

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[piperazinediium [aquabis(µpyridine-2,5-dicarboxylato)zincate] dihydrate]

Hossein Aghabozorg,* Zohreh Derikvand, Andya Nemati, Zohreh Bahrami and Jafar Attar Gharamaleki

Faculty of Chemistry, Teacher Training University, 49 Mofateh Avenue 15614, Tehran, Iran

Correspondence e-mail: haghabozorg@yahoo.com

Received 21 November 2007; accepted 27 November 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.025; wR factor = 0.069; data-to-parameter ratio = 20.0.

The polymeric title compound, $\{(C_4H_{12}N_2)[Zn(C_7H_3NO_4)_2-(H_2O)]\cdot 2H_2O\}_n$, was obtained by the reaction of zinc(II) nitrate hexahydrate with the proton-transfer compound (pipzH₂)(py-2,5-dc) (where pipz is piperazine and py-2,5-dcH₂ is pyridine-2,5-dicarboxylic acid) in aqueous solution. Each Zn^{II} atom is coordinated in a distorted octahedral geometry by four O atoms and two N atoms from one water molecule and two (py-2,5-dc)²⁻ ligands, which also act as bridging ligands between Zn^{II} atoms. π - π Stacking interactions between two aromatic rings of (py-2,5-dc)²⁻ fragments, with centroid–centroid distances of 3.4747 (7) and 3.7081 (7) Å are observed. The crystal structure is stabilized by O–H···O and N–H···O hydrogen bonds.

Related literature

For related literature, see: Aghabozorg *et al.* (2007, 2007*a*,*b*); Sheshmani *et al.* (2007).

26339 measured reflections

 $R_{\rm int} = 0.029$

307 parameters

 $\Delta \rho_{\rm max} = 0.83 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$

6148 independent reflections

5458 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Experimental

Crystal data

 $\begin{array}{ll} ({\rm C}_4{\rm H}_{12}{\rm N}_2)[{\rm Zn}({\rm C}_7{\rm H}_3{\rm NO}_4)_2({\rm H}_2{\rm O})] & \quad & \beta = 100.567 \ (1)^\circ \\ 2{\rm H}_2{\rm O} & \quad & V = 2111.19 \ (14) \ {\rm \AA}^3 \\ M_r = 537.78 & \quad & Z = 4 \\ {\rm Monoclinic}, \ P2_1/c & \quad & {\rm Mo} \ K\alpha \ {\rm radiation} \\ a = 13.1752 \ (5) \ {\rm \AA} & \quad & \mu = 1.24 \ {\rm mm}^{-1} \\ b = 11.9066 \ (5) \ {\rm \AA} & \quad & T = 100 \ (2) \ {\rm K} \\ c = 13.6902 \ (5) \ {\rm \AA} & \quad & 0.24 \times 0.20 \times 0.18 \ {\rm mm} \end{array}$

Data collection

Bruker APEXII CCD areadetector' diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\rm min} = 0.756, T_{\rm max} = 0.808$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.069$ S = 1.036148 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1W-H1WA···O3 ⁱ	0.82	1.93	2.730 (1)	167
$O1W-H1WB\cdots O2$	0.82	1.86	2.678 (2)	173
$O2W - H2WA \cdots O1W$	0.82	1.87	2.682 (1)	174
$N3-H3B\cdots O8^{ii}$	0.92	1.82	2.741 (1)	177
N3−H3C···O1	0.92	2.46	2.912 (1)	111
N3−H3C···O5	0.92	1.94	2.818 (1)	158
O2W−H2WB···O5 ⁱⁱⁱ	0.82	1.99	2.805 (1)	170
N4-H4 A ···O2 W^{iv}	0.92	1.78	2.679 (2)	164
$N4-H4B\cdots O3^{v}$	0.92	1.79	2.714 (1)	179
$O9-H9A\cdots O8^{vi}$	0.82	1.86	2.678 (1)	173
$O9-H9B\cdots O4^{vi}$	0.82	1.83	2.640(1)	172

Symmetry codes: (i) -x, -y, -z; (ii) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (iv) -x + 1, -y, -z + 1; (v) $x + 1, -y - \frac{1}{2}, z + \frac{1}{2}$; (vi) -x, -y - 1, -z.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2005); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2642).

References

- Aghabozorg, H., Attar Gharamaleki, J., Ghadermazi, M., Ghasemikhah, P. & Soleimannejad, J. (2007*a*). Acta Cryst. E**63**, m1803–m1804.
- Aghabozorg, H., Attar Gharamaleki, J., Ghasemikhah, P., Ghadermazi, M. & Soleimannejad, J. (2007b). Acta Cryst. E63, m1710–m1711.
- Aghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). *Acta Cryst.* E63, m2468–m2469.
- Bruker (2005). APEX2 (Version 2.0-1), SAINT (Version 7.23A), SADABS (Version 2004/1) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheshmani, S., Aghabozorg, H. & Ghadermazi, M. (2007). Acta Cryst. E63, o2869.

supporting information

Acta Cryst. (2008). E64, m111 [https://doi.org/10.1107/S1600536807063787]

Poly[piperazinediium [aquabis(µ-pyridine-2,5-dicarboxylato)zincate] dihydrate]

Hossein Aghabozorg, Zohreh Derikvand, Andya Nemati, Zohreh Bahrami and Jafar Attar Gharamaleki

S1. Comment

Our research group has recently focused on one-pot synthesis of water soluble self-assembly systems that can function as suitable ligands in the synthesis of metal complexes (Aghabozorg *et al.*, 2007, 2007*a*, 2007*b*).

The molecular structure of the title compound is shown in Fig. 1. The negative charge of the anionic complex is neutralized by dicationic piperazinediium species.

The Zn^{II} atom is hexacoordinated by two nitrogen atoms, two O atoms from carboxylate groups of two (py-2,5-dc)^{2–} fragments, one O atom from a bridging (py-2,5-dc)^{2–} ligand and one O atom from a coordinated water molecule. O7 and O9 atoms occupy the axial positions, while N1, N2, O1 and O5 atoms form the equatorial plane. The O9—Zn1—O7ⁱ (i: - x + 1, y - 1/2, -z + 1/2) bond angle revealed ~7.6° deviation from linearity. There are two uncoordinated water molecules and one piperazinediium ion as counter-ion, with some hydrogen bonds to water molecules and coordinated COO⁻ groups of (py-2,5-dc)^{2–} fragments.

The $(py-2,5-dc)^{2-}$ fragments are bridging *via* carboxylate group, connecting the Zn^{II} atoms together into a layered structure in which the space between the $[Zn(H_2O)(py-2,5-dc)_2]^{2-}$ species is filled by piperazinediium ions and water molecules (Fig. 2).

The dihedral angle between the aromatic rings of $(py-2,5-dc)^{2-}$ groups connected to the same Zn atom is 6.82 (6)°, indicating that these fragments are almost coparallel.

 π - π stacking interactions between two aromatic rings of (py-2,5-dc)^{2–}, with centroid-centroid distances of 3.4747 (7) Å (symmetry code: -*x*, 1/2 + *y*, 1/2 - *z*) and 3.7081 (7) Å (symmetry code: -*x*, -1 - *y*, -*z*) are observed in the title compound (Fig. 3).

S2. Experimental

The proton transfer compound was prepared by a reaction between piperazineand pyridine-2,5-dicarboxylicacid (Sheshmani, *et al.*, 2007). A solution of $Zn(NO_3)_2.6H_2O$ (130 mg, 0.5 mmol) in water (15 ml) was added to an aqueous solution of (pipzH₂)(py-2,5-dc) (253 mg, 1.0 mmol) in water (15 ml) in a 1:2 molar ratio. Colorless crystals were obtained after a few days at room temperature.

S3. Refinement

The hydrogen atoms of NH₂ groups and water molecules were found in difference Fourier synthesis. Nevertheless, all hydrogen atoms were refined using a riding model with with the $U_{iso}(H)$ parameters equal to 1.2 $U_{eq}(C,N,O)$ and $C_{aromatic}$ —H = 0.95 Å, C_{methylene}—H = 0.99 Å, O—H = 0.82Å and N—H = 0.92 Å.

Figure 1

The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Atoms marked with *a* are related by the symmetry code: -x + 1, y - 1/2, -z + 1/2.

Figure 2

Packing diagram of the title compound, the space between $[Zn(H_2O)(py-2,5-dc)_2]^{2-}$ layers, is filled by piperazinediium ions and water molecules.

Figure 3

 π - π Stacking interactions between aromatic rings of pyridine-2,5-dicarboxylate fragments with centroid-centroid distances of 3.4747 (7) Å (symmetry code: -*x*, 1/2 + *y*, 1/2 - *z*) and 3.7081 (7) Å (symmetry code: -*x*, -1 - *y*, -*z*).

Poly[piperazinediium [aquabis(µ-pyridine-2,5-dicarboxylato)zincate] dihydrate]

Crystal data

 $(C_4H_{12}N_2)[Zn(C_7H_3NO_4)_2(H_2O)] \cdot 2H_2O$ $M_r = 537.78$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 13.1752 (5) Å b = 11.9066 (5) Å c = 13.6902 (5) Å $\beta = 100.567$ (1)° V = 2111.19 (14) Å³ Z = 4

Data collection

Bruker APEXII CCD area-detector' diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\min} = 0.756, T_{\max} = 0.808$ F(000) = 1112 $D_x = 1.692 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 583 reflections $\theta = 3-30^{\circ}$ $\mu = 1.24 \text{ mm}^{-1}$ T = 100 KPrism, colourless $0.24 \times 0.20 \times 0.18 \text{ mm}$

26339 measured reflections 6148 independent reflections 5458 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$ $\theta_{max} = 30.0^{\circ}, \theta_{min} = 1.6^{\circ}$ $h = -18 \rightarrow 18$ $k = -16 \rightarrow 16$ $l = -19 \rightarrow 19$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.025$	Hydrogen site location: mixed
$wR(F^2) = 0.069$	H-atom parameters constrained
S = 1.03	$w = 1/[\sigma^2(F_o^2) + (0.0365P)^2 + 1.P]$
6148 reflections	where $P = (F_o^2 + 2F_c^2)/3$
307 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
0 restraints	$\Delta ho_{ m max} = 0.83 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.38 \text{ e} \text{ Å}^{-3}$
direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Zn1	0.157893 (10)	-0.413714 (11)	0.162746 (10)	0.00887 (5)
01	0.22982 (7)	-0.25877 (8)	0.17492 (7)	0.01233 (17)
O2	0.20008 (9)	-0.07463 (9)	0.15203 (11)	0.0298 (3)
O3	-0.32052 (7)	-0.19745 (8)	0.00316 (8)	0.01648 (19)
O4	-0.28405 (7)	-0.37980 (8)	0.01990 (8)	0.01749 (19)
05	0.30053 (7)	-0.48325 (7)	0.22242 (7)	0.01115 (17)
O6	0.38201 (7)	-0.64637 (8)	0.26384 (8)	0.0179 (2)
O7	-0.11016 (7)	-0.88980 (8)	0.19126 (7)	0.01188 (17)
08	-0.17065 (7)	-0.73902 (8)	0.10247 (7)	0.01579 (19)
O9	0.18192 (7)	-0.43941 (8)	0.01814 (7)	0.01400 (18)
H9A	0.1826	-0.3867	-0.0203	0.017*
H9B	0.2171	-0.4917	0.0041	0.017*
N1	0.03069 (8)	-0.30642 (9)	0.10358 (8)	0.00939 (19)
N2	0.11783 (8)	-0.58497 (8)	0.17585 (8)	0.00904 (19)
C1	0.05938 (9)	-0.19776 (10)	0.10974 (9)	0.0110 (2)
C2	-0.01048 (10)	-0.11078 (11)	0.08528 (10)	0.0135 (2)
H2A	0.0123	-0.0349	0.0895	0.016*
C3	-0.11439 (10)	-0.13610 (11)	0.05445 (10)	0.0134 (2)
H3A	-0.1637	-0.0777	0.0380	0.016*
C4	-0.14516 (9)	-0.24797 (10)	0.04793 (9)	0.0103 (2)
C5	-0.06942 (9)	-0.33022 (10)	0.07249 (9)	0.0099 (2)
H5A	-0.0898	-0.4068	0.0669	0.012*
C6	0.17291 (10)	-0.17423 (11)	0.14852 (10)	0.0141 (2)
C7	-0.25825 (9)	-0.27880 (11)	0.02066 (9)	0.0116 (2)
C8	0.20087 (9)	-0.65035 (10)	0.20725 (9)	0.0093 (2)

C9	0.19325 (9)	-0.76566 (10)	0.21772 (9)	0.0109 (2)
H9C	0.2534	-0.8101	0.2377	0.013*
C10	0.09628 (9)	-0.81510 (10)	0.19858 (9)	0.0108 (2)
H10A	0.0892	-0.8938	0.2064	0.013*
C11	0.00939 (9)	-0.74839 (10)	0.16771 (9)	0.0094 (2)
C12	0.02468 (9)	-0.63331 (10)	0.15639 (9)	0.0100 (2)
H12A	-0.0338	-0.5873	0.1338	0.012*
C13	0.30435 (9)	-0.59080 (10)	0.23404 (9)	0.0104 (2)
C14	-0.09852 (9)	-0.79664 (10)	0.15208 (9)	0.0101 (2)
N3	0.35861 (8)	-0.31370 (9)	0.36536 (8)	0.0119 (2)
H3B	0.2960	-0.2863	0.3754	0.014*
H3C	0.3469	-0.3564	0.3084	0.014*
N4	0.49509 (8)	-0.22071 (9)	0.53234 (8)	0.0123 (2)
H4A	0.5059	-0.1777	0.5892	0.015*
H4B	0.5580	-0.2480	0.5233	0.015*
C15	0.42751 (10)	-0.21754 (11)	0.35168 (10)	0.0149 (2)
H15A	0.3933	-0.1696	0.2962	0.018*
H15B	0.4926	-0.2463	0.3347	0.018*
C16	0.45104 (10)	-0.14881 (11)	0.44632 (10)	0.0150 (2)
H16A	0.5008	-0.0886	0.4384	0.018*
H16B	0.3869	-0.1129	0.4588	0.018*
C17	0.42647 (10)	-0.31659 (11)	0.54554 (10)	0.0136 (2)
H17A	0.3609	-0.2879	0.5616	0.016*
H17B	0.4602	-0.3642	0.6014	0.016*
C18	0.40415 (10)	-0.38587 (11)	0.45105 (10)	0.0135 (2)
H18A	0.4689	-0.4202	0.4384	0.016*
H18B	0.3555	-0.4471	0.4589	0.016*
O1W	0.37141 (7)	0.04431 (8)	0.14623 (7)	0.01687 (19)
H1WA	0.3491	0.0939	0.1065	0.020*
H1WB	0.3222	0.0028	0.1486	0.020*
O2W	0.50510 (8)	0.07757 (9)	0.31667 (8)	0.0206 (2)
H2WA	0.4610	0.0668	0.2669	0.025*
H2WB	0.5594	0.0516	0.3052	0.025*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
Zn1	0.00708 (7)	0.00737 (7)	0.01160 (7)	-0.00038 (5)	0.00023 (5)	-0.00018 (5)	
01	0.0093 (4)	0.0106 (4)	0.0159 (4)	-0.0009 (3)	-0.0006 (3)	0.0007 (3)	
O2	0.0161 (5)	0.0113 (5)	0.0573 (8)	-0.0044 (4)	-0.0058 (5)	0.0039 (5)	
O3	0.0096 (4)	0.0164 (5)	0.0234 (5)	0.0031 (3)	0.0029 (4)	0.0053 (4)	
O4	0.0101 (4)	0.0143 (4)	0.0279 (5)	0.0001 (3)	0.0030 (4)	-0.0020 (4)	
05	0.0089 (4)	0.0092 (4)	0.0148 (4)	-0.0007 (3)	0.0008 (3)	-0.0009 (3)	
O6	0.0098 (4)	0.0143 (4)	0.0277 (5)	0.0015 (3)	-0.0013 (4)	0.0024 (4)	
O7	0.0132 (4)	0.0094 (4)	0.0134 (4)	-0.0020 (3)	0.0035 (3)	0.0006 (3)	
08	0.0097 (4)	0.0159 (5)	0.0209 (5)	-0.0020 (3)	0.0001 (3)	0.0068 (4)	
09	0.0179 (5)	0.0108 (4)	0.0140 (4)	0.0025 (3)	0.0045 (3)	0.0017 (3)	
N1	0.0086 (4)	0.0095 (5)	0.0100 (5)	0.0000 (3)	0.0015 (4)	-0.0007 (4)	

supporting information

N2	0.0090 (5)	0.0088 (4)	0.0094 (4)	-0.0001 (3)	0.0019 (4)	-0.0004 (3)
C1	0.0103 (5)	0.0105 (5)	0.0118 (5)	-0.0009 (4)	0.0010 (4)	0.0002 (4)
C2	0.0144 (6)	0.0083 (5)	0.0169 (6)	0.0002 (4)	0.0005 (5)	0.0005 (4)
C3	0.0124 (5)	0.0114 (6)	0.0161 (6)	0.0030 (4)	0.0014 (4)	0.0003 (4)
C4	0.0091 (5)	0.0126 (5)	0.0095 (5)	0.0014 (4)	0.0022 (4)	0.0006 (4)
C5	0.0096 (5)	0.0097 (5)	0.0103 (5)	0.0000 (4)	0.0014 (4)	-0.0003 (4)
C6	0.0115 (5)	0.0118 (5)	0.0182 (6)	-0.0019 (4)	0.0002 (5)	0.0011 (5)
C7	0.0083 (5)	0.0156 (6)	0.0110 (5)	0.0009 (4)	0.0024 (4)	0.0002 (4)
C8	0.0082 (5)	0.0110 (5)	0.0087 (5)	0.0000 (4)	0.0020 (4)	-0.0009 (4)
C9	0.0097 (5)	0.0103 (5)	0.0126 (5)	0.0016 (4)	0.0021 (4)	0.0002 (4)
C10	0.0127 (5)	0.0082 (5)	0.0117 (5)	-0.0003 (4)	0.0025 (4)	-0.0001 (4)
C11	0.0093 (5)	0.0098 (5)	0.0093 (5)	-0.0011 (4)	0.0027 (4)	-0.0007 (4)
C12	0.0085 (5)	0.0105 (5)	0.0108 (5)	-0.0003 (4)	0.0014 (4)	0.0003 (4)
C13	0.0093 (5)	0.0116 (5)	0.0103 (5)	-0.0007 (4)	0.0019 (4)	-0.0011 (4)
C14	0.0099 (5)	0.0102 (5)	0.0107 (5)	-0.0019 (4)	0.0034 (4)	-0.0014 (4)
N3	0.0084 (4)	0.0138 (5)	0.0125 (5)	0.0001 (4)	-0.0004 (4)	-0.0021 (4)
N4	0.0085 (4)	0.0145 (5)	0.0134 (5)	-0.0015 (4)	0.0008 (4)	-0.0031 (4)
C15	0.0136 (6)	0.0173 (6)	0.0134 (6)	-0.0029 (5)	0.0013 (5)	0.0012 (5)
C16	0.0150 (6)	0.0116 (6)	0.0175 (6)	-0.0013 (4)	0.0007 (5)	0.0000 (5)
C17	0.0116 (5)	0.0161 (6)	0.0130 (6)	-0.0028 (4)	0.0019 (4)	0.0001 (5)
C18	0.0123 (5)	0.0111 (5)	0.0161 (6)	-0.0005 (4)	0.0001 (4)	0.0000 (4)
O1W	0.0133 (4)	0.0167 (5)	0.0195 (5)	-0.0004 (4)	0.0002 (4)	0.0024 (4)
O2W	0.0142 (5)	0.0265 (5)	0.0203 (5)	0.0045 (4)	0.0007 (4)	-0.0099 (4)

Geometric parameters (Å, °)

Zn1—O1	2.0668 (9)	C8—C13	1.5208 (17)
Zn1—O5	2.0788 (9)	C9—C10	1.3874 (17)
Zn1—09	2.0840 (9)	С9—Н9С	0.9500
Zn1—N2	2.1222 (10)	C10-C11	1.3938 (17)
Zn1—N1	2.1445 (10)	C10—H10A	0.9500
Zn1—O7 ⁱ	2.2209 (9)	C11—C12	1.3976 (16)
O1—C6	1.2675 (16)	C11—C14	1.5119 (16)
O2—C6	1.2372 (16)	C12—H12A	0.9500
O3—C7	1.2636 (15)	N3—C18	1.4888 (17)
O4—C7	1.2492 (16)	N3—C15	1.4941 (17)
O5—C13	1.2903 (15)	N3—H3B	0.9201
O6—C13	1.2239 (15)	N3—H3C	0.9200
O7—C14	1.2536 (15)	N4—C16	1.4852 (17)
O7—Zn1 ⁱⁱ	2.2209 (9)	N4—C17	1.4877 (16)
O8—C14	1.2643 (15)	N4—H4A	0.9200
О9—Н9А	0.8200	N4—H4B	0.9199
O9—H9B	0.8199	C15—C16	1.5156 (18)
N1-C5	1.3399 (15)	C15—H15A	0.9900
N1-C1	1.3461 (16)	C15—H15B	0.9900
N2-C12	1.3374 (15)	C16—H16A	0.9900
N2—C8	1.3472 (15)	C16—H16B	0.9900
C1—C2	1.3852 (17)	C17—C18	1.5167 (18)

supporting information

C1—C6	1.5187 (17)	C17—H17A	0.9900
C2—C3	1.3898 (18)	C17—H17B	0.9900
C2—H2A	0.9500	C18—H18A	0.9900
C3—C4	1,3904 (17)	C18—H18B	0.9900
C3—H3A	0.9500	O1W—H1WA	0.8200
C4-C5	1 3946 (16)	O1W—H1WB	0.8200
$C_4 = C_3$	1.5940(10) 1.5122(17)		0.8200
	1.5155 (17)		0.8200
C3—H3A	0.9500	O2W—H2WB	0.8199
C8-C9	1.3859 (17)		
O1—Zn1—O5	87.46 (3)	C9—C10—C11	119.48 (11)
O1—Zn1—O9	93.46 (4)	C9—C10—H10A	120.3
O5—Zn1—O9	91.78 (4)	C11—C10—H10A	120.3
O1—Zn1—N2	165.55 (4)	C10-C11-C12	117.73 (11)
O5—Zn1—N2	78.76 (4)	C10-C11-C14	121.67 (11)
O9—Zn1—N2	91.30 (4)	C12—C11—C14	120.52 (11)
O1—Zn1—N1	79.27 (4)	N2-C12-C11	123.05 (11)
O5—Zn1—N1	166.71 (4)	N2—C12—H12A	118.5
09-7n1-N1	88.45 (4)	C11—C12—H12A	118.5
N2-7n1-N1	114 52 (4)	06	126.08 (12)
$\Omega_1 = 2\pi 1 = \Omega_1^{i}$	90.82 (4)	06-C13-C8	120.00(12) 119.08(11)
O_{5} Z_{n1} O_{7}^{i}	94.71(3)	05 $C13$ $C8$	117.00 (11)
00 - 2n1 - 07	172.38(A)	05-013-08	114.84(10) 124.83(11)
$V_2 = Z_1 I_1 = O_1^{i_1}$	1/2.30(4)	07 - C14 - C11	124.03(11)
$N_2 - Zn_1 - O_7^{-1}$	80.00 (4)	0/-C14-C11	117.47 (11)
$NI - ZnI - O/^{4}$	86.15 (4)	08-014-011	117.67(11)
C6—OI—Zn1	116.57 (8)	C18—N3—C15	112.01 (10)
C13—O5—Zn1	117.11 (8)	C18—N3—H3B	109.2
$C14$ — $O7$ — $Zn1^n$	125.14 (8)	C15—N3—H3B	109.2
Zn1—O9—H9A	121.2	C18—N3—H3C	109.2
Zn1—O9—H9B	121.7	C15—N3—H3C	109.2
H9A—O9—H9B	111.0	H3B—N3—H3C	107.9
C5—N1—C1	118.15 (10)	C16—N4—C17	112.39 (10)
C5—N1—Zn1	130.51 (8)	C16—N4—H4A	109.1
C1—N1—Zn1	110.97 (8)	C17—N4—H4A	109.1
C12—N2—C8	118.47 (10)	C16—N4—H4B	109.1
C12—N2—Zn1	129.05 (8)	C17—N4—H4B	109.1
C8—N2—Zn1	112.47 (8)	H4A—N4—H4B	107.9
N1-C1-C2	122.48 (11)	N3-C15-C16	109.90 (10)
N1 - C1 - C6	116 52 (11)	N3-C15-H15A	109.50 (10)
C_{2} C_{1} C_{6}	120.98(11)	C_{16} C_{15} H_{15A}	109.7
$C_{2} - C_{1} - C_{0}$	120.96(11) 110.02(12)	N2 C15 U15D	109.7
C1 = C2 = C3	119.02 (12)	$N_{3} = C_{13} = H_{13} B$	109.7
C1 - C2 - H2A	120.5		109.7
$C_3 = C_2 = H_2 A$	120.5	HI5A—CI5—HI5B	108.2
$C_2 = C_3 = C_4$	119.13 (11)	N4-C16-C15	110.83 (11)
С2—С3—НЗА	120.4	N4—C16—H16A	109.5
С4—С3—НЗА	120.4	C15—C16—H16A	109.5
C3—C4—C5	118.03 (11)	N4—C16—H16B	109.5
C3—C4—C7	120.70 (11)	C15—C16—H16B	109.5

C5—C4—C7	121.19 (11)	H16A—C16—H16B	108.1
N1C5C4	123.18 (11)	N4—C17—C18	109.93 (10)
N1—C5—H5A	118.4	N4—C17—H17A	109.7
C4—C5—H5A	118.4	C18—C17—H17A	109.7
O2—C6—O1	126.75 (12)	N4—C17—H17B	109.7
O2—C6—C1	116.73 (12)	C18—C17—H17B	109.7
O1—C6—C1	116.51 (11)	H17A—C17—H17B	108.2
O4—C7—O3	124.76 (12)	N3—C18—C17	110.19 (10)
O4—C7—C4	119.32 (11)	N3—C18—H18A	109.6
O3—C7—C4	115.88 (11)	C17—C18—H18A	109.6
N2—C8—C9	122.37 (11)	N3—C18—H18B	109.6
N2-C8-C13	116.57 (10)	C17—C18—H18B	109.6
C9—C8—C13	121.04 (11)	H18A—C18—H18B	108.1
C8—C9—C10	118.85 (11)	H1WA—O1W—H1WB	105.7
С8—С9—Н9С	120.6	H2WA—O2W—H2WB	107.0
С10—С9—Н9С	120.6		
O5—Zn1—O1—C6	-178.14 (10)	C7—C4—C5—N1	-175.31 (11)
O9—Zn1—O1—C6	90.24 (10)	Zn1—O1—C6—O2	178.27 (13)
N2—Zn1—O1—C6	-160.74 (14)	Zn1—O1—C6—C1	-0.95 (15)
N1—Zn1—O1—C6	2.47 (9)	N1—C1—C6—O2	178.30 (13)
O7 ⁱ —Zn1—O1—C6	-83.46 (9)	C2-C1-C6-O2	-3.7 (2)
O1—Zn1—O5—C13	179.97 (9)	N1—C1—C6—O1	-2.41 (17)
O9—Zn1—O5—C13	-86.64 (9)	C2-C1-C6-01	175.64 (12)
N2—Zn1—O5—C13	4.33 (9)	C3—C4—C7—O4	-176.67 (12)
N1—Zn1—O5—C13	-177.44 (14)	C5—C4—C7—O4	-0.21 (18)
O7 ⁱ —Zn1—O5—C13	89.35 (9)	C3—C4—C7—O3	1.13 (17)
O1—Zn1—N1—C5	-176.42 (11)	C5—C4—C7—O3	177.58 (11)
O5—Zn1—N1—C5	-179.05 (13)	C12—N2—C8—C9	1.56 (18)
O9—Zn1—N1—C5	89.77 (11)	Zn1—N2—C8—C9	-177.67 (9)
N2— $Zn1$ — $N1$ — $C5$	-0.96 (12)	C12—N2—C8—C13	-176.63 (11)
$O7^{i}$ —Zn1—N1—C5	-84.85 (11)	Zn1—N2—C8—C13	4.14 (13)
O1—Zn1—N1—C1	-3.59 (8)	N2—C8—C9—C10	-2.33 (18)
O5— $Zn1$ — $N1$ — $C1$	-6.2 (2)	C13—C8—C9—C10	175.78 (11)
O9—Zn1—N1—C1	-97.41 (9)	C8—C9—C10—C11	1.14 (18)
N2— $Zn1$ — $N1$ — $C1$	171.87 (8)	C9—C10—C11—C12	0.67 (18)
$O7^{i}$ —Zn1—N1—C1	87.97 (8)	C9—C10—C11—C14	-176.08 (11)
O1—Zn1—N2—C12	158.72 (13)	C8—N2—C12—C11	0.41 (18)
O5—Zn1—N2—C12	176.45 (11)	Zn1—N2—C12—C11	179.49 (9)
O9—Zn1—N2—C12	-92.00 (11)	C10—C11—C12—N2	-1.51 (18)
N1—Zn1—N2—C12	-3.11 (12)	C14—C11—C12—N2	175.29 (11)
$O7^{i}$ —Zn1—N2—C12	80.84 (11)	Zn1—O5—C13—O6	176.62 (11)
O1—Zn1—N2—C8	-22.2 (2)	Zn1—O5—C13—C8	-3.37 (13)
O5—Zn1—N2—C8	-4.43 (8)	N2-C8-C13-O6	179.33 (12)
O9—Zn1—N2—C8	87.12 (8)	C9—C8—C13—O6	1.12 (18)
N1—Zn1—N2—C8	176.02 (8)	N2-C8-C13-O5	-0.67 (16)
$O7^{i}$ —Zn1—N2—C8	-100.03 (8)	C9—C8—C13—O5	-178.89 (11)
C5—N1—C1—C2	0.03 (18)	Zn1 ⁱⁱ —O7—C14—O8	-82.76 (15)

Zn1—N1—C1—C2	-173.79 (10)	Zn1 ⁱⁱ —O7—C14—C11	95.54 (12)	
C5—N1—C1—C6	178.04 (11)	C10-C11-C14-O7	18.00 (17)	
Zn1—N1—C1—C6	4.23 (13)	C12-C11-C14-O7	-158.66 (11)	
N1—C1—C2—C3	0.9 (2)	C10-C11-C14-O8	-163.58 (12)	
C6—C1—C2—C3	-177.05 (12)	C12-C11-C14-O8	19.76 (17)	
C1—C2—C3—C4	-0.72 (19)	C18—N3—C15—C16	-56.65 (14)	
C2—C3—C4—C5	-0.27 (18)	C17—N4—C16—C15	-56.30 (14)	
C2—C3—C4—C7	176.29 (12)	N3-C15-C16-N4	55.00 (14)	
C1—N1—C5—C4	-1.11 (18)	C16—N4—C17—C18	56.56 (14)	
Zn1—N1—C5—C4	171.29 (9)	C15—N3—C18—C17	57.58 (13)	
C3—C4—C5—N1	1.24 (18)	N4-C17-C18-N3	-56.24 (13)	

Symmetry codes: (i) -*x*, *y*+1/2, -*z*+1/2; (ii) -*x*, *y*-1/2, -*z*+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	$H \cdots A$	$D \cdots A$	D—H··· A
01 <i>W</i> —H1 <i>WA</i> ···O3 ⁱⁱⁱ	0.82	1.93	2.730(1)	167
O1 <i>W</i> —H1 <i>WB</i> ···O2	0.82	1.86	2.678 (2)	173
O2 <i>W</i> —H2 <i>WA</i> ···O1 <i>W</i>	0.82	1.87	2.682(1)	174
N3—H3 <i>B</i> ···O8 ⁱ	0.92	1.82	2.741 (1)	177
N3—H3 <i>C</i> …O1	0.92	2.46	2.912(1)	111
N3—H3 <i>C</i> ···O5	0.92	1.94	2.818(1)	158
O2W— $H2WB$ ···O5 ^{iv}	0.82	1.99	2.805 (1)	170
N4—H4 A ···O2 W ^v	0.92	1.78	2.679 (2)	164
N4—H4 <i>B</i> ···O3 ^{vi}	0.92	1.79	2.714 (1)	179
O9—H9 <i>A</i> ···O8 ^{vii}	0.82	1.86	2.678 (1)	173
О9—H9 <i>B</i> ···O4 ^{vii}	0.82	1.83	2.640 (1)	172

Symmetry codes: (i) -x, y+1/2, -z+1/2; (iii) -x, -y, -z; (iv) -x+1, y+1/2, -z+1/2; (v) -x+1, -y, -z+1; (vi) x+1, -y-1/2, z+1/2; (vii) -x, -y-1, -z.