

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[aquadipyridinecopper(II)]μ-fumarato]

Dong Xie, Junwei Ye, Yuan Lin and Guiling Ning*

State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, Dalian 116012, People's Republic of China Correspondence e-mail: ninggl@dlut.edu.cn

Received 23 November 2007; accepted 27 November 2007

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.008 Å; *R* factor = 0.046; *wR* factor = 0.116; data-to-parameter ratio = 16.7.

The title compound, $[Cu(C_4H_2O_4)(C_5H_5N)_2(H_2O)]_n$, is a onedimensional coordination polymer based on pyridine and fumarate ligands. Each Cu^{II} cation is coordinated by two carboxylate O atoms belonging to two fumarate anions, two N atoms from two pyridine molecules and one water molecule, in a square-based pyramidal geometry. Each fumarate anion bridges two Cu^{II} cations through the two carboxylate groups in a bis-monodentate fashion to form a one-dimensional polymeric chain along the *c* axis. Neighbouring chains are linked together to form a two-dimensional network parallel to the *ac* plane *via* hydrogen bonding interactions between uncoordinated carboxylate O atoms and coordinated water molecules of adjecent chains.

Related literature

For related literature, see: Barthelet *et al.* (2002); Che *et al.* (2006); Dalai *et al.* (2002); Rao *et al.* (2004); Yaghi *et al.* (1998).

Experimental

Crystal data

 $\begin{bmatrix} Cu(C_4H_2O_4)(C_5H_5N)_2(H_2O) \end{bmatrix} \\ M_r = 353.81 \\ Orthorhombic, P2_12_12_1 \\ a = 5.6238 \ (6) \ \text{\AA} \\ b = 15.3174 \ (16) \ \text{\AA} \\ c = 17.4404 \ (16) \ \text{\AA}$

 $V = 1502.4 \text{ (3) } \text{\AA}^{3}$ Z = 4Mo K\alpha radiation $\mu = 1.48 \text{ mm}^{-1}$ T = 273 (2) K $0.32 \times 0.32 \times 0.22 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.648, T_{max} = 0.732$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ $\Delta \rho_r$ $wR(F^2) = 0.116$ $\Delta \rho_r$ S = 1.02Abs3330 reflections1199 parametersFlacH-atom parameters constrained

9106 measured reflections 3330 independent reflections 2520 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.034$

 $\begin{array}{l} \Delta \rho_{max} = 0.70 \mbox{ e } \mbox{ Å}^{-3} \\ \Delta \rho_{min} = -0.33 \mbox{ e } \mbox{ Å}^{-3} \\ \mbox{ Absolute structure: Flack (1983),} \\ 1347 \mbox{ Friedel pairs} \\ \mbox{ Flack parameter: } 0.50 \mbox{ (2)} \end{array}$

Table 1

Selected geometric parameters (Å, °).

Cu1-O1	1.925 (2)	Cu1-N1	2.030 (4)
Cu1-O4 ⁱ	1.931 (2)	Cu1-O5	2.210 (3)
Cu1-N2	2.031 (3)		
$O1-Cu1-O4^{i}$	179.45 (15)	N2-Cu1-N1	173.11 (17)
O1-Cu1-N2	89.83 (13)	O1-Cu1-O5	88.78 (12)
O4 ⁱ -Cu1-N2	89.86 (12)	O4 ⁱ -Cu1-O5	90.80 (12)
O1-Cu1-N1	90.30 (13)	N2-Cu1-O5	95.07 (15)
O4 ⁱ -Cu1-N1	90.06 (12)	N1-Cu1-O5	91.82 (15)

Symmetry code: (i) $-x + \frac{1}{2}, -y + 2, z + \frac{1}{2}$.

Table 2			
Hydrogen-bond	geometry	(Å.	°).

$D - H \cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} O5 - H5B \cdots O2^{ii} \\ O5 - H5A \cdots O3^{iii} \end{array}$	0.91 0.88	1.82 1.86	2.718 (4) 2.700 (4)	167 158

Symmetry codes: (ii) x + 1, y, z; (iii) $-x + \frac{3}{2}$, -y + 2, $z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Natural Science Foundation of China (grant No. 20772014).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2529).

References

- Barthelet, K., Marrot, J., Riou, D. & Ferey, G. (2002). Angew. Chem. Int. Ed. 41, 281–284.
- Bruker (1997). SMART (Version 5.044), SAINT (Version 5.01) and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Che, G.-B., Liu, C.-B. & Xu, Z.-L. (2006). *Acta Cryst*. E**62**, m1948–m1949. Dalai, S., Mukherjee, P. S., Rogez, G., Mallah, T., Drew, M. G. B. & Chaudhuri,
- N. R. (2002). Eur. J. Inorg. Chem. pp. 3292–3297. Flack, H. D. (1983). Acta Cryst. A**39**, 876–881.
- Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1490–1521.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484.

supporting information

Acta Cryst. (2008). E64, m91 [https://doi.org/10.1107/S1600536807063738] catena-Poly[[aquadipyridinecopper(II)]-μ-fumarato]

Dong Xie, Junwei Ye, Yuan Lin and Guiling Ning

S1. Comment

Recently, the design and construction of coordination polymers have attracted great attention due to their rich network topologies and potential applications (Yaghi *et al.*, 1998). Organic O– and N-donors are often chosen to fabricate these complexes. A number of metal-organic frameworks with extended structures and novel adsorption and magnetic properties have been synthesized based on aromatic dicarboxylate ligands (Barthelet *et al.*, 2002; Rao *et al.*, 2004). Compared with benzenedicarboxylic acid, the alkenedicarboxylic acid is also regarded as an excellent candidate for the self-assembly of coordination polymers. Fumaric acid ligand is the typical example of alkenedicarboxylic acid ligand. As far as we know, several coordination polymers based on fumaric acid have been obtained (Che *et al.*, 2006; Dalai *et al.*, 2002). We report here the crystal structure of the title coordination polymer, $[Cu(C_4H_2O_4)(C_5NH_5)_2(H_2O)]_n$.

The asymmetric unit of the title compound consists of one Cu^{II} cation, one fumarate dianion, two pyridine ligands and one water molecule (Fig. 1). The Cu^{II} cation has a square-based pyramidal geometry formed by two carboxylate O atoms from two fumarate ligands, two N atoms from two pyridine molecules and one water molecule. The four basal coordination sites are filled by the atoms O1, N1, N2 and O4ⁱ, while the axial position is occupied by the atom O5. The Cu—O distances are in the range 1.925 (2)–2.210 (3) Å and the Cu—N distances are 2.030 (4) and 2.031 (3) Å. These values are in good agreement with those found in other extended structures (Dalai *et al.*, 2002). The angles subtended at the metal centre are listed in Table 1. Each fumarate dianion acts as a μ_2 -bridging ligand to connect two Cu^{II} centers to form a chain structure along the *c* axis, with a Cu…Cu distance of 8.743 (4) Å. The chains are further packed into a twodimensional network parallel to the *ac* plane through O—H…O hydrogen bonding interactions between the water molecule and uncoordinated carboxylate O atoms of fumarate ligands of adjacent chains (Fig. 2). Each pyridine, as a terminal ligand, occupies two coordination positions of Cu^{II} cation and decorates alternately at two sides of chains (Fig. 3).

S2. Experimental

A solid mixture of $Cu(NO_3)_2 6H_2O$ (0.120 g, 0.5 mmol) and fumaric acid (0.06 g, 0.5 mmol) was dissolved in a 25 ml vial containing DMF (10 ml). The solution was stirred in air for 50 min and the vial was placed in a 80 ml beaker containing pyridine (3 ml) and DMF (5 ml). The reaction mixture was sealed by parafilm and kept at 333 K. Block-shaped blue crystals of the title compound were obtained after 5 d.

S3. Refinement

C-bound H atoms were placed in calculated positions (C—H = 0.93 Å) and refined in the riding-model approximation with $U_{iso}(H) = 1.2U_{eq}(C)$. O-bound H atoms were located in a difference map and refined in the riding-model approximation, with $U_{iso}(H) = 1.2U_{eq}(O)$. Flack parameter refined to 0.50 (2) indicating that the crystal used was a racemic twin (Flack, 1983).

View of a fragment of polymeric title compound, showing the coordination environment of the metal center and atomlabelling scheme. Displacement ellipsoids are drawn at the 30% probability level. [symmetry code: (A) -x + 1/2, -y + 2, z + 1/2].

Figure 2

View of a hydrogen-bonded (dashed lines) two-dimensional network in the title compound.

Figure 3

The crystal packing of the title compound, viewed down the *a* axis.

catena-Poly[[aquadipyridinecopper(II)]-µ-fumarato]

Crystal data

 $[Cu(C_4H_2O_4)(C_5H_5N)_2(H_2O)]$ $M_r = 353.81$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 5.6238 (6) Å b = 15.3174 (16) Å c = 17.4404 (16) Å V = 1502.4 (3) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: Bruker SMART CCD areadetector pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.116$ S = 1.033330 reflections 199 parameters 0 restraints F(000) = 724 $D_x = 1.564 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2169 reflections $\theta = 2.3-27.5^{\circ}$ $\mu = 1.48 \text{ mm}^{-1}$ T = 273 KBlock, blue $0.32 \times 0.32 \times 0.22 \text{ mm}$

 $T_{min} = 0.648, T_{max} = 0.732$ 9106 measured reflections 3330 independent reflections 2520 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 2.3^{\circ}$ $h = -7 \rightarrow 7$ $k = -18 \rightarrow 19$ $l = -22 \rightarrow 22$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0579P)^2 + 0.6209P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta\rho_{\text{max}} = 0.70 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\min} = -0.33 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), with 1347 Friedel pairs Absolute structure parameter: 0.50 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
Cu1	0.25711 (11)	0.97944 (3)	0.87637 (2)	0.03127 (15)
O1	0.2678 (6)	0.9836 (2)	0.76609 (13)	0.0420 (7)
O2	-0.1160 (6)	0.9684 (3)	0.74117 (16)	0.0595 (10)
O3	0.6212 (6)	0.9782 (3)	0.50624 (16)	0.0573 (9)
O4	0.2510 (6)	1.02406 (18)	0.48704 (12)	0.0404 (6)
O5	0.6495 (5)	0.9721 (2)	0.87740 (15)	0.0526 (8)
H5B	0.7218	0.9792	0.8313	0.063*
H5A	0.7522	0.9928	0.9109	0.063*
N1	0.2274 (7)	0.8475 (2)	0.87281 (18)	0.0414 (8)
N2	0.2434 (7)	1.1119 (2)	0.87979 (17)	0.0411 (7)
C1	0.0911 (8)	0.9761 (3)	0.7220 (2)	0.0338 (9)
C2	0.1466 (8)	0.9824 (3)	0.6380 (2)	0.0356 (10)
H2	0.0221	0.9820	0.6030	0.043*
C3	0.3656 (9)	0.9883 (3)	0.6126 (2)	0.0345 (10)
H3	0.4903	0.9872	0.6476	0.041*
C4	0.4217 (9)	0.9968 (2)	0.5281 (2)	0.0320 (11)
C5	0.0718 (10)	0.8032 (4)	0.9141 (3)	0.0586 (14)
Н5	-0.0377	0.8337	0.9438	0.070*
C6	0.0664 (13)	0.7118 (4)	0.9146 (4)	0.083 (2)
H6	-0.0454	0.6822	0.9440	0.100*
C7	0.2251 (13)	0.6674 (4)	0.8719 (4)	0.087 (2)
H7	0.2249	0.6067	0.8716	0.105*
C8	0.3846 (13)	0.7123 (4)	0.8294 (4)	0.086 (2)
H8	0.4958	0.6827	0.7998	0.103*
C9	0.3818 (11)	0.8019 (4)	0.8303 (3)	0.0606 (14)
H9	0.4911	0.8320	0.8003	0.073*
C10	0.0860 (10)	1.1570 (3)	0.8377 (3)	0.0581 (15)
H10	-0.0264	1.1269	0.8088	0.070*
C11	0.0874 (12)	1.2476 (4)	0.8363 (4)	0.080 (2)
H11	-0.0234	1.2776	0.8067	0.095*
C12	0.2507 (12)	1.2924 (3)	0.8781 (3)	0.0804 (17)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

H12	0.2544	1.3530	0.8771	0.096*
C13	0.4077 (11)	1.2468 (4)	0.9211 (4)	0.0752 (19)
H13	0.5201	1.2761	0.9505	0.090*
C14	0.4004 (9)	1.1567 (3)	0.9211 (3)	0.0538 (13)
H14	0.5091	1.1262	0.9511	0.065*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0335 (2)	0.0455 (3)	0.01487 (19)	0.0008 (4)	-0.0003 (2)	-0.0007 (2)
01	0.0401 (18)	0.0715 (17)	0.0145 (11)	-0.003 (2)	-0.0026 (13)	0.0035 (12)
O2	0.039 (2)	0.115 (3)	0.0241 (14)	-0.006 (2)	0.0066 (13)	-0.0059 (19)
O3	0.0350 (19)	0.108 (3)	0.0286 (15)	0.009 (2)	0.0072 (13)	0.0122 (18)
O4	0.0478 (18)	0.0552 (15)	0.0180 (11)	0.010 (3)	0.0002 (15)	0.0010 (12)
05	0.0291 (14)	0.101 (3)	0.0279 (15)	-0.0031 (16)	-0.0005 (12)	-0.013 (2)
N1	0.046 (2)	0.0493 (19)	0.0295 (16)	0.001 (2)	-0.002 (2)	-0.0013 (15)
N2	0.0424 (18)	0.0470 (19)	0.0340 (16)	-0.007 (2)	-0.001 (3)	0.0016 (15)
C1	0.034 (2)	0.047 (2)	0.0204 (17)	0.001 (2)	0.0036 (15)	-0.005 (2)
C2	0.033 (2)	0.050 (2)	0.023 (2)	0.004 (2)	-0.0031 (16)	-0.003 (2)
C3	0.041 (2)	0.042 (3)	0.020 (2)	-0.0003 (19)	-0.0036 (16)	0.0008 (17)
C4	0.033 (3)	0.041 (3)	0.0226 (19)	-0.0061 (16)	-0.0010 (16)	0.0006 (15)
C5	0.060 (4)	0.053 (3)	0.063 (3)	-0.001 (3)	0.000 (3)	0.000 (3)
C6	0.078 (5)	0.065 (4)	0.107 (5)	-0.016 (4)	-0.013 (4)	0.020 (4)
C7	0.067 (4)	0.047 (3)	0.147 (7)	0.005 (3)	-0.043 (6)	-0.008 (4)
C8	0.072 (5)	0.063 (4)	0.122 (6)	0.015 (4)	-0.014 (4)	-0.037 (4)
C9	0.058 (4)	0.056 (3)	0.068 (4)	0.003 (3)	-0.002 (3)	-0.015 (3)
C10	0.070 (4)	0.045 (3)	0.059 (3)	-0.001 (3)	-0.018 (3)	0.005 (2)
C11	0.085 (5)	0.052 (4)	0.102 (5)	0.010 (3)	-0.031 (4)	0.007 (3)
C12	0.082 (4)	0.046 (3)	0.114 (5)	-0.008 (4)	-0.008 (6)	0.001 (3)
C13	0.070 (4)	0.050 (3)	0.106 (5)	-0.010 (3)	-0.027 (4)	-0.015 (3)
C14	0.045 (3)	0.057 (3)	0.059 (3)	-0.006 (2)	-0.014 (2)	-0.002 (3)

Geometric parameters (Å, °)

Cul—Ol	1.925 (2)	С3—Н3	0.93
Cu1—O4 ⁱ	1.931 (2)	C5—C6	1.400 (8)
Cu1—N2	2.031 (3)	C5—H5	0.93
Cu1—N1	2.030 (4)	C6—C7	1.347 (9)
Cu1—O5	2.210 (3)	С6—Н6	0.93
01—C1	1.262 (5)	C7—C8	1.351 (9)
O2—C1	1.218 (5)	C7—H7	0.93
O3—C4	1.219 (5)	C8—C9	1.372 (8)
O4—C4	1.268 (5)	C8—H8	0.93
O4—Cu1 ⁱⁱ	1.931 (2)	С9—Н9	0.93
O5—H5B	0.91	C10—C11	1.388 (8)
O5—H5A	0.88	C10—H10	0.93
N1—C5	1.321 (6)	C11—C12	1.358 (8)
N1—C9	1.338 (6)	C11—H11	0.93

N2—C14	1.330 (6)	C12—C13	1.352 (8)
N2—C10	1.342 (6)	C12—H12	0.93
C1—C2	1.501 (5)	C13—C14	1.381 (7)
C2—C3	1.312 (6)	С13—Н13	0.93
С2—Н2	0.93	C14—H14	0.93
C3—C4	1.513 (5)		
O1—Cu1—O4 ⁱ	179.45 (15)	O4—C4—C3	114.9 (4)
O1—Cu1—N2	89.83 (13)	N1—C5—C6	122.1 (6)
O4 ⁱ —Cu1—N2	89.86 (12)	N1—C5—H5	119.0
O1—Cu1—N1	90.30 (13)	С6—С5—Н5	119.0
O4 ⁱ —Cu1—N1	90.06 (12)	C7—C6—C5	119.2 (7)
N2—Cu1—N1	173.11 (17)	С7—С6—Н6	120.4
O1—Cu1—O5	88.78 (12)	С5—С6—Н6	120.4
O4 ⁱ —Cu1—O5	90.80 (12)	C6—C7—C8	119.0 (6)
N2—Cu1—O5	95.07 (15)	С6—С7—Н7	120.5
N1—Cu1—O5	91.82 (15)	С8—С7—Н7	120.5
C1—O1—Cu1	125.5 (3)	C7—C8—C9	119.7 (7)
C4—O4—Cu1 ⁱⁱ	124.9 (3)	С7—С8—Н8	120.1
Cu1—O5—H5B	115.7	С9—С8—Н8	120.1
Cu1—O5—H5A	130.0	N1—C9—C8	122.4 (6)
H5B—O5—H5A	104.5	N1—C9—H9	118.8
C5—N1—C9	117.6 (5)	С8—С9—Н9	118.8
C5—N1—Cu1	123.3 (3)	N2-C10-C11	121.4 (5)
C9—N1—Cu1	118.9 (4)	N2-C10-H10	119.3
C14—N2—C10	117.9 (4)	С11—С10—Н10	119.3
C14—N2—Cu1	120.4 (3)	C12—C11—C10	120.0 (6)
C10—N2—Cu1	121.6 (3)	C12—C11—H11	120.0
O2-C1-O1	126.5 (4)	C10-C11-H11	120.0
O2—C1—C2	118.2 (4)	C13—C12—C11	118.6 (6)
O1—C1—C2	115.2 (4)	C13—C12—H12	120.7
C3—C2—C1	122.0 (4)	C11—C12—H12	120.7
С3—С2—Н2	119.0	C12—C13—C14	119.8 (5)
C1—C2—H2	119.0	C12—C13—H13	120.1
C2—C3—C4	122.1 (4)	C14—C13—H13	120.1
С2—С3—Н3	119.0	N2-C14-C13	122.4 (5)
С4—С3—Н3	119.0	N2-C14-H14	118.8
O3—C4—O4	126.7 (4)	C13—C14—H14	118.8
O3—C4—C3	118.4 (4)		

Symmetry codes: (i) -*x*+1/2, -*y*+2, *z*+1/2; (ii) -*x*+1/2, -*y*+2, *z*-1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O5—H5 <i>B</i> ···O2 ⁱⁱⁱ	0.91	1.82	2.718 (4)	167
O5—H5 <i>A</i> ···O3 ^{iv}	0.88	1.86	2.700 (4)	158

Symmetry codes: (iii) x+1, y, z; (iv) -x+3/2, -y+2, z+1/2.