Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dichlorido[1-(1-naphthylmethyl)-3-(2-pyridyl)-1*H*-pyrazole- $\kappa^2 N^2$, N^3]palladium(II)

Chun-Sen Liu,^{a,b}* Guang-Hui Sun^a and Liang-Qi Guo^a

^aZhengzhou University of Light Industry, Henan Provincial Key Laboratory of Surface & Interface Science, Henan, Zhengzhou 450002, People's Republic of China, and ^bDepartment of Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail: chunsenliu@mail.nankai.edu.cn

Received 1 November 2007; accepted 24 November 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.024; wR factor = 0.054; data-to-parameter ratio = 16.4.

In the title compound, $[PdCl_2(C_{19}H_{15}N_3)]$, the Pd^{II} centre is four-coordinated by two N-atom donors from one 1-[3-(2pyridyl)pyrazol-1-ylmethyl]naphthalene (L) ligand and by two Cl atoms in a distorted square-planar coordination geometry. In the crystal structure, adjacent Pd^{II} mononuclear units form intermolecular $C-H\cdots\pi$ interactions involving the benzene and pyridine rings of different L ligands and $\pi - \pi$ stacking interactions between the pyrazolyl-pyridine and naphthalene rings of neighbouring L ligands, with a centroid-centroid separation of 3.522 (1) Å.

Related literature

For related literature, see: Bell et al. (2003); Janiak (2000); Liu, Li et al. (2007); Liu, Zhang et al. (2007); Paul et al. (2004); Singh et al. (2003); Sony & Ponnuswamy (2006); Steel (2005); Ward et al. (2001); Zhang et al. (2005); Zou et al. (2004).

Experimental

Crystal data

[PdCl₂(C₁₉H₁₅N₃)] $M_{\rm m} = 462.64$ Orthorhombic, $P2_12_12_1$ a = 9.330 (6) Å b = 12.139 (8) Å c = 15.918 (11) Å

 $V = 1803 (2) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 1.33 \text{ mm}^{-1}$ T = 293 (2) K $0.20 \times 0.16 \times 0.12 \ \text{mm}$ $R_{\rm int} = 0.028$

10453 measured reflections

3702 independent reflections

3340 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 1998) $T_{\rm min} = 0.772, T_{\rm max} = 0.848$

Refinement

 $\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$ $R[F^2 > 2\sigma(F^2)] = 0.024$ $\Delta \rho_{\rm min} = -0.37 \text{ e } \text{\AA}^{-3}$ $wR(F^2) = 0.054$ S = 1.03Absolute structure: Flack (1983), 3702 reflections 1580 Friedel pairs 226 parameters Flack parameter: 0.00 (3) H-atom parameters constrained

Table 1

Hydrogen-bond geometry (Å, °).

$\overline{D-\mathrm{H}\cdots A}$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C17-H17A\cdots Cg1^{i}$	0.93	2.89	3.602	134
$C18-H18A\cdots Cg2^{n}$	0.93	3.05	3.803	139

Symmetry codes: (i) $-x + \frac{3}{2}, -y + 1, z - \frac{1}{2}$; (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, -z$. Cg1 is the centroid of atoms C1-C5/C10 and Cg2 is the centroid of atoms Pd1/N2/C14/C15/N3.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

This work was supported by the Startup Fund for PhDs in Natural Scientific Research of Zhengzhou University of Light Industry (No. 2008 to C-SL). The authors also thank Nankai University and Henan Provincial Key Laboratory of Surface & Interface Science for supporting this research.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2262).

References

- Bell, Z. R., Harding, L. P. & Ward, M. D. (2003). Chem. Commun. pp. 2432-2433.
- Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
- Liu, C.-S., Li, J.-R., Zou, R.-Q., Zhou, J.-N., Shi, X.-S., Wang, J.-J. & Bu, X.-H. (2007). J. Mol. Struct. 843, 66-77.
- Liu, C.-S., Zhang, H., Chen, R., Shi, X.-S., Bu, X.-H. & Yang, M. (2007). Chem. Pharm Bull 55 996-1001
- Paul, R. L., Argent, S. P., Jeffery, J. C., Harding, L. P., Lynamd, J. M. & Ward, M. D. (2004). J. Chem. Soc. Dalton Trans. pp. 3453-3458.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Singh, S., Mishra, V., Mukherjee, J., Seethalekshmi, N. & Mukherjee, R. (2003). J. Chem. Soc. Dalton Trans. pp. 3392-3397.

Sony, S. M. M. & Ponnuswamy, M. N. (2006). Cryst. Growth Des. 6, 736-742. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

- Steel, P. J. (2005). Acc. Chem. Res. 38, 243-250.
- Ward, M. D., McCleverty, J. A. & Jeffery, J. C. (2001). Coord. Chem. Rev. 222,
- 251-272. Zhang, H., Liu, C.-S., Bu, X.-H. & Yang, M. (2005). J. Inorg. Biochem. 99,
- 1119-1125
- Zou, R.-Q., Bu, X.-H. & Zhang, R.-H. (2004). Inorg. Chem. 43, 5382-5386.

supporting information

Acta Cryst. (2008). E64, m69 [https://doi.org/10.1107/S1600536807062927]

Dichlorido[1-(1-naphthylmethyl)-3-(2-pyridyl)-1*H*-pyrazole- $\kappa^2 N^2$, N^3]palladium(II)

Chun-Sen Liu, Guang-Hui Sun and Liang-Qi Guo

S1. Comment

In recent years, attention has been focused on the synthetic approach and the structural control of metal-organic coordination architectures with ligands based on pyrazolyl-pyridine chelating units (Steel, 2005; Ward *et al.*, 2001). In this field, Ward and co-workers have reported novel functional complexes through the use of 3-(2-pyridyl)pyrazole and/or 3-(2-pyridyl)pyrazole-based ligands (Bell *et al.*, 2003; Paul *et al.*, 2004; Singh *et al.*, 2003; Ward *et al.*, 2001; Zou *et al.*, 2004). Recently, we have reported the preparation of a non-planar ligand, 1-[3-(2-pyridyl)pyrazol-1-ylmethyl]-naphthalene (denoted *L*) (Liu & Li *et al.*, 2007; Liu & Zhang *et al.*, 2007; Zhang *et al.*, 2005). We report here the crystal structure of a palladium complex of this ligand, [(*L*)PdCl₂].

In the title compound, the Pd^{II} centre is four-coordinated by two N-atom donors from one *L* ligand and two Cl atoms. The coordination geometry around the Pd^{II} center can be described as a slightly distorted square-plane (Fig. 1). In the crystal structure, the Pd^{II} mononuclear units form intermolecular $\pi \cdots \pi$ stacking interactions between pyrazolyl-pyridine and naphthalene rings of neighbouring *L* ligands with a centroid–centroid separation of 3.522 (1) Å (Janiak, 2000) and C —H $\cdots \pi$ interactions involving C1/C2/C3/C4/C5/C10 (centroid *Cg*1) benzene rings of the *L* ligands as well as five-membered chelate rings Pd1/N2/C14/C15/N3 (centroid *Cg2*) (Sony and Ponnuswamy, 2006) (Fig. 2).

S2. Experimental

The ligand 1-[3-(2-pyridyl)pyrazol-1-ylmethyl]naphthalene (*L*) was synthesized according to the method reported in the literature (Liu & Li *et al.*, 2007; Liu & Zhang *et al.*, 2007; Zhang *et al.*, 2005). A solution of PdCl₂ (0.1 mmol) in methanol (15 ml) and acetonitrile (5 ml) was added to *L* (0.1 mmol). A yellow solid formed was filtered off and the resulting solution was kept at room temperature. Yellow single crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent after several days. Yield: *ca* 30%. Elemental analysis calculated: C 49.32, H 3.27, N 9.08%; found: C 49.47, H 3.16, N 9.20%.

S3. Refinement

H atoms were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.93 (aromatic) or 0.97 Å (methylene), with $U_{iso}(H) = 1.2$ or 1.5 $U_{eq}(C)$.

Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level for non-H atoms.

Figure 2

Part of the crystal packing showing a two-dimensional network structure in the title compound formed by the co-effects of intermolecular C—H^{...} π (dashed solid lines) and π ^{... π} stacking (dashed open lines) interactions. For the sake of clarity, only H atoms involved in the interactions are shown.

Dichlorido[1-(1-naphthylmethyl)-3-(2-pyridyl)-1*H*-pyrazole- $\kappa^2 N^2$, N^3]palladium(II)

F(000) = 920

 $\theta = 3.4-26.4^{\circ}$ $\mu = 1.33 \text{ mm}^{-1}$

Block, yellow

 $0.20 \times 0.16 \times 0.12 \text{ mm}$

 $\theta_{\text{max}} = 26.5^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$

10453 measured reflections 3702 independent reflections 3340 reflections with $I > 2\sigma(I)$

T = 293 K

 $R_{\rm int} = 0.028$

 $h = -10 \rightarrow 11$ $k = -14 \rightarrow 15$ $l = -19 \rightarrow 15$

 $D_{\rm x} = 1.705 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 970 reflections

Crystal data

 $[PdCl_{2}(C_{19}H_{15}N_{3})]$ $M_{r} = 462.64$ Orthorhombic, $P2_{1}2_{1}2_{1}$ Hall symbol: P 2ac 2ab a = 9.330 (6) Å b = 12.139 (8) Å c = 15.918 (11) Å V = 1803 (2) Å³ Z = 4

Data collection

Bruker SMART CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
$T_{\min} = 0.772, \ T_{\max} = 0.848$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.024$	H-atom parameters constrained
$wR(F^2) = 0.054$	$w = 1/[\sigma^2(F_o^2) + (0.0227P)^2 + 0.3859P]$
<i>S</i> = 1.03	where $P = (F_o^2 + 2F_c^2)/3$
3702 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
226 parameters	$\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.37 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1580 Friedel pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: 0.00 (3)
man	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Pd1	0.83064 (2)	0.490954 (17)	0.051890 (13)	0.03837 (7)
C1	0.5698 (4)	0.9043 (3)	0.1086 (3)	0.0546 (9)
H1A	0.6381	0.9001	0.0662	0.065*

C2	0.5637 (4)	0.9961 (3)	0.1585 (3)	0.0654 (10)
H2A	0.6281	1.0534	0.1498	0.079*
C3	0.4620 (4)	1.0044 (4)	0.2221 (2)	0.0704 (12)
H3A	0.4589	1.0670	0.2557	0.084*
C4	0.3679 (4)	0.9219 (4)	0.2351 (2)	0.0651 (11)
H4A	0.2993	0.9290	0.2771	0.078*
C5	0.3714 (3)	0.8245 (3)	0.1859 (2)	0.0511 (9)
C6	0.2756 (4)	0.7376 (4)	0.1995 (2)	0.0639 (11)
H6A	0.2078	0.7433	0.2421	0.077*
C7	0.2800 (4)	0.6453 (3)	0.1516 (3)	0.0613 (10)
H7A	0.2168	0.5878	0.1622	0.074*
C8	0.3806 (4)	0.6365 (3)	0.0856 (2)	0.0505 (8)
H8A	0.3824	0.5730	0.0530	0.061*
C9	0.4752 (3)	0.7192 (2)	0.0689 (2)	0.0408 (7)
C10	0.4739 (3)	0.8161 (3)	0.1208 (2)	0.0430 (7)
C11	0.5803 (3)	0.7164 (2)	-0.0027 (2)	0.0444 (8)
H11A	0.5576	0.7758	-0.0412	0.053*
H11B	0.6756	0.7301	0.0193	0.053*
C12	0.5032 (4)	0.5886 (3)	-0.1173 (2)	0.0534 (8)
H12A	0.4323	0.6329	-0.1406	0.064*
C13	0.5448 (3)	0.4872 (3)	-0.1465 (2)	0.0512 (8)
H13A	0.5090	0.4492	-0.1927	0.061*
C14	0.6522 (3)	0.4540 (2)	-0.09185 (19)	0.0397 (7)
C15	0.7469 (3)	0.3595 (2)	-0.0911 (2)	0.0394 (7)
C16	0.7465 (4)	0.2785 (3)	-0.1518 (2)	0.0479 (8)
H16A	0.6799	0.2806	-0.1952	0.058*
C17	0.8446 (4)	0.1953 (3)	-0.1477 (3)	0.0612 (10)
H17A	0.8459	0.1404	-0.1885	0.073*
C18	0.9416 (5)	0.1935 (3)	-0.0826 (3)	0.0675 (13)
H18A	1.0096	0.1377	-0.0789	0.081*
C19	0.9366 (4)	0.2753 (3)	-0.0231 (3)	0.0619 (11)
H19A	1.0022	0.2740	0.0209	0.074*
N1	0.5823 (3)	0.6132 (2)	-0.04930 (19)	0.0434 (6)
N2	0.6739 (3)	0.53078 (17)	-0.03249 (14)	0.0378 (5)
N3	0.8397 (3)	0.35759 (19)	-0.02653 (16)	0.0438 (6)
C11	1.00048 (11)	0.42155 (9)	0.13879 (7)	0.0708 (3)
Cl2	0.81909 (11)	0.64162 (6)	0.13707 (5)	0.0521 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pd1	0.03920 (11)	0.03896 (11)	0.03696 (11)	0.00037 (11)	0.00213 (10)	0.00045 (11)
C1	0.058 (2)	0.0449 (19)	0.060 (2)	0.0110 (17)	-0.0040 (18)	0.0000 (17)
C2	0.075 (2)	0.0455 (19)	0.076 (3)	0.013 (2)	-0.024 (2)	-0.010 (2)
C3	0.077 (3)	0.066 (3)	0.068 (2)	0.035 (3)	-0.030(2)	-0.022 (2)
C4	0.062 (3)	0.083 (3)	0.051 (2)	0.038 (2)	-0.0089 (18)	-0.015 (2)
C5	0.043 (2)	0.064 (2)	0.045 (2)	0.0218 (16)	-0.0049 (15)	0.0039 (17)
C6	0.054 (2)	0.091 (3)	0.047 (2)	0.019 (2)	0.0085 (18)	0.009 (2)

supporting information

C7	0.052 (2)	0.067 (3)	0.065 (3)	-0.0033 (18)	0.0031 (19)	0.016 (2)
C8	0.0479 (19)	0.0458 (18)	0.058 (2)	0.0036 (15)	-0.0020 (16)	0.0069 (16)
C9	0.0423 (17)	0.0381 (15)	0.0422 (19)	0.0102 (13)	0.0011 (15)	0.0071 (13)
C10	0.0429 (18)	0.0443 (17)	0.0417 (18)	0.0133 (14)	-0.0067 (14)	-0.0004 (14)
C11	0.0485 (19)	0.0372 (17)	0.048 (2)	0.0078 (15)	0.0034 (15)	0.0021 (16)
C12	0.056 (2)	0.060 (2)	0.045 (2)	0.0141 (18)	-0.0071 (18)	0.0007 (16)
C13	0.0554 (18)	0.057 (2)	0.0416 (17)	0.0038 (19)	-0.0077 (14)	-0.0047 (18)
C14	0.0411 (17)	0.0422 (15)	0.0357 (16)	-0.0023 (14)	0.0045 (14)	0.0002 (12)
C15	0.0440 (18)	0.0360 (16)	0.0381 (18)	-0.0043 (14)	0.0079 (14)	0.0011 (13)
C16	0.058 (2)	0.0444 (19)	0.041 (2)	-0.0048 (15)	0.0079 (16)	-0.0053 (15)
C17	0.075 (3)	0.0427 (18)	0.065 (2)	0.005 (2)	0.015 (3)	-0.0149 (16)
C18	0.074 (3)	0.055 (2)	0.073 (3)	0.022 (2)	-0.002 (2)	-0.013 (2)
C19	0.070 (3)	0.054 (2)	0.062 (3)	0.0214 (19)	-0.011 (2)	-0.0067 (17)
N1	0.0465 (15)	0.0424 (13)	0.0414 (15)	0.0105 (11)	0.0035 (13)	0.0016 (14)
N2	0.0408 (12)	0.0366 (11)	0.0361 (13)	0.0021 (11)	0.0040 (11)	0.0018 (9)
N3	0.0489 (15)	0.0385 (12)	0.0440 (15)	0.0071 (14)	0.0022 (14)	0.0013 (10)
Cl1	0.0659 (6)	0.0788 (6)	0.0677 (6)	0.0211 (5)	-0.0224 (5)	-0.0102 (5)
Cl2	0.0678 (5)	0.0452 (4)	0.0435 (4)	-0.0047 (4)	0.0009 (5)	-0.0056 (3)

Geometric parameters (Å, °)

Pd1—N2	2.043 (3)	C9—C11	1.504 (5)
Pd1—N3	2.046 (3)	C11—N1	1.456 (4)
Pd1—Cl1	2.2658 (14)	C11—H11A	0.970
Pd1—Cl2	2.2792 (14)	C11—H11B	0.970
C1—C2	1.370 (5)	C12—N1	1.343 (5)
C1—C10	1.408 (5)	C12—C13	1.372 (5)
C1—H1A	0.930	C12—H12A	0.930
С2—С3	1.390 (6)	C13—C14	1.387 (4)
C2—H2A	0.930	C13—H13A	0.930
C3—C4	1.347 (6)	C14—N2	1.342 (4)
С3—НЗА	0.930	C14—C15	1.448 (4)
C4—C5	1.418 (5)	C15—N3	1.343 (4)
C4—H4A	0.930	C15—C16	1.379 (4)
С5—С6	1.399 (5)	C16—C17	1.365 (5)
C5—C10	1.414 (5)	C16—H16A	0.930
С6—С7	1.356 (6)	C17—C18	1.377 (6)
С6—Н6А	0.930	C17—H17A	0.930
С7—С8	1.413 (5)	C18—C19	1.373 (5)
С7—Н7А	0.930	C18—H18A	0.930
С8—С9	1.363 (5)	C19—N3	1.348 (4)
C8—H8A	0.930	C19—H19A	0.930
C9—C10	1.438 (4)	N1—N2	1.343 (3)
N2—Pd1—N3	79.38 (10)	C9—C11—H11A	108.7
N2—Pd1—Cl1	171.74 (7)	N1-C11-H11B	108.7
N3—Pd1—Cl1	92.83 (9)	C9—C11—H11B	108.7
N2—Pd1—Cl2	99.63 (7)	H11A—C11—H11B	107.6

N3—Pd1—Cl2	178.86 (7)	N1—C12—C13	108.5 (3)
Cl1—Pd1—Cl2	88.18 (5)	N1—C12—H12A	125.8
C2-C1-C10	120.8 (4)	C13—C12—H12A	125.8
C2—C1—H1A	119.6	C12—C13—C14	104.6 (3)
C10-C1-H1A	119.6	C12—C13—H13A	127.7
C1—C2—C3	120.6 (4)	C14—C13—H13A	127.7
C1—C2—H2A	119.7	N2-C14-C13	110.4 (3)
C3—C2—H2A	119.7	N2—C14—C15	116.8 (3)
C4—C3—C2	120.2 (4)	C13—C14—C15	132.6 (3)
С4—С3—НЗА	119.9	N3—C15—C16	121.7 (3)
С2—С3—НЗА	119.9	N3—C15—C14	114.4 (3)
C3—C4—C5	121.3 (4)	C16—C15—C14	123.9 (3)
C3—C4—H4A	119.3	C17—C16—C15	119.5 (4)
C5—C4—H4A	119.3	C17—C16—H16A	120.2
C6—C5—C10	119.4 (3)	C15—C16—H16A	120.2
C6-C5-C4	121.9 (4)	C16-C17-C18	119.2 (3)
C10-C5-C4	118 6 (4)	C_{16} C_{17} H_{17A}	120.4
C7 - C6 - C5	1211(4)	C18 - C17 - H17A	120.1
C7 - C6 - H6A	110 5	C19 - C18 - C17	110 1 (4)
C_{5} C_{6} H_{6A}	119.5	$C_{19} = C_{18} = C_{17}$	120.5
C_{5}	119.3 1201(4)	$C_{17} = C_{18} = H_{18A}$	120.5
$C_{0} = C_{7} = C_{8}$	120.1 (4)	$N_{2} = C_{10} = C_{18}$	120.3 122.0(4)
$C_0 - C_1 - H_1 A$	120.0	$N_{3} = C_{19} = C_{10}$	122.0 (4)
$C_{0} = C_{0} = C_{1}$	120.0	$N_{3} = C_{19} = H_{19} A$	119.0
$C_{2} = C_{2} = C_{1}$	121.5 (5)	$C12 \rightarrow N1 \rightarrow N2$	119.0
C_{2} C_{3} H_{8A}	119.4	C12— $N1$ — $N2$	110.2(3)
C/-C8-H8A	119.4		126.5 (3)
	119.0 (3)	N2—NI—CII	123.2 (3)
C8—C9—C11	123.6 (3)	C14—N2—N1	106.3 (2)
C10—C9—C11	117.3 (3)	C14—N2—Pd1	113.99 (19)
C1C10C5	118.5 (3)	N1—N2—Pd1	139.7 (2)
C1—C10—C9	122.5 (3)	C15—N3—C19	118.4 (3)
C5—C10—C9	119.1 (3)	C15—N3—Pd1	115.2 (2)
N1—C11—C9	114.4 (3)	C19—N3—Pd1	126.1 (2)
N1—C11—H11A	108.7		
C10—C1—C2—C3	-0.3 (5)	C14—C15—C16—C17	176.9 (3)
C1—C2—C3—C4	-0.2 (6)	C15—C16—C17—C18	0.4 (6)
C2—C3—C4—C5	1.1 (6)	C16—C17—C18—C19	0.3 (6)
C3—C4—C5—C6	179.1 (3)	C17-C18-C19-N3	-0.1 (7)
C3—C4—C5—C10	-1.6 (5)	C13—C12—N1—N2	-0.4 (4)
C10—C5—C6—C7	0.4 (5)	C13—C12—N1—C11	175.1 (3)
C4—C5—C6—C7	179.6 (4)	C9—C11—N1—C12	90.9 (4)
C5—C6—C7—C8	-1.2 (6)	C9—C11—N1—N2	-94.1 (3)
C6—C7—C8—C9	0.4 (6)	C13—C14—N2—N1	-0.6 (3)
C7—C8—C9—C10	1.3 (5)	C15—C14—N2—N1	175.4 (2)
C7—C8—C9—C11	-177.3 (3)	C13—C14—N2—Pd1	-179.9 (2)
C2-C1-C10-C5	-0.2 (5)	C15—C14—N2—Pd1	-3.9 (3)
$C_2 - C_1 - C_1 - C_9$	178.9 (3)	C12-N1-N2-C14	0.6(3)
			()

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-179.6 (3) 1.1 (5) 1.3 (5) -178.0 (3) 178.8 (3) -2.5 (5) -2.1 (5) 176.6 (3) -5.1 (5) 176.2 (3) 0.0 (4) 0.3 (4) -174.8 (3) 4.2 (4) 179.2 (3) -174.3 (3) 0.7 (6)	C11—N1—N2—C14 C12—N1—N2—Pd1 C11—N1—N2—Pd1 N3—Pd1—N2—C14 C12—Pd1—N2—C14 N3—Pd1—N2—N1 C12—Pd1—N2—N1 C16—C15—N3—C19 C16—C15—N3—C19 C16—C15—N3—Pd1 C14—C15—N3—Pd1 C18—C19—N3—C15 C18—C19—N3—C15 C18—C19—N3—C15 N2—Pd1—N3—C15 N2—Pd1—N3—C19 C11—Pd1—N3—C19	$\begin{array}{c} -175.1 (3) \\ 179.6 (2) \\ 4.0 (5) \\ 2.0 (2) \\ -178.62 (19) \\ -177.0 (3) \\ 2.4 (3) \\ 1.7 (5) \\ -176.8 (3) \\ 176.1 (2) \\ -2.4 (3) \\ -0.9 (6) \\ -174.7 (3) \\ 0.3 (2) \\ 177.6 (2) \\ 174.2 (3) \\ -8.5 (3) \end{array}$
--	--	--	---	--

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A	
C17—H17 A ···Cg1 ⁱ	0.93	2.89	3.602	134	
C18—H18 A ···· $Cg2^{ii}$	0.93	3.05	3.803	139	

Symmetry codes: (i) -x+3/2, -y+1, z-1/2; (ii) x+1/2, -y+1/2, -z.