metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[[diaquairon(II)]-µ-pyrazine-2,3-dicarboxylato] dihydrate]

Haiyun Xu,* Huailing Ma, Maotian Xu, Wenxian Zhao and Baoguo Guo

Department of Chemistry, Shangqiu Normal College, 476000 Shangqiu, Henan, People's Republic of China Correspondence e-mail: xuhyun1970@sohu.com

Received 19 November 2007; accepted 29 November 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; *R* factor = 0.029; w*R* factor = 0.088; data-to-parameter ratio = 16.1.

The crystal structure of the title compound, $\{[Fe(C_6H_2N_2O_4)-(H_2O)_2]\cdot 2H_2O\}_n$, was synthesized by a diffusion method. It has a one-dimensional polymeric chain structure and the chains are further connected into a three-dimensional structure by hydrogen bonds. The Fe^{II} ion has a distorted octahedral coordination environment, with two N and two O atoms from the pyrazine-2,3-dicarboxylate ligands in the equatorial plane and with two water molecules in axial positions. The Fe atom lies on a crystallographic centre of symmetry and a twofold rotation axis passes through the pyrazine ring.

Related literature

For related literature, see: Kondo *et al.* (1999); Kitaura *et al.* (2002); Zheng *et al.* (2002); Mao *et al.* (1996); Castillo *et al.* (2003); Konar *et al.* (2004); Muranishi & Okabe (2003); Richard *et al.* (1973); Xiang *et al.* (2004); Zou *et al.* (1999).

Experimental

Crystal data

 $\begin{array}{l} [{\rm Fe}({\rm C_6H_2N_2O_4})({\rm H_2O})_2]\cdot 2{\rm H_2O} \\ M_r = 294.01 \\ {\rm Monoclinic}, \ C2/c \\ a = 12.5650 \ (2) \ {\rm \AA} \\ b = 7.5158 \ (1) \ {\rm \AA} \end{array}$

```
c = 11.8314 (2) \text{ Å}

\beta = 110.759 (1)^{\circ}

V = 1044.77 (3) \text{ Å}^{3}

Z = 4

Mo K\alpha radiation
```

 $\mu = 1.48 \text{ mm}^{-1}$ T = 298 (2) K

Data collection

T.L.I. 4

Siemens SMART CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.727, T_{max} = 0.777$ 5477 measured reflections 1291 independent reflections 1219 reflections with $I > 2\sigma(F^2)$] = 0.029 $wR(F^2) = 0.088$ S = 1.03 1291 reflections 80 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.59$ e Å⁻³ $\Delta \rho_{\rm min} = -0.70$ e Å⁻³

 $0.23 \times 0.20 \times 0.18 \text{ mm}$

l'able l			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O4−H4A···O1 ⁱ	0.85	2.17	2.890 (3)	142
$O4-H4A\cdots O2^{i}$	0.85	2.59	3.227 (3)	133
$O4-H4B\cdots O1^{ii}$	0.85	2.20	3.045 (3)	174
$O3-H3A\cdots O4^{iii}$	0.85	2.41	3.210 (3)	156
$O3-H3B\cdots O2^{iv}$	0.85	1.98	2.720 (2)	145
$C3-H3\cdots O2^{v}$	0.93	2.51	3.232 (3)	135

Symmetry codes: (i) $x, -y, z - \frac{1}{2}$; (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (iv) $x + \frac{1}{2}, y + \frac{1}{2}, z$; (v) x, y + 1, z.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

The authors thank the Natural Science Foundation of Henan Province (grant No. 0511020300) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2063).

References

- Castillo, O., Beobide, G., Luque, A. & Román, P. (2003). Acta Cryst. E59, m800-m802.
- Kitaura, R., Fujimoto, K., Noro, S., Kondo, M. & Kitagawa, S. (2002). Angew. Chem. Int. Ed. 41, 133–135.
- Konar, S., Manna, S. C., Zangrando, E. & Chaudhuri, N. R. (2004). Inorg. Chim. Acta, 357, 1593–1597.
- Kondo, M., Okubo, T., Asami, A., Noro, S., Yoshitomi, T., Kitagawa, S., Ishii, T., Matsuzaka, H. & Sek, K. (1999). Angew. Chem. Int. Ed. 38, 140–143.
- Mao, L., Rettig, S. J., Thompson, R. C., Trotter, J. & Xia, S.-H. (1996). Can. J. Chem. 74, 433–444.
- Muranishi, Y. & Okabe, N. (2003). Acta Cryst. E59, m883-m885.
- Richard, P., Tran Qui, D. & Bertaut, E. F. (1973). Acta Cryst. B29, 1111-1115.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of
- Göttingen, Germany. Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison,
- Wisconsin, USA.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Xiang, G.-Q., Zhu, N.-W., Hu, M.-L., Xiao, H.-P. & Chen, X.-X. (2004). Acta Cryst. E60, m647–m649.
- Zheng, X.-J., Jin, L.-P. & Lu, S.-Z. (2002). Eur. J. Inorg. Chem. pp. 3356-3363.
- Zou, J.-Z., Xu, Z., Chen, W., Lo, K. M. & You, X.-Z. (1999). *Polyhedron*, **18**, 1507–1512.

supporting information

Acta Cryst. (2008). E64, m104 [https://doi.org/10.1107/S1600536807064501] *catena*-Poly[[[diaquairon(II)]-μ-pyrazine-2,3-dicarboxylato] dihydrate] Haiyun Xu, Huailing Ma, Maotian Xu, Wenxian Zhao and Baoguo Guo

S1. Comment

Recently, the effective combination of coordination bond and hydrogen bond has been applied in the engineering study of inorganic-organic hybrid material and the construction of metal-organic coordination supramolecular complexes. The suitable organic ligand makes the complex not only to possess novel structure but also produces unique optical, electric and magnetic properties. Pyrazine-2,3-dicarboxylic acid (pzdcH2) has proved to be well suited for the construction of multidimensional frameworks, due to the presence of two adjacent carboxylate groups (O donor atoms) as substituents on the N-heterocyclic pyrazine ring (N donor atoms). A series of one-dimensional, two-dimensional and three-dimensional metal-organic coordination supramolecular complexes have been synthesized and characterized. Now, we report the crystal structure of the title compound (I), and the crystal structure is similar to the structures reported by Mao *et al.* (1996). In compound 1, the iron atom is hexacoordinate where the sphere about any iron atom includes the N1, N1A, O1, O1A, O3 and O3A atoms. The Fe atom lies on a crystallographic center of symmetry and that the ligand lies on a crystallographic twofold axis. Two coordinated water molecules are on the axis. The coordination ligands bridge Fe ions to form extended linear chains. In this structure, the pzdc dianion ligand coordinates to two metal centers *via* chelate interactions involving each nitrogen N(1) and oxygen O(1) from the adjacent carboxylate substituent (Fig. 1). As shown in Fig. 2, the chains are linked in a 3-D surpramolecular network by O—H···O hydrogen-bonding interactions.

S2. Experimental

The title compound was obtained by a diffusion method. In one arm of U-tube was placed $(C_6H_2N_2O_4)Na_2$ (42 mg, 0.2 mmol) in water/ethanol (1:1; 10 ml) and in the other $H_{12}Cl_2O_{14}Fe$ (73 mg, 0.2 mmol) in water/ethanol (1:1; 10 ml). The red crystals were collected by filtration, washed with distilled water, followed by ethanol and dried under reduced pressure for 2 h.

Analysis found: C 24.39, H 3.41, N 9.26%; C₆H₁₀N₂O₈Fe requires: C 24.51, H 3.43, N 9.53%.

S3. Refinement

The H-atoms were included in the riding-model approximation with C—H = 0.93 - 0.96 Å and O—H = 0.82 Å, and with $U_{iso}(H) = 1.2U_{eq}(C\text{-aromatic})$.

Figure 1

The structure of (I) showing 30% probability displacement ellipsoids and the atom-numbering scheme. The H atoms are omitted for clarity.

Figure 2

three-dimensional supramolecular network of (I). O-H···O hydrogen bonds interactions shown.

catena-Poly[[[diaquairon(II)]-µ-pyrazine-2,3-dicarboxylato] dihydrate]

Crystal data

$[Fe(C_6H_2N_2O_4)(H_2O)_2] \cdot 2H_2O$ $F(000) = 600$ $M_r = 294.01$ $D_x = 1.869 \text{ Mg m}^{-3}$ Monoclinic, $C2/c$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Hall symbol: -C 2ycCell parameters from 3554 reflections $a = 12.5650 (2) \text{ Å}$ $\theta = 3.3 - 28.2^{\circ}$ $b = 7.5158 (1) \text{ Å}$ $\mu = 1.48 \text{ mm}^{-1}$ $c = 11.8314 (2) \text{ Å}$ $T = 298 \text{ K}$ $\beta = 110.759 (1)^{\circ}$ Block, red $V = 1044.77 (3) \text{ Å}^3$ $0.23 \times 0.20 \times 0.18 \text{ mm}$ $Z = 4$ CCD area-detector $Miffractometer$ Absorption correction: multi-scan $(SADABS; Sheldrick, 1996)$ $T_{min} = 0.727, T_{max} = 0.777$ $Graphite monochromator$ 5477 measured reflections φ and ω scans1291 independent reflections	-)	
Data collectionAbsorption correction: multi-scanCCD area-detector diffractometerAbsorption correction: multi-scan (SADABS; Sheldrick, 1996)Radiation source: fine-focus sealed tube Graphite monochromator $T_{min} = 0.727, T_{max} = 0.777$ Graphite monochromator5477 measured reflections 1291 independent reflections	$[Fe(C_{6}H_{2}N_{2}O_{4})(H_{2}O)_{2}]\cdot 2H_{2}O$ $M_{r} = 294.01$ Monoclinic, $C2/c$ Hall symbol: -C 2yc a = 12.5650 (2) Å b = 7.5158 (1) Å c = 11.8314 (2) Å $\beta = 110.759$ (1)° V = 1044.77 (3) Å ³ Z = 4	F(000) = 600 $D_x = 1.869 \text{ Mg m}^{-3}$ Mo <i>Ka</i> radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3554 reflections $\theta = 3.3-28.2^{\circ}$ $\mu = 1.48 \text{ mm}^{-1}$ T = 298 K Block, red $0.23 \times 0.20 \times 0.18 \text{ mm}$
CCD area-detector diffractometerAbsorption correction: multi-scan (SADABS; Sheldrick, 1996)Radiation source: fine-focus sealed tube $T_{min} = 0.727, T_{max} = 0.777$ Graphite monochromator5477 measured reflections 1291 independent reflections	Data collection	
	CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans	Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.727, T_{max} = 0.777$ 5477 measured reflections 1291 independent reflections

1219 reflections with $I > 2\sigma(I)$	$h = -12 \rightarrow 16$
$R_{\rm int} = 0.019$	$k = -10 \rightarrow 10$
$\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$	$l = -15 \rightarrow 15$

Refinement

-j	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.029$	H-atom parameters constrained
$wR(F^2) = 0.088$	$w = 1/[\sigma^2(F_o^2) + (0.0523P)^2 + 1.9364P]$
S = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
1291 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
80 parameters	$\Delta \rho_{\rm max} = 0.59 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.70 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant	Extinction correction: SHELXL,
direct methods	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.028 (2)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Fe1	0.2500	0.2500	0.5000	0.01865 (18)	
C1	0.08321 (16)	-0.0176 (3)	0.38935 (17)	0.0225 (4)	
C2	0.04250 (15)	0.1436 (3)	0.30732 (16)	0.0202 (4)	
C3	0.04814 (18)	0.4486 (3)	0.30161 (19)	0.0289 (5)	
Н3	0.0840	0.5557	0.3320	0.035*	
N1	0.09020 (14)	0.2975 (2)	0.35810 (15)	0.0228 (3)	
01	0.18127 (13)	-0.0012 (2)	0.47077 (14)	0.0283 (3)	
02	0.01979 (14)	-0.1458 (2)	0.37732 (17)	0.0378 (4)	
03	0.32048 (15)	0.2010 (3)	0.36718 (16)	0.0387 (4)	
H3A	0.3336	0.0941	0.3525	0.046*	
H3B	0.3619	0.2805	0.3524	0.046*	
O4	0.1817 (2)	0.2742 (3)	0.14299 (19)	0.0509 (6)	
H4A	0.1531	0.1832	0.1004	0.061*	
H4B	0.2226	0.3406	0.1168	0.061*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U ²³
Fe1	0.0141 (2)	0.0209 (3)	0.0166 (2)	-0.00144 (12)	0.00016 (15)	-0.00229 (12)
C1	0.0209 (8)	0.0219 (9)	0.0224 (8)	0.0007 (7)	0.0047 (7)	0.0014 (7)

supporting information

C2	0.0158 (8)	0.0194 (9)	0.0222 (9)	-0.0005(6)	0.0030 (7)	0.0004 (7)
N1	0.0279 (10) 0.0181 (7)	0.0193 (9) 0.0223 (8)	0.0318 (11) 0.0226 (8)	-0.0031(8) -0.0007(6)	0.0010 (9) 0.0005 (5)	-0.0023(8) -0.0013(6)
01	0.0244 (7)	0.0240 (6)	0.0276 (7)	-0.0012 (5)	-0.0018 (6)	0.0040 (5)
02	0.0301 (8)	0.0273 (8)	0.0484 (10)	-0.0073 (6)	0.0047 (7)	0.0081 (7)
03	0.0317 (9)	0.0544 (11)	0.0337 (9)	-0.0109 (8)	0.0160 (7)	-0.0108 (8)
04	0.0651 (14)	0.0589 (13)	0.0310 (9)	-0.0257 (10)	0.0200 (10)	-0.0104 (8)

Geometric parameters (Å, °)

Fe1—O1 ⁱ	2.0539 (15)	C2—N1	1.343 (3)
Fe1—O1	2.0539 (15)	C2—C2 ⁱⁱ	1.398 (3)
Fe1—O3	2.0919 (17)	C3—N1	1.329 (3)
Fe1—O3 ⁱ	2.0919 (17)	C3—C3 ⁱⁱ	1.381 (4)
Fe1—N1 ⁱ	2.1420 (17)	С3—Н3	0.9300
Fe1—N1	2.1420 (17)	O3—H3A	0.8500
C1—O2	1.226 (3)	O3—H3B	0.8500
C1—O1	1.273 (2)	O4—H4A	0.8500
C1—C2	1.523 (3)	O4—H4B	0.8501
Ol ⁱ —Fel—Ol	180.0	O2—C1—C2	119.56 (17)
O1 ⁱ —Fe1—O3	91.35 (7)	O1—C1—C2	114.93 (16)
O1—Fe1—O3	88.65 (7)	N1-C2-C2 ⁱⁱ	120.03 (11)
O1 ⁱ —Fe1—O3 ⁱ	88.65 (7)	N1—C2—C1	113.86 (16)
O1—Fe1—O3 ⁱ	91.35 (7)	$C2^{ii}$ — $C2$ — $C1$	125.94 (10)
O3—Fe1—O3 ⁱ	180.000 (1)	N1—C3—C3 ⁱⁱ	120.82 (11)
O1 ⁱ —Fe1—N1 ⁱ	78.46 (6)	N1—C3—H3	119.6
O1—Fe1—N1 ⁱ	101.54 (6)	C3 ⁱⁱ —C3—H3	119.6
O3—Fe1—N1 ⁱ	91.76 (7)	C3—N1—C2	118.46 (17)
O3 ⁱ —Fe1—N1 ⁱ	88.24 (7)	C3—N1—Fe1	129.20 (14)
O1 ⁱ —Fe1—N1	101.54 (6)	C2—N1—Fe1	110.65 (13)
O1—Fe1—N1	78.46 (6)	C1	116.94 (13)
O3—Fe1—N1	88.24 (7)	Fe1—O3—H3A	118.9
O3 ⁱ —Fe1—N1	91.76 (7)	Fe1—O3—H3B	118.9
N1 ⁱ —Fe1—N1	180.0	НЗА—ОЗ—НЗВ	116.4
O2—C1—O1	125.39 (19)	H4A—O4—H4B	116.0

Symmetry codes: (i) -x+1/2, -y+1/2, -z+1; (ii) -x, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

	דו מ	TT 4	D (
D - H - A	<i>D</i> —H	H…A	$D^{\dots}A$	D—H···A	
O4—H4A···O1 ⁱⁱⁱ	0.85	2.17	2.890 (3)	142	
O4—H4A···O2 ⁱⁱⁱ	0.85	2.59	3.227 (3)	133	
O4— $H4B$ ···O1 ^{iv}	0.85	2.20	3.045 (3)	174	
O3— $H3A$ ···O4 ^v	0.85	2.41	3.210 (3)	156	

supporting information

O3—H3 <i>B</i> ···O2 ^{vi}	0.85	1.98	2.720 (2)	145	
C3—H3···O2 ^{vii}	0.93	2.51	3.232 (3)	135	

Symmetry codes: (iii) x, -y, z-1/2; (iv) -x+1/2, y+1/2, -z+1/2; (v) -x+1/2, y-1/2, -z+1/2; (vi) x+1/2, y+1/2, z; (vii) x, y+1, z.