metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis[2-(benzyliminomethyl)-4-chlorophenolato- $\kappa^2 N$,O]nickel(II)

Zong-Xiao Li, Xin-Li Zhang and Xiao-Hua Pu*

Department of Chemistry, Baoji University of Arts and Science, Baoji, Shaanxi 721007, People's Republic of China Correspondence e-mail: mingtian8001@163.com

Received 23 October 2007; accepted 31 October 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; R factor = 0.043; wR factor = 0.124; data-to-parameter ratio = 13.2.

In the mononuclear centrosymmetric title compound, $[Ni(C_{14}H_{11}CINO)_2]$, the Ni^{II} atom, lying on a center of symmetry, is four-coordinated by two O atoms and two N atoms from two Schiff base ligands, forming a slightly distorted square-planar environment. The dihedral angle between the two aromatic rings of the ligand is $72.0 (2)^{\circ}$. No significant hydrogen bonding or π - π stacking interactions are observed.

Related literature

For bond-length data, see: Allen et al. (1987). For related literature, see: Christensen et al. (1997); Costes et al. (2005); Hu et al. (2005); Liu et al. (2006); Wallis & Cummings (1974); Yu (2006).

Experimental

Crystal data

DU(G II GDIO) 1	TT (1000 (0))
$[N_1(C_{14}H_{11}CINO)_2]$	V = 1196.6 (3) A
$M_r = 548.09$	Z = 2
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 13.6785 (17) Å	$\mu = 1.06 \text{ mm}^{-1}$
b = 10.5986 (14) Å	T = 298 (2) K
c = 8.6560 (13) Å	$0.56 \times 0.44 \times 0.3$
$\beta = 107.529 \ (2)^{\circ}$	

Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min}=0.587,\ T_{\rm max}=0.727$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	160 parameters
$wR(F^2) = 0.124$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.53 \text{ e } \text{\AA}^{-3}$
2110 reflections	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

1196.6 (3) Å³

 \times 0.44 \times 0.32 mm

5718 measured reflections

2110 independent reflections

1506 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.039$

Table 1

Selected geometric parameters (Å, °).

Ni1-O1	1.817 (2)	Ni1-N1	1.926 (3)
$O1-Ni1-O1^i$ $O1-Ni1-N1^i$	180 87.39 (11)	O1-Ni1-N1	92.61 (11)
O1-Ni1-N1 ⁱ	87.39 (11)	01-MI-M	

Symmetry code: (i) -x, -y + 1, -z.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

Financial support by the Phytochemistry Key Laboratory of Shaanxi province (grant No. 02js40) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2496).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1-19.
- Bruker (1998). SMART. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SAINT (Version 6.02) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.
- Christensen, A., Jensen, H. S., McKee, V., McKenzie, C. J. & Munch, M. (1997). Inorg. Chem. 36, 6080-6085.
- Costes, J. P., Lamere, J. F., Lepetit, C., Lacroix, P. G. & Dahan, F. (2005). Inorg. Chem. 44, 1973-1982.
- Hu, Z.-Q., Li, W.-H., Ding, Y. & Wu, Y. (2005). Acta Cyst. E61, m2526-m2527. Liu, H.-Y., Gao, F., Lu, Z.-S. & Wang, H.-Y. (2006). Acta Cryst. E62, m1306m1308
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Wallis, W. N. & Cummings, S. C. (1974). Inorg. Chem. 13, 991-994. Yu, Y.-Y. (2006). Acta Cryst. E62, m948-m949.

supporting information

Acta Cryst. (2008). E64, m202 [https://doi.org/10.1107/S1600536807054943] Bis[2-(benzyliminomethyl)-4-chlorophenolato-κ²N,O]nickel(II)

Zong-Xiao Li, Xin-Li Zhang and Xiao-Hua Pu

S1. Comment

Recently, we have reported a Schiff base nickel(II) complex (Hu *et al.*, 2005). Owing to the nickel complexes derived from Schiff base ligands possess interesting structures and wide applications (Costes *et al.*, 2005; Wallis & Cummings, 1974; Christensen *et al.*, 1997; Liu *et al.*, 2006); Yu, 2006), we report here the crystal structure of a new Schiff base nickel(II) complex, title compound, (I),

Compound (I) is a mononuclear centrosymmetric Ni^{II} complex (Fig. 1) The Ni atom, lying on the center of symmetry, is four-coordainated by two O atoms and two N atoms from two Schiff base ligands, forming a slightly distorted squareplanar environment (Table 1). The bond lengths and angles of the ligands show normal values (Allen *et al.*, 1987). The dihedral angle between the two aromatic rings of the ligand is 72.0 (2)°. No significant hydrogen bonding or π - π stacking interactions are observed.

S2. Experimental

5-Chlorosalicylaldehyde (0.1 mmol, 15.7 mg), Ni(NO₃)₂.6H₂O (0.1 mmol, 29.0 mg) and benzylamine (0.1 mmol, 10.7 mg) were dissolved in methanol (10 ml). The mixture was stirred for 30 min at room temperature to give a clear brown solution. After allowing the resulting solution to stand in air for 11 d, brown block-shaped crystals of compound (I) were formed on slow evaporation of the solvent. The crystals were collected, washed with methanol and dried in a vacuum desiccator using anhydrous CaCl₂ (yield 54%). Analysis found: C 61.30, H 4.0%; calculated for Ni(C₁₄H₁₁Cl₀)₂: C 61.34, H 4.01%.

S3. Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of (I), showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity. Unlabelled atoms are related to other labelled atoms by the symmetry operation (-x, 1 - y, -z).

Figure 2

The crystal packing of (I), viewed along the c axis.

Bis[2-(benzyliminomethyl)-4-chlorophenolato- $\kappa^2 N$,O]nickel(II)

Crystal data

[Ni(C₁₄H₁₁CINO)₂] $M_r = 548.09$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 13.6785 (17) Å b = 10.5986 (14) Å c = 8.6560 (13) Å $\beta = 107.529 (2)^{\circ}$ $V = 1196.6 (3) \text{ Å}^{3}$ Z = 2 F(000) = 564 $D_x = 1.521 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 1825 reflections $\theta = 2.5-25.2^{\circ}$ $\mu = 1.06 \text{ mm}^{-1}$ T = 298 KRhombus, green $0.56 \times 0.44 \times 0.32 \text{ mm}$ Data collection

Bruker SMART CCD	5718 measured reflections
diffractometer	2110 independent reflections
Radiation source: fine-focus sealed tube	1506 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.039$
φ and ω scans	$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 2.5^\circ$
Absorption correction: multi-scan	$h = -16 \rightarrow 12$
(SADABS; Sheldrick, 1996)	$k = -12 \rightarrow 8$
$T_{\min} = 0.587, \ T_{\max} = 0.727$	$l = -10 \rightarrow 10$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.043$	Hydrogen site location: inferred from
$wR(F^2) = 0.124$	neighbouring sites
S = 1.08	H-atom parameters constrained
2110 reflections	$w = 1/[\sigma^2(F_o^2) + (0.057P)^2 + 0.6708P]$
160 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.53 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.28 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
Ni1	0.0000	0.5000	0.0000	0.0329 (2)	
Cl1	0.48272 (9)	0.77502 (16)	0.44350 (18)	0.0919 (6)	
N1	0.0104 (2)	0.6504 (3)	0.1288 (3)	0.0316 (7)	
01	0.13607 (19)	0.4664 (3)	0.0829 (3)	0.0472 (7)	
C1	0.0949 (3)	0.7006 (4)	0.2141 (4)	0.0354 (8)	
H1	0.0899	0.7737	0.2705	0.043*	
C2	0.1963 (3)	0.6549 (4)	0.2309 (4)	0.0359 (9)	
C3	0.2107 (3)	0.5393 (4)	0.1629 (4)	0.0365 (9)	
C4	0.3123 (3)	0.4982 (4)	0.1878 (5)	0.0467 (10)	
H4	0.3240	0.4208	0.1461	0.056*	
C5	0.3939 (3)	0.5699 (5)	0.2720 (5)	0.0528 (11)	
Н5	0.4603	0.5418	0.2855	0.063*	
C6	0.3779 (3)	0.6840 (5)	0.3372 (5)	0.0520 (11)	
C7	0.2809 (3)	0.7283 (4)	0.3197 (5)	0.0451 (10)	
H7	0.2710	0.8048	0.3653	0.054*	
C8	-0.0831 (3)	0.7179 (4)	0.1351 (4)	0.0369 (9)	

H8A	-0.1254	0.7353	0.0253	0.044*	
H8B	-0.0633	0.7982	0.1893	0.044*	
C9	-0.1461 (2)	0.6457 (3)	0.2219 (4)	0.0316 (8)	
C10	-0.1084 (3)	0.5490 (4)	0.3262 (4)	0.0393 (9)	
H10	-0.0411	0.5225	0.3438	0.047*	
C11	-0.1688 (3)	0.4897 (4)	0.4064 (5)	0.0469 (10)	
H11	-0.1422	0.4233	0.4767	0.056*	
C12	-0.2678 (3)	0.5281 (4)	0.3827 (5)	0.0533 (12)	
H12	-0.3087	0.4878	0.4361	0.064*	
C13	-0.3059 (3)	0.6264 (5)	0.2799 (5)	0.0553 (12)	
H13	-0.3725	0.6544	0.2651	0.066*	
C14	-0.2457 (3)	0.6839 (4)	0.1983 (5)	0.0458 (10)	
H14	-0.2727	0.7493	0.1265	0.055*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0295 (4)	0.0348 (4)	0.0367 (4)	-0.0008 (3)	0.0133 (3)	-0.0002 (3)
Cl1	0.0415 (7)	0.1240 (14)	0.1083 (11)	-0.0314 (7)	0.0197 (7)	-0.0503 (10)
N1	0.0291 (15)	0.0328 (17)	0.0363 (16)	0.0014 (13)	0.0152 (13)	0.0075 (13)
O1	0.0307 (14)	0.0475 (19)	0.0590 (17)	0.0032 (11)	0.0070 (13)	-0.0124 (13)
C1	0.040(2)	0.031 (2)	0.040 (2)	-0.0020 (16)	0.0191 (17)	0.0023 (16)
C2	0.0311 (19)	0.043 (2)	0.035 (2)	-0.0034 (17)	0.0123 (15)	0.0036 (18)
C3	0.033 (2)	0.045 (2)	0.035 (2)	-0.0018 (16)	0.0137 (17)	0.0024 (17)
C4	0.035 (2)	0.053 (3)	0.054 (2)	0.0008 (19)	0.0156 (18)	-0.010 (2)
C5	0.031 (2)	0.069 (3)	0.059 (3)	-0.001 (2)	0.0156 (19)	-0.005 (2)
C6	0.034 (2)	0.073 (3)	0.050 (2)	-0.014 (2)	0.0137 (18)	-0.008(2)
C7	0.037 (2)	0.049 (3)	0.051 (2)	-0.0103 (18)	0.0162 (18)	-0.008(2)
C8	0.038 (2)	0.032 (2)	0.043 (2)	0.0018 (16)	0.0163 (17)	0.0026 (17)
C9	0.0308 (18)	0.033 (2)	0.0309 (19)	-0.0009 (15)	0.0095 (15)	-0.0046 (16)
C10	0.039 (2)	0.037 (2)	0.043 (2)	0.0046 (17)	0.0142 (17)	0.0024 (18)
C11	0.055 (3)	0.043 (2)	0.047 (2)	0.003 (2)	0.0222 (19)	0.009 (2)
C12	0.049 (2)	0.067 (3)	0.053 (2)	-0.012 (2)	0.029 (2)	-0.001 (2)
C13	0.035 (2)	0.079 (4)	0.055 (3)	0.005 (2)	0.019 (2)	0.002 (2)
C14	0.040 (2)	0.055 (3)	0.043 (2)	0.0121 (19)	0.0139 (18)	0.010 (2)

Geometric parameters (Å, °)

Ni1—O1	1.817 (2)	C6—C7	1.372 (5)	
Ni1—O1 ⁱ	1.817 (2)	C7—H7	0.93	
Ni1—N1 ⁱ	1.926 (3)	C8—C9	1.510 (5)	
Ni1—N1	1.926 (3)	C8—H8A	0.97	
Cl1—C6	1.743 (4)	C8—H8B	0.97	
N1-C1	1.284 (4)	C9—C10	1.361 (5)	
N1-C8	1.480 (4)	C9—C14	1.377 (5)	
O1—C3	1.301 (4)	C10—C11	1.380 (5)	
C1—C2	1.434 (5)	C10—H10	0.93	
C1—H1	0.93	C11—C12	1.369 (6)	

supporting information

C2—C3	1.399 (5)	C11—H11	0.93
C2—C7	1.414 (5)	C12—C13	1.367 (6)
C3—C4	1.409 (5)	C12—H12	0.93
C4—C5	1.365 (6)	C13—C14	1.378 (6)
C4—H4	0.93	C13—H13	0.93
C5-C6	1 379 (6)	C14—H14	0.93
С5—Н5	0.93		0.95
	0.95		
$01 - Ni1 - O1^{i}$	180	C6—C7—C2	118.6 (4)
01—Ni1—N1 ⁱ	87.39 (11)	С6—С7—Н7	120.7
01^{i} Ni1 N1 ⁱ	92.61 (11)	С2—С7—Н7	120.7
01-Ni1-N1	92.61 (11)	N1 - C8 - C9	113.7(3)
01^{i} Ni1 N1	87 39 (11)	N1 - C8 - H8A	108.8
$N1^{i}$ $N1$	180.00(14)	C9 - C8 - H8A	108.8
C1 N1 $C8$	114.6(3)	N1 C8 H8B	108.8
C1 = N1 = C0	124.0(3)	$C_0 C_8 H_{8B}$	108.8
$C_1 = N_1 = N_1$	124.9(2) 120.5(2)		108.8
C_{0} N_{1} N_{1}	120.3(2)	$H_{0}A = C_{0} = H_{0}B$	107.7
$C_3 = 01 = N11$	129.8 (3)	C10-C9-C14	118.7(3)
NI - CI - C2	126.4 (4)	C10-C9-C8	123.5 (3)
NI-CI-HI	116.8	C14-C9-C8	11/./(3)
C2—C1—H1	116.8	C9—C10—C11	120.8 (3)
C3_C2_C/	120.9 (3)	C9—C10—H10	119.6
C3—C2—C1	120.5 (3)	С11—С10—Н10	119.6
C7—C2—C1	118.5 (4)	C12—C11—C10	120.3 (4)
O1—C3—C2	123.8 (3)	C12—C11—H11	119.9
O1—C3—C4	118.5 (4)	C10—C11—H11	119.9
C2—C3—C4	117.6 (3)	C13—C12—C11	119.4 (4)
C5—C4—C3	121.3 (4)	C13—C12—H12	120.3
С5—С4—Н4	119.3	C11—C12—H12	120.3
C3—C4—H4	119.3	C12—C13—C14	120.1 (4)
C4—C5—C6	120.1 (4)	C12—C13—H13	120.0
С4—С5—Н5	120.0	C14—C13—H13	120.0
С6—С5—Н5	120.0	C9—C14—C13	120.7 (4)
C7—C6—C5	121.4 (4)	C9—C14—H14	119.6
C7—C6—C11	118.9 (4)	C13—C14—H14	119.6
C5—C6—C11	119.6 (3)		
01—Ni1—N1—C1	9.0 (3)	C4—C5—C6—C7	0.0(7)
O1 ⁱ —Ni1—N1—C1	-171.0 (3)	C4—C5—C6—C11	-179.7 (3)
01—Ni1—N1—C8	-171.1(2)	C5—C6—C7—C2	-0.8 (6)
01^{i} Ni1 N1 C8	8.9 (2)	Cl1—C6—C7—C2	178.9 (3)
$N1^{i}$ — $Ni1$ — $O1$ — $C3$	164.0(3)	C3—C2—C7—C6	0.4 (5)
N1 - Ni1 - O1 - C3	-16.0(3)	C1-C2-C7-C6	179 3 (3)
C8-N1-C1-C2	179 6 (3)	C1 - N1 - C8 - C9	-1115(3)
Ni1 $-$ N1 $-$ C1 $-$ C2	-04(5)	Ni1N1C8C9	68 5 (3)
N1 - C1 - C2 - C3	-61(6)	N1 - C8 - C9 - C10	19.2 (5)
N1 - C1 - C2 - C7	174 9 (3)	N1 - C8 - C9 - C14	-163.5(3)
$Ni1_01_2_2_0$	1/7.9(3) 14 1 (5)	C14-C9-C10-C11	0.4(6)
111 - 01 - 03 - 02	17.1 (3)	01 - 02 - 010 - 011	0.+(0)

Ni1—O1—C3—C4	-168.2 (3)	C8—C9—C10—C11	177.6 (4)
C7—C2—C3—O1	178.5 (3)	C9-C10-C11-C12	-0.5 (6)
C1—C2—C3—O1	-0.5 (5)	C10-C11-C12-C13	-0.5 (6)
C7—C2—C3—C4	0.7 (5)	C11—C12—C13—C14	1.5 (7)
C1—C2—C3—C4	-178.2 (3)	C10-C9-C14-C13	0.7 (6)
O1—C3—C4—C5	-179.4 (4)	C8—C9—C14—C13	-176.8 (4)
C2—C3—C4—C5	-1.5 (6)	C12—C13—C14—C9	-1.6 (7)
C3—C4—C5—C6	1.1 (6)		

Symmetry code: (i) -x, -y+1, -z.