

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(1*S**,2*S**,5*R**,8*S**,11*S**,14*R**,17*S**,20*R**)-14-Methyl-6-methylene-10,16,18-trioxahexacyclo[12.5.1.1^{5,8}.0^{1,11}.0^{2,8}.0^{17,20}]henicosane-7,9-dione: natural diterpenoid macrocalyxoformin B

Hao Shi

The College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China Correspondence e-mail: shihao@126.com

Received 11 November 2007; accepted 19 November 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; R factor = 0.062; wR factor = 0.159; data-to-parameter ratio = 7.5.

The title compound, $C_{20}H_{24}O_5$, isolated from *Rabdosia* var. *lophanthoides* Hara, is built up from six fused rings. Cyclohexane ring A adopts a chair conformation, ring B exists in a screw-boat conformation and ring C adopts a boat conformation; the three five-membered rings D, E and F adopt envelope conformations.

Related literature

For related literature, see: Wang *et al.* (1986). For ring puckering parameters, see: Cremer & Pople (1975).

7324 measured reflections 1707 independent reflections 1158 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.151$

Experimental

Crystal data

 $\begin{array}{lll} C_{20}H_{24}O_5 & V = 1667.2 \ (4) \ \text{\AA}^3 \\ M_r = 344.39 & Z = 4 \\ \\ Orthorhombic, \ P2_12_12_1 & Mo \ K\alpha \ radiation \\ a = 7.8450 \ (10) \ \text{\AA} & \mu = 0.10 \ \mathrm{mm}^{-1} \\ b = 13.1365 \ (17) \ \text{\AA} & T = 298 \ (2) \ \mathrm{K} \\ c = 16.178 \ (2) \ \text{\AA} & 0.20 \times 0.18 \times 0.13 \ \mathrm{mm} \end{array}$

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
$T_{\min} = 0.981, T_{\max} = 0.987$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.062$	228 parameters
$wR(F^2) = 0.159$	H-atom parameters constrained
S = 0.99	$\Delta \rho_{\rm max} = 0.27 \text{ e } \text{\AA}^{-3}$
1707 reflections	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

Table 1Puckering parameters (Å, °).

Ring	Q	θ	φ
A	0.478 (5)	24.8 (6)	126.4 (14)
В	0.664 (5)	106.1 (4)	89.3 (4)
C	0.821 (5)	100.1 (3)	54.3 (4)
	Q2	φ2	
D	0.473 (5)	324.5 (6)	
Ε	0.365 (5)	321.7 (7)	
F	0 330 (5)	140.1 (9)	

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97*.

This project was supported by the Natural Science Foundation of Zhejiang Province, China (grant No. Y205318).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2278).

References

Bruker (1999). *SMART* (Version 5.611), *SAINT* (Version 6.02a) and *SADABS* (Version 2.08). Bruker AXS Inc., Madison, Wisconsin, USA.

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Wang, Z. Q., Wang, X. R., Dong, J. G. & Xue, Z. W. (1986). Acta Bot. Sin. 28, 79–85.

supporting information

Acta Cryst. (2008). E64, o79 [https://doi.org/10.1107/S1600536807060692]

(1*S**,2*S**,5*R**,8*S**,11*S**,14*R**,17*S**,20*R**)-14-Methyl-6-methylene-10,16,18trioxahexacyclo[12.5.1.1^{5,8}.0^{1,11}.0^{2,8}.0^{17,20}]henicosane-7,9-dione: natural diterpenoid macrocalyxoformin B

Hao Shi

S1. Comment

The diterpenoid macrocalyxoformin B, (I), has been previously isolated from Rabdosia macrocalyx Hara (Wang *et al., 1986*) and its structure was established from the spectroscopic and chemical evidence. Recently, it was for the first time isolated from Rabdosia var lophanthoides Hara, and its structure was confirmed by an X-ray diffraction study.

The molecule is built up from six fused rings, three six membered and three five membered rings (Fig. 1). Some geometrical features of these rings were investigated using *PLATON* (Spek, 2003).

Cyclohexane ring A (C1/C11—C14/C20) adopts a chair conformation (Cremer & Pople, 1975), ring B (O10/C9/C8/C2/C1/C11) exists in a screw-boat conformation, ring C (C2—C5/C21/C8) adopts the boat conformation. All the three five-membered rings adopt envelope conformation.

S2. Experimental

The title compound (I) was isolated from Rabdosia var lophanthoides Hara and crystals suitable for X-ray structure analysis were obtained by slow evaporation from a solution of methanol at room temperature.

S3. Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (=CH₂); 0.96 Å (methy), 0.97 Å(methylene) or 0.98 Å (methine) with $U_{iso}(H) = 1.2U_{eq}(=CH_2, \text{ methylene, methine})$ or $U_{iso}(H) = 1.5U_{eq}(\text{methyl})$.

In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined from the X-ray analyses and the Friedel pairs were merged, relative stereochemistry is shown in the Scheme and figures.

Figure 1

Molecular view of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

(1*S**,2*S**,5*R**,8*S**,11*S**,14*R**, 17*S**,20*R**)-14-Methyl-6-methylene-10,16,18trioxahexacyclo[12.5.1.1^{5,8}.0^{1,11}.0^{2,8}.0^{17,20}]henicosane-7,9-dione

Crystal data

 $C_{20}H_{24}O_5$ $M_r = 344.39$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 7.845 (1) Å b = 13.1365 (17) Å c = 16.178 (2) Å V = 1667.2 (4) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 1999) $T_{\min} = 0.981, T_{\max} = 0.987$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.062$ $wR(F^2) = 0.159$ S = 0.991707 reflections 228 parameters 0 restraints F(000) = 736 $D_x = 1.372 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1585 reflections $\theta = 2.5-24.9^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 298 KPlate, colorless $0.20 \times 0.18 \times 0.13 \text{ mm}$

7324 measured reflections 1707 independent reflections 1158 reflections with $I > 2\sigma(I)$ $R_{int} = 0.151$ $\theta_{max} = 25.0^\circ, \ \theta_{min} = 2.0^\circ$ $h = -8 \rightarrow 9$ $k = -9 \rightarrow 15$ $l = -19 \rightarrow 18$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained

$w = 1/[\sigma^2(F_o^2) + (0.0846P)^2]$	$\Delta ho_{ m max} = 0.27 \ { m e} \ { m \AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$
$(\Delta/\sigma)_{\rm max} = 0.001$	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , the set of the

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

_	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.2722 (6)	0.1295 (3)	0.8777 (3)	0.0774 (13)	
O2	0.1286 (5)	0.3379 (3)	0.8514 (2)	0.0648 (11)	
O10	0.5239 (5)	0.1278 (3)	0.8173 (2)	0.0528 (10)	
O16	0.6881 (4)	0.3328 (3)	0.54354 (19)	0.0531 (10)	
O18	0.4526 (4)	0.3456 (3)	0.6322 (2)	0.0485 (9)	
C1	0.6034 (6)	0.2829 (4)	0.7468 (3)	0.0374 (11)	
C2	0.5314 (6)	0.3540 (4)	0.8156 (3)	0.0403 (12)	
H2	0.4508	0.4005	0.7890	0.048*	
C3	0.6638 (7)	0.4202 (4)	0.8615 (3)	0.0517 (14)	
H3A	0.7590	0.3776	0.8779	0.062*	
H3B	0.7069	0.4715	0.8238	0.062*	
C4	0.5914 (7)	0.4733 (4)	0.9387 (3)	0.0528 (14)	
H4A	0.5317	0.5345	0.9217	0.063*	
H4B	0.6853	0.4937	0.9740	0.063*	
C5	0.4682 (7)	0.4057 (4)	0.9889 (3)	0.0490 (14)	
Н5	0.4809	0.4174	1.0485	0.059*	
C6	0.2874 (7)	0.4183 (4)	0.9622 (3)	0.0475 (13)	
C7	0.2569 (7)	0.3448 (4)	0.8912 (3)	0.0443 (12)	
C8	0.4269 (6)	0.2882 (4)	0.8792 (3)	0.0421 (12)	
C9	0.3966 (7)	0.1760 (4)	0.8572 (3)	0.0510 (14)	
C11	0.6700 (7)	0.1866 (4)	0.7881 (3)	0.0427 (12)	
H11	0.7402	0.2059	0.8357	0.051*	
C12	0.7723 (7)	0.1176 (4)	0.7328 (3)	0.0523 (14)	
H12A	0.7007	0.0926	0.6883	0.063*	
H12B	0.8129	0.0596	0.7642	0.063*	
C13	0.9228 (7)	0.1754 (5)	0.6971 (3)	0.0547 (15)	
H13A	0.9869	0.1302	0.6613	0.066*	
H13B	0.9972	0.1962	0.7418	0.066*	
C14	0.8695 (6)	0.2705 (4)	0.6473 (3)	0.0439 (13)	
C15	0.7866 (7)	0.2448 (4)	0.5647 (3)	0.0542 (15)	
H15A	0.8725	0.2315	0.5230	0.065*	
H15B	0.7140	0.1853	0.5699	0.065*	

C17	0.6237 (7)	0.3750 (4)	0.6172 (3)	0.0442 (12)	
H17	0.6306	0.4494	0.6142	0.053*	
C19	0.4542 (7)	0.2586 (4)	0.6866 (3)	0.0437 (12)	
H19A	0.4755	0.1963	0.6562	0.052*	
H19B	0.3471	0.2523	0.7162	0.052*	
C20	0.7337 (6)	0.3367 (4)	0.6893 (3)	0.0400 (11)	
H20	0.7872	0.3941	0.7180	0.048*	
C21	0.5012 (7)	0.2938 (4)	0.9666 (3)	0.0483 (13)	
H21A	0.6221	0.2782	0.9668	0.058*	
H21B	0.4425	0.2480	1.0041	0.058*	
C22	0.1647 (7)	0.4771 (5)	0.9914 (4)	0.0605 (16)	
H22A	0.1859	0.5197	1.0361	0.073*	
H22B	0.0572	0.4758	0.9672	0.073*	
C23	1.0269 (7)	0.3360 (5)	0.6295 (3)	0.0599 (15)	
H23A	1.1118	0.2954	0.6023	0.090*	
H23B	1.0722	0.3616	0.6806	0.090*	
H23C	0.9955	0.3920	0.5945	0.090*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.091 (3)	0.042 (2)	0.099 (3)	-0.013 (2)	0.041 (3)	-0.008 (2)
O2	0.057 (2)	0.072 (3)	0.065 (2)	0.008 (2)	-0.006 (2)	-0.013 (2)
O10	0.071 (2)	0.0318 (19)	0.0556 (19)	0.0020 (19)	0.017 (2)	0.0054 (17)
O16	0.067 (2)	0.058 (2)	0.0344 (17)	0.002 (2)	0.0020 (17)	0.0028 (17)
O18	0.049 (2)	0.051 (2)	0.0454 (18)	0.0031 (19)	-0.0048 (17)	0.0100 (17)
C1	0.047 (3)	0.031 (3)	0.034 (2)	0.001 (2)	0.001 (2)	-0.001 (2)
C2	0.049 (3)	0.034 (3)	0.038 (2)	0.002 (2)	0.001 (2)	-0.001 (2)
C3	0.061 (3)	0.047 (3)	0.048 (3)	-0.009(3)	0.004 (3)	-0.009(3)
C4	0.064 (3)	0.047 (3)	0.047 (3)	0.000 (3)	-0.003 (3)	-0.011 (3)
C5	0.063 (3)	0.048 (3)	0.036 (2)	0.004 (3)	-0.001 (3)	-0.004 (2)
C6	0.064 (3)	0.039 (3)	0.039 (3)	0.002 (3)	0.008 (3)	0.001 (2)
C7	0.047 (3)	0.046 (3)	0.040 (2)	0.001 (3)	0.001 (2)	0.007 (2)
C8	0.054 (3)	0.033 (3)	0.039 (3)	0.003 (2)	0.006 (2)	-0.001 (2)
C9	0.067 (4)	0.039 (3)	0.047 (3)	0.002 (3)	0.014 (3)	0.006 (3)
C11	0.052 (3)	0.036 (3)	0.040(2)	0.005 (3)	0.000 (2)	0.002 (2)
C12	0.063 (3)	0.039 (3)	0.055 (3)	0.014 (3)	0.008 (3)	0.001 (2)
C13	0.058 (3)	0.054 (4)	0.052 (3)	0.014 (3)	-0.001 (3)	-0.008 (3)
C14	0.045 (3)	0.047 (3)	0.040(2)	0.001 (3)	0.004 (2)	-0.003(2)
C15	0.065 (4)	0.054 (4)	0.044 (3)	0.008 (3)	0.006 (3)	-0.005 (3)
C17	0.050 (3)	0.044 (3)	0.039 (3)	-0.004(3)	-0.002(2)	-0.002(2)
C19	0.059 (3)	0.033 (3)	0.039 (2)	-0.003 (3)	0.005 (3)	0.002 (2)
C20	0.049 (3)	0.036 (3)	0.035 (2)	-0.003 (2)	0.002 (2)	0.002 (2)
C21	0.063 (3)	0.045 (3)	0.037 (2)	0.007 (3)	0.000 (3)	0.007 (2)
C22	0.066 (4)	0.050 (4)	0.065 (4)	0.002 (3)	0.010 (3)	-0.009(3)
C23	0.049 (3)	0.075 (4)	0.056 (3)	-0.001 (3)	0.006 (3)	-0.005 (3)

Geometric parameters (Å, °)

01—C9	1.199 (7)	C8—C21	1.531 (7)	
O2—C7	1.199 (6)	C8—C9	1.534 (7)	
010—С9	1.348 (6)	C11—C12	1.505 (7)	
O10-C11	1.461 (6)	C11—H11	0.9800	
O16—C17	1.408 (6)	C12—C13	1.518 (7)	
O16—C15	1.432 (6)	C12—H12A	0.9700	
O18—C17	1.418 (6)	C12—H12B	0.9700	
O18—C19	1.443 (6)	C13—C14	1.544 (7)	
C1C11	1.523 (7)	C13—H13A	0.9700	
C1-C20	1.552 (6)	C13—H13B	0.9700	
C1—C19	1.555 (7)	C14—C15	1.523 (7)	
C1—C2	1.558 (6)	C14—C23	1.533 (8)	
C2—C3	1.545 (7)	C14—C20	1.534 (7)	
C2—C8	1.575 (7)	C15—H15A	0.9700	
С2—Н2	0.9800	C15—H15B	0.9700	
C3—C4	1.539 (7)	C17—C20	1.536 (7)	
С3—НЗА	0.9700	C17—H17	0.9800	
С3—Н3В	0.9700	C19—H19A	0.9700	
C4—C5	1.544 (8)	C19—H19B	0.9700	
C4—H4A	0.9700	C20—H20	0.9800	
C4—H4B	0.9700	C21—H21A	0.9700	
C5—C6	1.492 (8)	C21—H21B	0.9700	
C5—C21	1.536 (7)	C22—H22A	0.9300	
С5—Н5	0.9800	C22—H22B	0.9300	
C6—C22	1.321 (7)	C23—H23A	0.9600	
C6—C7	1.520 (7)	C23—H23B	0.9600	
С7—С8	1.539 (7)	C23—H23C	0.9600	
C9-010-C11	119 2 (4)	C13—C12—H12A	109 7	
C17 - 016 - C15	108.0(4)	C11 - C12 - H12R	109.7	
C17 - 018 - C19	108.2(4)	C13—C12—H12B	109.7	
$C_{11} - C_{1} - C_{20}$	114.5 (4)	H12A—C12—H12B	108.2	
C11-C1-C19	111.3 (4)	C12—C13—C14	113.1 (4)	
C20-C1-C19	102.4 (4)	C12—C13—H13A	109.0	
$C_{11} - C_{1} - C_{2}$	108.0 (4)	C14—C13—H13A	109.0	
C20—C1—C2	113.2 (4)	C12—C13—H13B	109.0	
C19—C1—C2	107.3 (4)	C14—C13—H13B	109.0	
C3—C2—C1	115.9 (4)	H13A—C13—H13B	107.8	
C3—C2—C8	110.2 (4)	C15—C14—C23	107.7 (4)	
C1—C2—C8	109.1 (4)	C15—C14—C20	102.6 (4)	
С3—С2—Н2	107.1	C23—C14—C20	109.0 (4)	
C1—C2—H2	107.1	C15—C14—C13	113.2 (5)	
C8—C2—H2	107.1	C23—C14—C13	109.5 (4)	
C4—C3—C2	113.4 (4)	C20—C14—C13	114.5 (4)	
С4—С3—Н3А	108.9	O16-C15-C14	105.1 (4)	
С2—С3—Н3А	108.9	O16—C15—H15A	110.7	

C4—C3—H3B	108.9	C14—C15—H15A	110.7
С2—С3—Н3В	108.9	O16—C15—H15B	110.7
НЗА—СЗ—НЗВ	107.7	C14—C15—H15B	110.7
C3—C4—C5	113.5 (4)	H15A—C15—H15B	108.8
C3—C4—H4A	108.9	O16—C17—O18	112.2 (4)
С5—С4—Н4А	108.9	O16—C17—C20	108.2 (4)
C3—C4—H4B	108.9	018 - C17 - C20	108.2(4)
C5—C4—H4B	108.9	O16—C17—H17	109.4
H4A—C4—H4B	107.7	018—C17—H17	109.4
C6-C5-C21	101.4 (5)	C20-C17-H17	109.4
C6-C5-C4	1123(4)	018 - C19 - C1	103.1(4)
$C_{21} - C_{5} - C_{4}$	108.7(4)	018 - C19 - H19A	111.2
С6—С5—Н5	111.3	C1 - C19 - H19A	111.2
C21_C5_H5	111.3	O18 - C19 - H19B	111.2
C_{4} C_{5} H_{5}	111.3	C1 $C10$ $H10B$	111.2
$C_{1}^{2} = C_{1}^{2} = C_{1}^{2}$	130.8 (5)	$H_{10A} = C_{10} = H_{10B}$	100 1
$C_{22} = C_{0} = C_{3}$	130.8(5)	$\begin{array}{c} 1119A - C19 - 1119B \\ C14 - C20 - C17 \\ \end{array}$	103.1
$C_{22} = C_{0} = C_{1}$	121.0(3) 107.2(4)	C14 - C20 - C17	103.8(4)
$C_{3} = C_{0} = C_{1}$	107.5 (4)	C14 - C20 - C1	117.7(4) 102 5 (4)
$02 - C / - C \delta$	125.9 (5)	C1/-C20-C1	105.5 (4)
$0_2 - C_7 - C_8$	128.5 (5)	C14 - C20 - H20	110.4
	105.4 (4)	C1/-C20-H20	110.4
C21—C8—C9	108.7 (4)	C1—C20—H20	110.4
C21—C8—C7	101.0 (4)	C8—C21—C5	101.5 (4)
C9—C8—C7	111.1 (4)	C8—C21—H21A	111.5
C21—C8—C2	112.2 (4)	C5—C21—H21A	111.5
C9—C8—C2	117.1 (4)	C8—C21—H21B	111.5
C7—C8—C2	105.6 (4)	C5—C21—H21B	111.5
O1—C9—O10	119.7 (5)	H21A—C21—H21B	109.3
O1—C9—C8	123.5 (5)	C6—C22—H22A	120.0
O10—C9—C8	116.6 (5)	C6—C22—H22B	120.0
O10-C11-C12	107.0 (4)	H22A—C22—H22B	120.0
O10-C11-C1	108.2 (4)	C14—C23—H23A	109.5
C12—C11—C1	115.0 (4)	C14—C23—H23B	109.5
O10-C11-H11	108.9	H23A—C23—H23B	109.5
C12—C11—H11	108.9	C14—C23—H23C	109.5
C1-C11-H11	108.9	H23A—C23—H23C	109.5
C11—C12—C13	109.9 (4)	H23B—C23—H23C	109.5
C11—C12—H12A	109.7		
C11—C1—C2—C3	82.7 (5)	C2-C1-C11-010	71.0 (5)
C20—C1—C2—C3	-45.1 (5)	C20-C1-C11-C12	-42.5 (6)
C19—C1—C2—C3	-157.3 (4)	C19—C1—C11—C12	73.0 (5)
C11—C1—C2—C8	-42.3 (5)	C2-C1-C11-C12	-169.5 (4)
C20—C1—C2—C8	-170.1 (4)	O10-C11-C12-C13	177.5 (4)
C19—C1—C2—C8	77.7 (4)	C1—C11—C12—C13	57.4 (6)
C1—C2—C3—C4	-169.3 (4)	C11—C12—C13—C14	-58.3 (6)
C_{8} C_{2} C_{3} C_{4}			(-)
$C_0 - C_2 - C_3 - C_7$	-44.8 (6)	C12—C13—C14—C15	-71.9 (6)

C3—C4—C5—C6	-91.0 (6)	C12—C13—C14—C20	45.3 (6)
C3—C4—C5—C21	20.4 (6)	C17—O16—C15—C14	-34.5 (5)
C21—C5—C6—C22	149.2 (6)	C23—C14—C15—O16	-81.1 (5)
C4—C5—C6—C22	-95.0 (6)	C20-C14-C15-O16	33.8 (5)
C21—C5—C6—C7	-28.9 (5)	C13—C14—C15—O16	157.7 (4)
C4—C5—C6—C7	86.9 (5)	C15—O16—C17—O18	-98.7 (5)
C22—C6—C7—O2	6.0 (8)	C15—O16—C17—C20	20.6 (5)
C5—C6—C7—O2	-175.7 (5)	C19—O18—C17—O16	95.5 (5)
C22—C6—C7—C8	-177.4 (5)	C19—O18—C17—C20	-23.9 (5)
C5—C6—C7—C8	0.9 (5)	C17—O18—C19—C1	37.8 (5)
O2—C7—C8—C21	-156.0 (6)	C11—C1—C19—O18	-158.8 (4)
C6-C7-C8-C21	27.5 (5)	C20-C1-C19-O18	-36.1 (5)
O2—C7—C8—C9	-40.9 (7)	C2-C1-C19-O18	83.3 (4)
C6—C7—C8—C9	142.6 (4)	C15—C14—C20—C17	-20.9 (5)
O2—C7—C8—C2	87.0 (6)	C23—C14—C20—C17	93.1 (5)
C6—C7—C8—C2	-89.5 (4)	C13—C14—C20—C17	-143.9 (5)
C3—C2—C8—C21	-9.1 (6)	C15—C14—C20—C1	92.7 (5)
C1-C2-C8-C21	119.2 (4)	C23—C14—C20—C1	-153.3 (4)
C3—C2—C8—C9	-135.8 (5)	C13—C14—C20—C1	-30.3 (6)
C1—C2—C8—C9	-7.5 (6)	O16-C17-C20-C14	1.4 (5)
C3—C2—C8—C7	100.0 (5)	O18—C17—C20—C14	123.2 (4)
C1—C2—C8—C7	-131.7 (4)	O16—C17—C20—C1	-122.1 (4)
C11—O10—C9—O1	176.3 (5)	O18—C17—C20—C1	-0.3 (5)
С11—О10—С9—С8	-8.0 (6)	C11—C1—C20—C14	28.6 (5)
C21—C8—C9—O1	82.9 (7)	C19—C1—C20—C14	-91.9 (4)
C7—C8—C9—O1	-27.3 (7)	C2-C1-C20-C14	152.9 (4)
C2—C8—C9—O1	-148.7 (5)	C11—C1—C20—C17	142.4 (4)
C21—C8—C9—O10	-92.6 (5)	C19—C1—C20—C17	21.8 (5)
C7—C8—C9—O10	157.1 (4)	C2-C1-C20-C17	-93.3 (4)
C2-C8-C9-O10	35.8 (6)	C9—C8—C21—C5	-162.2 (4)
C9—O10—C11—C12	-169.4 (4)	C7—C8—C21—C5	-45.3 (5)
C9—O10—C11—C1	-45.0 (5)	C2-C8-C21-C5	66.7 (5)
C20-C1-C11-O10	-162.0 (4)	C6—C5—C21—C8	46.3 (5)
C19—C1—C11—O10	-46.5 (5)	C4—C5—C21—C8	-72.2 (5)