addenda and errata

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Retraction of articles

IUCr Editorial Office

5 Abbey Square, Chester CH1 2HU, England

This article reports the retraction of 11 articles published in *Acta Crystallographica Section E* between 2005 and 2009.

After further thorough investigation (see Harrison *et al.*, 2010), 11 additional articles are retracted by the authors or by the journal as a result of problems with the data sets or incorrect atom assignments. Full details of all the articles are given in Table 1.

Table 1

Details of articles to be retracted, in order of publication.

Title	Reference	DOI	Refcode
[N,N'-Bis(2-hydroxynaphthylmethylene)-1,2-ethanediaminato]zinc(II)	Chen et al. (2005)	10.1107/S1600536805026796	YAWZOM
Diazidobis(2,2'-biimidazole)copper(II)	Liu et al. (2007)	10.1107/S1600536807047873	SILZIX
Dichlorido(1,10-phenanthroline)copper(II)	Liu (2007)	10.1107/S1600536807056735	MISSAJ
Diazidobis(2,2'-biimidazole)cobalt(II)	Li et al. (2008)	10.1107/S1600536807062873	MIRYAO
Diazidobis(2,2'-biimidazole)manganese(II)	Zhang et al. (2008)	10.1107/S1600536808017984	MODBUD
Diazidobis(2,2'-biimidazole)iron(II)	Hao et al. (2008a)	10.1107/S1600536808018539	MODFOB
Bis(pentane-2,4-dionato)bis[2-(4-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide]nickel(II)	Hao <i>et al.</i> (2008 <i>b</i>)	10.1107/S1600536808018552	MODFUH
Bis(pentane-2,4-dionato-κ ² O,O')bis[4,4,5,5-tetramethyl-2-(4-pyridyl)imidazoline- 1-oxyl 3-oxide-κN ²]manganese(II)	Liu, Zhang <i>et al.</i> (2008)	10.1107/S1600536808022952	MODLUN
Bis[2,4-pentanedionato(1-)]bis[4,4,5,5-tetramethyl-2-(4-pyridyl)imidazoline- 1-oxyl 3-oxide]manganese(II)	Liu, He et al. (2008)	10.1107/S1600536808038440	MODLUN01
$Di-\mu-chlorido-bis[chlorido(1,10-phenanthroline-\kappa^2N,N')zinc(II)]$ Tris(ethylenediamine)manganese(II) sulfate	Yang <i>et al.</i> (2009) Lu (2009)	10.1107/S1600536809014482 10.1107/S1600536809034874	JOLBOC YUCZEC

References

Chen, G., Zhao, B., Sun, M. & Qi, W. (2005). Acta Cryst. E61, m1869-m1870.

Hao, L., Mu, C. & Kong, B. (2008a). Acta Cryst. E64, m956.

Hao, L., Mu, C. & Kong, B. (2008b). Acta Cryst. E64, m957.

Harrison, W. T. A., Simpson, J. & Weil, M. (2010). Acta Cryst. E66, e1-e2.

Li, S., Wang, S.-B., Zhang, F.-L. & Tang, K. (2008). Acta Cryst. E64, m76.

Liu, Y.-Q. (2007). Acta Cryst. E63, m2991.

Liu, Y., Dou, J., Li, D. & Zhang, X. (2007). Acta Cryst. E63, m2661.

Liu, Y., He, Q., Zhang, X., Xue, Z. & Lv, C. (2008). Acta Cryst. E64, m1604.

Liu, Y., Zhang, X., Xue, Z., He, Q. & Zhang, Y. (2008). *Acta Cryst.* E**64**, m1077. Lu, J. (2009). *Acta Cryst.* E**65**, m1187.

Yang, X.-M., Leng, Q.-B., Chen, Y., He, Y.-G. & Luo, S.-W. (2009). Acta Cryst. E65, m567.

Zhang, X., Wei, P. & Li, B. (2008). Acta Cryst. E64, m934.

metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diazidobis(2,2'-biimidazole)cobalt(II)

Sheng Li,^a* Shou-Bin Wang,^b Fu-Li Zhang^a and Kun Tang^a

^aCollege of Medicine, Henan University, Kaifeng 475003, People's Republic of China, and ^bCollege of Chemistry and Chemical Engineering, Henan University, Kaifeng 475003, People's Republic of China Correspondence e-mail: lisheng0821@sina.com

Received 10 November 2007; accepted 24 November 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.029; wR factor = 0.078; data-to-parameter ratio = 12.1.

In the title compound, $[Co(N_3)_2(C_6H_6N_4)_2]$, the Co^{II} atom lies on a centre of inversion and is bonded to two azide ions and two bidentate 2,2'-biimidizole ligands, giving a slightly distorted octahedral CoN₆ coordination geometry. In the crystal structure, intermolecular N-H···N hydrogen bonds exist between the 2,2'-biimidizole ligands and the azide ions, linking the complexes into sheets.

Related literature

For related literature, see: Rees *et al.* (1983); Hardman & Lipscomb (1984); Kuo & Makinen (1982); Dworschak & Plapp (1977).

Experimental

Crystal data

 $\begin{bmatrix} \text{Co}(\text{N}_3)_2(\text{C}_6\text{H}_6\text{N}_4)_2 \end{bmatrix} & V = 1624.30 \text{ (17) } \text{Å}^3 \\ M_r = 411.29 & Z = 4 \\ \text{Monoclinic, } C2/c & \text{Mo } K\alpha \text{ radiation} \\ a = 12.8085 \text{ (10) } \text{Å} & \mu = 1.09 \text{ mm}^{-1} \\ b = 8.7632 \text{ (5) } \text{Å} & T = 293 \text{ (2) K} \\ c = 14.4793 \text{ (5) } \text{Å} & 0.28 \times 0.22 \times 0.20 \text{ mm} \\ \beta = 91.913 \text{ (1)}^{\circ} \\ \end{bmatrix}$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{min} = 0.750, T_{max} = 0.811$

Refinement

D-H

 $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.078$ S = 1.001501 reflections

Table 1Hydrogen-bond geome

1961	measu	red refl	ections	
1,01	measa	irea ren	cettonis	

1501 independent reflections 1246 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.022$

124 parameters H atom parameters constrained $\Delta \rho_{max} = 0.24 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.21 \text{ e } \text{\AA}^{-3}$

logen-bond get	metry (A,).		
H· ·· A	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
H6A···N5 ⁱ	0.86	2.01	2.819 (3)	156
$H7A \cdots N5^{i}$	0.86	2.25	3.012 (3)	148
H7A···N3 ⁱⁱ	0.86	2.55	3.049 (3)	118

ymmetry codes: (i) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (ii) $x - \frac{1}{2}, y + \frac{1}{2}, z$.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2001); software used to prepare material for publication: *SHELXTL*.

The authors are grateful for financial support from Henan University (grant No. 05YBGG013)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2265).

References

Bruker (2001). SADABS, SAINT-Plus and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

- Dworschak, R. T. & Plapp, B. V. (1977). Biochemistry, 16, 111-117.
- Hardman, K. D. & Lipscomb, W. N. (1984). J. Am. Chem. Soc. **106**, 463–469. Kuo, L. C. & Makinen, M. W. (1982). J. Biol. Chem. **257**, 24–35.
- Rees, D. C., Lewis, M. & Lipscomb, W. N. (1983). J. Mol. Biol. 168, 367–387.
- Sheldrick, G. M. (1997). *SHELXS97* and *SHELXL97*. University of Göttingen, Germany.

supporting information

Acta Cryst. (2008). E64, m76 [https://doi.org/10.1107/S1600536807062873]

Diazidobis(2,2'-biimidazole)cobalt(II)

Sheng Li, Shou-Bin Wang, Fu-Li Zhang and Kun Tang

S1. Comment

The imidazole moiety is of biochemical importance due to its presence in more than 200 metalloenzymes, such as carboxypeptidase A (CPA), carbonic anhydrase (CA), liver alcohol dehydrogenase (LADH), and superoxide dismutase (SOD) (Rees *et al.*, 1983; Hardman & Lipscomb, 1984; Kuo & Makinen, 1982; Dworschak & Plapp, 1977).

In the title compound, the Co^{II} atom occupies an inversion centre, and is hexacoordinated by six N atoms from two chelating ligands of H₂bim (2,2'-biimidizole; C₆H₆N₄) and two azide ions, showing a slightly distorted octahedral geometry (Fig. 1). The four N atoms from the chelating H₂bim consist of the base and the other two N atoms from two azide ions ocupy the axial positions. In the crystal, intermolecular N—H···N hydrogen bonds between 2,2'-biimidizole ligands and azide ions link the complexes into sheets lying in the (002) planes (Fig. 2).

S2. Experimental

A mixture of $CoCl_2.2(H_2O)$ (1 mmol), 2,2'-biimidazoline (2 mmol) and NaN_3 (2 mmol) in 20 ml me thanol was refluxed for two hours. After cooling, the solution was filtered and the filtrate was evaporated naturally at room temperature. Two day later, red blocks of the title compound were obtained with a yield of 22%. Elemental analysis calculated: C 35.04, H 2.92, N 47.69%; found: C 35.01, H 2.96, N 47.65%.

S3. Refinement

All H atoms were placed in calculated positions with C—H = 0.93 Å and N—H = 0.86 Å and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C/N)$.

The molecular structure with 30% probability displacement ellipsoids for non-H atoms. Atoms with suffix I are generated by the symmetry operator -x + 1/2, -y - 1/2, -z + 1.

Figure 2

Packing diagram showing intermolecular N—H…N hydrogen bonds.

Diazidobis(2,2'-biimidazole)cobalt(II)

Crystal data

 $\begin{bmatrix} Co(N_3)_2(C_6H_6N_4)_2 \end{bmatrix}$ $M_r = 411.29$ Monoclinic, C2/c Hall symbol: -C 2yc a = 12.8085 (10) Å b = 8.7632 (5) Å c = 14.4793 (5) Å $\beta = 91.913 (1)^\circ$ $V = 1624.30 (17) \text{ Å}^3$ Z = 4

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\min} = 0.750, T_{\max} = 0.811$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.078$ S = 1.001501 reflections 124 parameters 0 restraints Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 .

F(000) = 836

 $\theta = 2.8 - 25.5^{\circ}$

 $\mu = 1.09 \text{ mm}^{-1}$ T = 293 K

Block, red

 $R_{\rm int} = 0.022$

 $k = -1 \rightarrow 10$

map

 $\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = h = -1 \rightarrow 15$

 $D_{\rm x} = 1.682 {\rm Mg} {\rm m}^{-3}$

 $0.28 \times 0.22 \times 0.20 \text{ mm}$

1961 measured reflections 1501 independent reflections

1246 reflections with $I > 2\sigma(D)$

Secondary atom site location: difference Fourier

Hydrogen site location: inferred from

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.032P)^2 + 0.7528P]$

where $P = (F_0^2 + 2F_c^2)/3$

neighbouring sites

 $(\Delta/\sigma)_{\rm max} = 0.016$

 $\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.21 \text{ e} \text{ Å}^{-3}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 1501 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0.2500	-0.2500	0.5000	0.04053 (15)	
0.08433 (18)	-0.0620(3)	0.36274 (15)	0.0523 (6)	
0.0724	-0.1298	0.3141	0.063*	
0.03681 (18)	0.0756 (3)	0.37190 (15)	0.0528 (6)	
	x 0.2500 0.08433 (18) 0.0724 0.03681 (18)	x y 0.2500 -0.2500 0.08433 (18) -0.0620 (3) 0.0724 -0.1298 0.03681 (18) 0.0756 (3)	x y z 0.2500 -0.2500 0.5000 0.08433 (18) -0.0620 (3) 0.36274 (15) 0.0724 -0.1298 0.3141 0.03681 (18) 0.0756 (3) 0.37190 (15)	xyz U_{iso}^*/U_{eq} 0.2500-0.25000.50000.04053 (15)0.08433 (18)-0.0620 (3)0.36274 (15)0.0523 (6)0.0724-0.12980.31410.063*0.03681 (18)0.0756 (3)0.37190 (15)0.0528 (6)

supporting information

H2	-0.0126	0.1194	0.3315	0.063*
C3	0.14622 (17)	0.0371 (2)	0.48932 (14)	0.0433 (5)
C4	0.21008 (17)	0.0440 (2)	0.57427 (14)	0.0437 (5)
C5	0.32254 (19)	-0.0319 (3)	0.67815 (16)	0.0535 (6)
Н5	0.3710	-0.0924	0.7103	0.064*
C6	0.29414 (19)	0.1097 (3)	0.70284 (16)	0.0556 (6)
H6	0.3182	0.1644	0.7543	0.067*
N1	0.15295 (14)	-0.0854 (2)	0.43678 (12)	0.0463 (4)
N2	0.26893 (14)	-0.0737 (2)	0.59794 (12)	0.0475 (4)
N3	0.38297 (15)	-0.1637 (2)	0.42685 (13)	0.0521 (5)
N4	0.39621 (15)	-0.0323 (2)	0.42133 (13)	0.0507 (5)
N5	0.41050 (18)	0.0987 (2)	0.41471 (16)	0.0668 (6)
N6	0.22221 (15)	0.1566 (2)	0.63634 (12)	0.0506 (5)
H6A	0.1905	0.2432	0.6348	0.061*
N7	0.07654 (14)	0.1364 (2)	0.45280 (12)	0.0484 (4)
H7A	0.0598	0.2230	0.4761	0.058*

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0437 (2)	0.0363 (2)	0.0409 (2)	0.01142 (17)	-0.00752 (16)	-0.00494 (16)
0.0524 (13)	0.0580 (14)	0.0459 (12)	0.0139 (11)	-0.0072 (10)	-0.0039 (10)
0.0522 (13)	0.0585 (15)	0.0473 (12)	0.0164 (11)	-0.0055 (10)	0.0043 (11)
0.0431 (11)	0.0417 (12)	0.0452 (11)	0.0082 (9)	0.0015 (9)	0.0009 (9)
0.0455 (11)	0.0400 (11)	0.0456 (11)	0.0047 (10)	0.0022 (9)	-0.0028 (9)
0.0556 (13)	0.0536 (14)	0.0503 (12)	0.0048 (11)	-0.0100 (10)	-0.0019 (11)
0.0618 (14)	0.0551 (15)	0.0491 (12)	-0.0004 (12)	-0.0088 (11)	-0.0091 (11)
0.0474 (10)	0.0460 (11)	0.0450 (9)	0.0112 (9)	-0.0048 (8)	-0.0042 (8)
0.0507 (10)	0.0442 (10)	0.0472 (10)	0.0078 (9)	-0.0065 (8)	-0.0044 (8)
0.0554 (11)	0.0401 (11)	0.0605 (11)	0.0096 (9)	-0.0019 (9)	-0.0036 (9)
0.0488 (11)	0.0505 (13)	0.0522 (11)	0.0128 (9)	-0.0073 (9)	-0.0070 (9)
0.0717 (14)	0.0417 (12)	0.0860 (15)	0.0073 (11)	-0.0101 (12)	-0.0065 (11)
0.0588 (11)	0.0415 (11)	0.0514 (10)	0.0074 (9)	-0.0008 (9)	-0.0070 (8)
0.0531 (11)	0.0425 (10)	0.0497 (10)	0.0148 (9)	0.0018 (8)	0.0005 (8)
	$\begin{array}{c} U^{11} \\ \hline 0.0437 (2) \\ 0.0524 (13) \\ 0.0522 (13) \\ 0.0431 (11) \\ 0.0455 (11) \\ 0.0556 (13) \\ 0.0618 (14) \\ 0.0507 (10) \\ 0.0554 (11) \\ 0.0554 (11) \\ 0.0717 (14) \\ 0.0588 (11) \\ 0.0531 (11) \\ \end{array}$	$\begin{array}{c cccc} U^{11} & U^{22} \\ \hline 0.0437(2) & 0.0363(2) \\ 0.0524(13) & 0.0580(14) \\ 0.0522(13) & 0.0585(15) \\ 0.0431(11) & 0.0417(12) \\ 0.0455(11) & 0.0400(11) \\ 0.0556(13) & 0.0536(14) \\ 0.0618(14) & 0.0551(15) \\ 0.0474(10) & 0.0460(11) \\ 0.0507(10) & 0.0442(10) \\ 0.0554(11) & 0.0401(11) \\ 0.0505(13) \\ 0.0717(14) & 0.0417(12) \\ 0.0588(11) & 0.0415(11) \\ 0.0531(11) & 0.0425(10) \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Geometric parameters (Ă,	
------------------------	----	--

Geometric parameters (Å, °)					
2.0945 (17)	С3—С4	1.455 (3)			
2.0945 (17)	C4—N2	1.316 (3)			
2.1055 (18)	C4—N6	1.341 (3)			
2.1055 (18)	C5—C6	1.344 (3)			
2.172 (2)	C5—N2	1.379 (3)			
2.172 (2)	С5—Н5	0.930			
1.359 (3)	C6—N6	1.373 (3)			
1.379 (3)	С6—Н6	0.930			
0.930	N3—N4	1.167 (3)			
1.370 (3)	N4—N5	1.167 (3)			
0.930	N6—H6A	0.860			
	2.0945 (17) 2.0945 (17) 2.1055 (18) 2.1055 (18) 2.172 (2) 2.172 (2) 1.359 (3) 1.379 (3) 0.930 1.370 (3) 0.930	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			

supporting information

C3—N1 C3—N7	1.320 (3) 1.343 (3)	N7—H7A		0.860
N1—Co1—N1 ⁱ N1—Co1—N2 ⁱ N1 ⁱ —Co1—N2 ⁱ	180.00 (8) 99.06 (7) 80.94 (7)	N2—C4—N6 N2—C4—C3 N6—C4—C3		110.49 (19) 119.23 (19) 130.3 (2)
N1Co1N2 N1 ⁱ Co1N2 N2 ⁱ Co1N2	80.94 (7) 99.06 (7) 180.0	C6—C5—N2 C6—C5—H5 N2—C5—H5		109.7 (2) 125.1 125.1
N1-Co1-N3 N1 ⁱ -Co1-N3 N2 ⁱ -Co1-N3 N2 Co1 N3	90.61 (7) 89.39 (7) 90.10 (7) 89.90 (7)	C5—C6—N6 C5—C6—H6 N6—C6—H6 C3_N1_C1		105.7 (2) 127.1 127.1 105.96 (18)
N_{2} —Co1—N3 N1—Co1—N3 ⁱ N1 ⁱ —Co1—N3 ⁱ N2 ⁱ —Co1—N3 ⁱ	89.39 (7) 90.61 (7) 89.90 (7)	C3—N1—C1 C3—N1—Co1 C1—N1—Co1 C4—N2—C5		103.96 (18) 110.93 (13) 142.74 (16) 106.00 (19)
N2—Co1—N3 ⁱ N3—Co1—N3 ⁱ C2—C1—N1	90.10 (7) 180.00 (6) 109.4 (2)	C4—N2—Co1 C5—N2—Co1 N4—N3—Co1		110.33 (14) 143.64 (16) 119.70 (17)
C2C1H1 N1C1H1 C1C2N7	125.3 125.3 105.91 (19)	N5—N4—N3 C4—N6—C6 C4—N6—H6A		179.0 (3) 108.01 (19) 126.0
N7C2H2 N1C3N7 N1C3C4	127.0 127.0 110.83 (19) 118.37 (18)	C3-N7-C2 C3-N7-H7A C2-N7-H7A		126.0 107.90 (18) 126.0 126.1
N7-C3-C4 Symmetry code: (i) $-x+1/2$, $-y-1/2$, $-z+1$.	130.8 (2)			
Hydrogen-bond geometry (Å, °)				
<u>D—H···A</u>	<i>D</i> —H	H···A	$D \cdots A$	D—H··· A
N6—H6A…N5 ⁱⁱ N7—H7A…N5 ⁱⁱ	0.86 0.86	2.01 2.25	2.819 (3) 3.012 (3)	156 148
N7—H7A····N3 ⁱⁱⁱ	0.86	2.55	3.049 (3)	118

Symmetry codes: (ii) -x+1/2, -y+1/2, -z+1; (iii) x-1/2, y+1/2, z.