (3)
C5-N2-C4-O3	179.30 (19)	$C_01 - N_8 - C_{31} - C_{30}$	177.86 (15)
C5-N2-C4-C3	-0.5(3)	C_{29} C_{30} C_{31} N_8	1.3 (3)
$C_{2}-C_{3}-C_{4}-O_{3}$	-178.5(2)	$C_{31} - N_8 - C_{32} - C_{28}$	-1.6(3)
C2-C3-C4-N2	1.3 (3)	Co1—N8—C32—C28	-179.74(13)
C2—N1—C5—O4	-177.54 (17)	C31—N8—C32—C33	176.74 (16)
Co1—N1—C5—O4	-5.6 (3)	Co1—N8—C32—C33	-1.39 (19)
C_{2} N1 - C5 - N2	2.3 (2)	C29—C28—C32—N8	1.8 (3)
$C_0 = N_1 - C_5 - N_2$	174.28 (12)	C27 - C28 - C32 - N8	-178.94 (16)
C4—N2—C5—O4	178.55 (18)	$C_{29} - C_{28} - C_{32} - C_{33}$	-176.47(16)
C4-N2-C5-N1	-1.3 (3)	C_{27} C_{28} C_{32} C_{33}	2.8 (2)
			-·~ \-/

C19—N3—C6—C7 Co1—N3—C6—C7 N3—C6—C7—C8 C6—C7—C8—C9 C7—C8—C9—C19 C7—C8—C9—C10 C11—N5—C10—C13 C11—N5—C10—C9 C19—C9—C10—N5 C8—C9—C10—N5	$\begin{array}{c} -0.6 (3) \\ -179.95 (14) \\ -2.4 (3) \\ 2.5 (3) \\ 0.1 (2) \\ -179.97 (16) \\ -0.3 (3) \\ 179.64 (16) \\ -179.72 (15) \\ 0.4 (2) \\ 0.2 (2) \end{array}$	C20—N7—C33—C23 Co1—N7—C33—C23 C20—N7—C33—C32 Co1—N7—C33—C32 C22—C23—C33—N7 C24—C23—C33—N7 C22—C23—C33—C32 C24—C23—C33—C32 N8—C32—C33—N7 C28—C32—C33—N7	0.8 (3) -174.80 (13) -178.09 (16) 6.33 (19) 0.3 (3) -177.03 (16) 179.12 (16) 1.8 (3) -3.2 (2) 175.18 (15) 177.88 (15)
C8—C9—C10—N5 C19—C9—C10—C13 C8—C9—C10—C13 C10—N5—C11—C12	0.4 (2) 0.3 (2) -179.64 (16) -0.7 (3)	C28—C32—C33—N7 N8—C32—C33—C23 C28—C32—C33—C23	175.18 (15) 177.88 (15) -3.7 (2)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	Н…А	D····A	D—H···A
O5—H33…O4 ⁱ	0.85	2.22	3.007 (3)	155
O5—H34…O6 ⁱⁱ	0.85	2.16	2.903 (3)	146
O6—H35…O4 ⁱⁱⁱ	0.85	2.02	2.822 (2)	156
O6—H36…O3 ⁱ	0.85	2.16	2.990 (2)	166
N2—H2···O3 ^{iv}	0.83	2.03	2.850 (2)	169

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) *x*, -*y*+1/2, *z*+1/2; (iii) *x*+1, *y*, *z*; (iv) -*x*, -*y*, -*z*+1.