

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[[diaquanickel(II)]- μ_2 -4,4'-bipyridine- $\kappa^2 N: N'$ - μ -p-phenylenedioxydiacetato- $\kappa^2 O: O'$]

Licai Zhu, Hebing Zhu and Feng Sun*

School of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China Correspondence e-mail: fengsu60@yahoo.cn

Received 16 November 2007; accepted 24 November 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.034; wR factor = 0.086; data-to-parameter ratio = 13.7.

The title coordination polymer, $[Ni(C_{10}H_8O_6)(C_{10}H_8N_2) (H_2O)_2]_n$, was obtained by the hydrothermal reaction of nickel(II) sulfate, benzene-1,4-dioxydiacetic acid (p-phenylenedioxydiacetic acid) and 4,4'-bipyridine (4,4'-bpy) in alkaline aqueous solution. Each Ni^{II} atom is coordinated by two O atoms from two benzene-1,4-dioxydiacetate ligands, two N atoms from two 4,4'-bpy ligands and two water molecules, and displays a distorted octahedral geometry. The Ni^{II} atom and benzene-1,4-dioxydiacetate and 4,4'-bpy moieties lie on inversion centres. The benzene-1,4-dioxydiacetate ligands bridge the Ni^{II} atoms to form infinite zigzag chains, which are further interconnected by 4.4'-bpy ligands to form a gridlike layer parallel to the $(0\overline{1}1)$ plane. Moreover, there are O- $H \cdots O$ hydrogen-bonding interactions within the grid-like layer between the coordinated water molecules and the carboxylate O atoms.

Related literature

For related literature, see: Gao *et al.* (2005); Hong *et al.* (2006); Qiu *et al.* (2006, 2007).

Experimental

Crystal data	
$[Ni(C_{10}H_8O_6)(C_{10}H_8N_2)(H_2O)_2]$	c = 10.6437 (2) Å
$M_r = 475.09$	$\alpha = 106.157 \ (1)^{\circ}$
Triclinic, P1	$\beta = 96.818 (1)^{\circ}$
a = 5.7541 (1) Å	$\gamma = 97.341 \ (1)^{\circ}$
b = 8.1704 (1) Å	V = 470.40 (1) Å

metal-organic compounds

T = 293 (2) K

 $R_{\rm int} = 0.026$

 $0.26 \times 0.23 \times 0.19 \text{ mm}$

6907 measured reflections 1952 independent reflections

1769 reflections with $I > 2\sigma(I)$

Z = 1Mo $K\alpha$ radiation $\mu = 1.09 \text{ mm}^{-1}$

Data collection

Bruker APEXII area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
$T_{\min} = 0.765, \ T_{\max} = 0.820$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ 142 parameters $wR(F^2) = 0.086$ H-atom parameters constrainedS = 1.08 $\Delta \rho_{max} = 0.32$ e Å $^{-3}$ 1952 reflections $\Delta \rho_{min} = -0.38$ e Å $^{-3}$

Table 1

Selected bond lengths (Å).

N1—Ni1 Ni1—O1	2.1735 (18) 2.0869 (15)	Ni1–O1W	2.1245 (16)
O1-Ni1-O1W O1-Ni1-N1	87.83 (6) 89.77 (7)	O1W-Ni1-N1	91.96 (7)

Table 2

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1W-H1W\cdots O2^{i}$	0.82	1.81	2.605 (2)	163
$O1W-H2W\cdots O1^{ii}$	0.81	2.21	2.962 (2)	155

Symmetry codes: (i) -x, -y + 2, -z + 2; (ii) -x + 1, -y + 2, -z + 2.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003) and *CAMERON* (Watkin *et al.*, 1993); software used to prepare material for publication: *SHELXL97*.

The authors thank South China Normal University for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2287).

References

Bruker (2004). *APEX2* (Version 1.22), *SAINT* (Version 6.0) and *SADABS* (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.

- Gao, S., Liu, J.-W., Huo, L.-H., Xu, Y.-M. & Zhao, H. (2005). Inorg. Chem. Commun. 8, 361–364.
- Hong, X.-L., Li, Y.-Z., Hu, H. M., Pan, Y., Bai, J. F. & You, X.-Z. (2006). Cryst. Growth Des. 6, 1221–1224.
- Qiu, Y.-C., Chen, C.-L., Zeng, R.-H., Cai, Y.-P. & Deng, H. (2006). Acta Cryst. E62, m1979–m1981.
- Qiu, Y. C., Daiguebonne, C., Liu, J. Q., Zeng, R. H., Kerbellec, N., Deng, H. & Guillou, O. (2007). *Inorg. Chim. Acta*, **360**, 3265–3271.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

supporting information

Acta Cryst. (2008). E64, m57 [https://doi.org/10.1107/S1600536807062794]

Poly[[diaquanickel(II)]- μ_2 -4,4'-bipyridine- $\kappa^2 N:N'-\mu$ -p-phenylenedioxydiacetato- $\kappa^2 O:O'$]

Licai Zhu, Hebing Zhu and Feng Sun

S1. Comment

Benzene-1,4-dioxydiacetic acid is an important biologically active compound that has been commonly used in herbicides and plant-growth agents. The two phenoxyacetate groups have versatile bonding modes to metal ions and easily forms complexes (Gao *et al.*, 2005; Hong *et al.*, 2006; Qiu *et al.*, 2006; Qiu *et al.*, 2007). Recently, we obtained the title nickel polymer (I), its crystal structure is reported here.

In the structure of (I) each Ni^{II} atom is coordinated by two O atoms from two benzene-1,4-dioxydiacetate ligands, two N atom from two 4,4'-bpy ligands, and displays a distorted octahedral geometry. The Ni atom lies on an inversion center and benzene-1,4-dioxydiacetate and 4,4'-bpy moieties lie other inversion centers. The benzene-1,4-dioxydiacetate ligands bridge nickel ions to form infinite zigzag chains, which are further interconnected by 4,4'-bpy ligands to form a grid-like layer parallel to the (0 - 1 1) plane (Fig. 2). Moreover, there are O—H…O hydrogen bonding interactions within the grid-like layer between the coordinated water molecules and the carboxylate O atoms (Table 1).

S2. Experimental

A mixture of NiSO₄ (0.5 mmol), benzene-1,4-dioxydiacetic acid (0.5 mmol), 4,4'-bipyridine (0.5 mmol), NaOH (1 mmol) and H_2O (12 ml) was placed in a 23 ml Teflon reactor, which was heated at 433 K for three days and then cooled to room temperature at a rate of 5 K h⁻¹. Single crystals were obtained after washing with water and drying in air.

S3. Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.97 Å (methylene and $U_{iso}(H) = 1.2U_{eq}(C)$. H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O—H = 0.82 (1) Å and H…H = 1.34 (2) Å) with $U_{iso}(H) = 1.5U_{eq}(O)$. In the last stage of refinement, they were treated as riding on their parent O atoms.

Figure 1

The structure of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y + 2, -z + 3; (iii) -x, -y + 2, -z + 2]]

Figure 2

The two-dimensional layer structure of the title compound, viewed along the a axis.

Poly[[diaquanickel(II)]- μ_2 -4,4'-bipyridine- $\kappa^2 N:N'-\mu$ -p-phenylenedioxydiacetato- $\kappa^2 O:O'$]

Crystal data	
$[\text{Ni}(\text{C}_{10}\text{H}_8\text{O}_6)(\text{C}_{10}\text{H}_8\text{N}_2)(\text{H}_2\text{O})_2]$	$\gamma = 97.341 (1)^{\circ}$ $V = 470.40 (1)^{3/3}$
$\frac{M_r - 475.05}{\text{Triclinic}, P1}$	Z = 1
Hall symbol: -P 1	F(000) = 246
a = 5.7541 (1) Å	$D_{\rm x} = 1.677 \; {\rm Mg} \; {\rm m}^{-3}$
b = 8.1704 (1) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 10.6437 (2) Å	Cell parameters from 1800 reflections
$\alpha = 106.157 (1)^{\circ}$	$\theta = 1.4 - 28.0^{\circ}$
$\beta = 96.818 \ (1)^{\circ}$	$\mu = 1.09 \text{ mm}^{-1}$

T = 293 KBlock, green

Data collection

Bruker APEXII area-detector	6907 measured reflections
diffractometer	1952 independent reflections
Radiation source: fine-focus sealed tube	1769 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.026$
φ and ω scans	$\theta_{\rm max} = 26.5^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$
Absorption correction: multi-scan	$h = -7 \longrightarrow 7$
(SADABS; Bruker, 2004)	$k = -8 \rightarrow 10$
$T_{\min} = 0.765, \ T_{\max} = 0.820$	$l = -13 \rightarrow 13$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
The section of the Child	

 $0.26 \times 0.23 \times 0.19 \text{ mm}$

Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.034$	Hydrogen site location: inferred from
$wR(F^2) = 0.086$	neighbouring sites
S = 1.08	H-atom parameters constrained
1952 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0346P)^2 + 0.4701P]$
142 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.32 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta ho_{\min} = -0.38 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.1666 (4)	0.7074 (3)	0.7930 (2)	0.0318 (6)	
H1	0.2876	0.7217	0.8633	0.038*	
C2	0.1734 (4)	0.5879 (3)	0.6736 (2)	0.0314 (6)	
H2	0.2965	0.5240	0.6655	0.038*	
C3	-0.0019 (4)	0.5624 (3)	0.5655 (2)	0.0201 (5)	
C4	-0.1819 (4)	0.6612 (3)	0.5876 (2)	0.0262 (5)	
H4	-0.3058	0.6487	0.5192	0.031*	
C5	-0.1772 (4)	0.7772 (3)	0.7101 (2)	0.0264 (5)	
Н5	-0.3005	0.8405	0.7218	0.032*	
C6	0.1281 (4)	0.7277 (3)	1.1257 (2)	0.0253 (5)	
C7	0.3161 (5)	0.6440 (3)	1.1868 (3)	0.0327 (6)	
H7A	0.2457	0.5854	1.2444	0.039*	
H7B	0.3633	0.5572	1.1163	0.039*	
C8	0.5001 (4)	0.8782 (3)	1.3782 (2)	0.0273 (5)	

C9	0.6973 (4)	1.0042 (3)	1.4391 (3)	0.0315 (6)	
H9	0.8307	1.0079	1.3978	0.038*	
C10	0.6996 (4)	1.1242 (3)	1.5598 (3)	0.0315 (6)	
H10	0.8344	1.2067	1.5997	0.038*	
N1	-0.0044 (3)	0.8038 (2)	0.81332 (18)	0.0227 (4)	
Ni1	0.0000	1.0000	1.0000	0.02315 (14)	
01	0.2019 (3)	0.8651 (2)	1.09891 (15)	0.0251 (4)	
O2	-0.0799 (3)	0.6527 (2)	1.1047 (2)	0.0427 (5)	
03	0.5228 (3)	0.7621 (2)	1.26119 (17)	0.0332 (4)	
O1W	0.3239 (3)	1.1425 (2)	0.98244 (16)	0.0289 (4)	
H1W	0.2733	1.2183	0.9556	0.043*	
H2W	0.4307	1.1122	0.9424	0.043*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0272 (12)	0.0431 (15)	0.0187 (12)	0.0114 (11)	-0.0037 (9)	-0.0003 (11)
C2	0.0272 (12)	0.0421 (15)	0.0207 (12)	0.0160 (11)	0.0006 (9)	-0.0009 (11)
C3	0.0237 (11)	0.0198 (11)	0.0155 (11)	0.0018 (9)	0.0034 (9)	0.0040 (9)
C4	0.0279 (12)	0.0282 (12)	0.0186 (11)	0.0084 (9)	-0.0033 (9)	0.0019 (9)
C5	0.0281 (12)	0.0257 (12)	0.0233 (12)	0.0104 (9)	0.0010 (9)	0.0025 (10)
C6	0.0307 (12)	0.0254 (12)	0.0201 (11)	0.0100 (10)	0.0063 (9)	0.0040 (9)
C7	0.0391 (14)	0.0283 (13)	0.0327 (14)	0.0099 (11)	0.0040 (11)	0.0111 (11)
C8	0.0275 (11)	0.0332 (13)	0.0256 (12)	0.0098 (10)	0.0017 (9)	0.0145 (10)
C9	0.0228 (11)	0.0448 (15)	0.0318 (14)	0.0072 (10)	0.0079 (10)	0.0175 (12)
C10	0.0246 (11)	0.0379 (14)	0.0326 (14)	0.0008 (10)	0.0026 (10)	0.0142 (11)
N1	0.0247 (9)	0.0231 (10)	0.0175 (9)	0.0040 (8)	0.0035 (8)	0.0014 (8)
Ni1	0.0242 (2)	0.0247 (2)	0.0187 (2)	0.00564 (16)	0.00278 (16)	0.00319 (17)
01	0.0280 (8)	0.0250 (9)	0.0221 (8)	0.0067 (7)	0.0013 (7)	0.0070 (7)
O2	0.0309 (10)	0.0373 (11)	0.0653 (14)	0.0067 (8)	0.0079 (9)	0.0234 (10)
O3	0.0301 (9)	0.0409 (11)	0.0281 (9)	0.0112 (8)	0.0036 (7)	0.0077 (8)
O1W	0.0231 (8)	0.0335 (9)	0.0317 (9)	0.0058 (7)	0.0060 (7)	0.0110 (8)

Geometric parameters (Å, °)

C1—N1	1.338 (3)	С7—Н7В	0.9700
C1—C2	1.379 (3)	C8—O3	1.372 (3)
С1—Н1	0.9300	C8—C9	1.387 (3)
C2—C3	1.386 (3)	C8—C10 ⁱⁱ	1.392 (3)
С2—Н2	0.9300	C9—C10	1.380 (4)
C3—C4	1.395 (3)	С9—Н9	0.9300
C3-C3 ⁱ	1.486 (4)	C10—C8 ⁱⁱ	1.392 (3)
C4—C5	1.377 (3)	C10—H10	0.9300
C4—H4	0.9300	N1—Ni1	2.1735 (18)
C5—N1	1.340 (3)	Ni1—O1	2.0869 (15)
С5—Н5	0.9300	Ni1—O1 ⁱⁱⁱ	2.0869 (15)
C6—O2	1.237 (3)	Ni1—O1W ⁱⁱⁱ	2.1245 (16)
C6—O1	1.268 (3)	Ni1—O1W	2.1245 (16)

С6—С7	1.526 (3)	Ni1—N1 ⁱⁱⁱ	2.1735 (18)
С7—О3	1.425 (3)	O1W—H1W	0.8206
С7—Н7А	0.9700	O1W—H2W	0.8144
N1—C1—C2	123.6 (2)	С10—С9—Н9	119.3
N1-C1-H1	118.2	С8—С9—Н9	119.3
C2—C1—H1	118.2	C9—C10—C8 ⁱⁱ	119.9 (2)
C1—C2—C3	120.4 (2)	С9—С10—Н10	120.0
С1—С2—Н2	119.8	C8 ⁱⁱ —C10—H10	120.0
С3—С2—Н2	119.8	C1—N1—C5	116.27 (19)
C2—C3—C4	115.8 (2)	C1—N1—Ni1	122.60 (15)
C2—C3—C3 ⁱ	122.1 (2)	C5—N1—Ni1	121.09 (15)
C4—C3—C3 ⁱ	122.1 (2)	O1—Ni1—O1 ⁱⁱⁱ	180.000 (1)
C5—C4—C3	120.3 (2)	O1—Ni1—O1W ⁱⁱⁱ	92.17 (6)
C5—C4—H4	119.8	O1 ⁱⁱⁱ —Ni1—O1W ⁱⁱⁱ	87.83 (6)
C3—C4—H4	119.8	O1—Ni1—O1W	87.83 (6)
N1—C5—C4	123.5 (2)	O1 ⁱⁱⁱ —Ni1—O1W	92.17 (6)
N1—C5—H5	118.3	O1W ⁱⁱⁱ —Ni1—O1W	180.0
С4—С5—Н5	118.3	O1—Ni1—N1 ⁱⁱⁱ	90.23 (7)
O2—C6—O1	126.6 (2)	O1 ⁱⁱⁱ —Ni1—N1 ⁱⁱⁱ	89.77 (7)
O2—C6—C7	116.8 (2)	O1W ⁱⁱⁱ —Ni1—N1 ⁱⁱⁱ	91.96 (7)
O1—C6—C7	116.6 (2)	O1W—Ni1—N1 ⁱⁱⁱ	88.04 (7)
O3—C7—C6	114.3 (2)	O1—Ni1—N1	89.77 (7)
O3—C7—H7A	108.7	O1 ⁱⁱⁱ —Ni1—N1	90.23 (7)
С6—С7—Н7А	108.7	O1W ⁱⁱⁱ —Ni1—N1	88.04 (7)
O3—C7—H7B	108.7	O1W—Ni1—N1	91.96 (7)
С6—С7—Н7В	108.7	N1 ⁱⁱⁱ —Ni1—N1	180.000(1)
H7A—C7—H7B	107.6	C6—O1—Ni1	126.73 (15)
O3—C8—C9	115.9 (2)	C8—O3—C7	117.78 (19)
O3—C8—C10 ⁱⁱ	125.3 (2)	Ni1—O1W—H1W	100.2
C9—C8—C10 ⁱⁱ	118.8 (2)	Ni1—O1W—H2W	131.1
С10—С9—С8	121.3 (2)	H1W—O1W—H2W	108.2

Symmetry codes: (i) -*x*, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*+2, -*z*+3; (iii) -*x*, -*y*+2, -*z*+2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
01 <i>W</i> —H1 <i>W</i> ····O2 ⁱⁱⁱ	0.82	1.81	2.605 (2)	163
$O1W$ — $H2W$ ···· $O1^{iv}$	0.81	2.21	2.962 (2)	155

Symmetry codes: (iii) -x, -y+2, -z+2; (iv) -x+1, -y+2, -z+2.