metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(2,2'-bipyridyl- $\kappa^2 N$,N')(carbonato- $\kappa^2 O$,O')cobalt(III) bromide trihydrate

Peng-Tao Ma, Yu-Xia Wang, Guo-Qian Zhang and Ming-Xue Li*

Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China Correspondence e-mail: mptonline@163.com

Received 20 November 2007; accepted 23 November 2007

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.028; wR factor = 0.084; data-to-parameter ratio = 13.7.

The title complex, $[Co(CO_3)(C_{10}H_8N_2)_2]Br\cdot 3H_2O$, is isostructural with the chloride analogue. The six-coordinated octahedral $[Co(2,2'-bipy)_2CO_3]^+$ cation (2,2'-bipy) is 2,2'-bipyridyl), bromide ion and water molecules are linked together *via* $O-H\cdots Br$ and $O-H\cdots O$ hydrogen bonds, generating a one-dimensional chain.

Related literature

For related literature, see: Das *et al.* (1993); Thirumurugan & Natarajan (2004).

Experimental

Crystal data	
$\begin{split} & [\mathrm{Co}(\mathrm{CO}_3)(\mathrm{C}_{10}\mathrm{H_8N}_2)_2]\mathrm{Br}\cdot 3\mathrm{H_2O} \\ & M_r = 565.27 \\ & \mathrm{Triclinic}, \ P\overline{1} \end{split}$	a = 9.1281 (1) Å b = 9.6652 (2) Å c = 13.0732 (2) Å

$\alpha = 92.054 \ (1)^{\circ}$
$\beta = 102.315 \ (1)^{\circ}$
$\gamma = 91.448 \ (1)^{\circ}$
V = 1125.48 (3) Å ³
Z = 2

Data collection

Bruker SMART APEX CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.654, T_{\rm max} = 0.801$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.084$ S = 1.08 4411 reflections 323 parameters9 restraints 14734 measured reflections 4411 independent reflections

Mo *K* α radiation $\mu = 2.58 \text{ mm}^{-1}$

 $0.18 \times 0.12 \times 0.09 \text{ mm}$

T = 296 (2) K

4000 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.020$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.31 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.56 \text{ e } \text{\AA}^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O4 - H4B \cdots O5^{i}$ $O4 - H4A \cdots O5^{ii}$ $O5 - H5A \cdots O3^{iii}$ $O5 - H5B \cdots Br1$ $O6 - H6B \cdots Br1$	0.841 (10) 0.839 (10) 0.835 (10) 0.837 (10) 0.840 (10)	1.997 (11) 2.016 (12) 1.907 (12) 2.422 (13) 2.514 (12)	2.832 (3) 2.847 (3) 2.735 (3) 3.247 (2) 3.345 (2)	172 (3) 171 (4) 171 (3) 169 (3) 170 (3)
$O6-H6A\cdots Br1^{iv}$	0.841 (10)	2.541 (12)	3.378 (3)	173 (3)

Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, -y + 1, -z + 1; (iii) x + 1, y + 1, z; (iv) -x + 1, -y + 1, -z.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2001); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Basic Research Foundation for Natural Science of Henan University (grant No. 05ZDZR002).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2506).

References

Bruker (2001). SMART, SAINT-Plus and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

- Das, K., Sinha, U. C., Chaterjee, C. & Mishnev, A. (1993). Z. Kristallogr. 205, 316–318.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Thirumurugan, A. & Natarajan, S. (2004). Dalton Trans. pp. 2923-2928.

Acta Cryst. (2008). E64, m14 [https://doi.org/10.1107/S1600536807062551]

Bis(2,2'-bipyridyl- $\kappa^2 N, N'$)(carbonato- $\kappa^2 O, O'$)cobalt(III) bromide trihydrate

Peng-Tao Ma, Yu-Xia Wang, Guo-Qian Zhang and Ming-Xue Li

S1. Comment

Recently, the design and assembly of metal coordination polymers continues attracting chemist's interests and constitutes an important area of research (Thirumurugan & Natarajan, 2004). During the past decades, lots of such compounds have been reported, which present predictable one-, two, three-dimensional frameworks by covalent bonds or hydrogen bonds interactions. Herein, we report the title compound (I).

The title complex (I), $[Co(2,2'-bipy)_2CO_3]Br^3H_2O$, contains a $[Co(2,2'-bipy)_2CO_3]^+$ complex cation, a bromine ion, and three water molecules (Fig.1), which is isostructural with its chloride analogue (Das *et al.*, 1993). In the molecular structure, Co atom resides in a distorted octahedral environment, which is defined by four nitrogen atoms from two 2,2-bipyridyl ligands, two oxygen dornors from the carbonate anion. In addition, the $[Co(2,2'-bipy)_2CO_3]^+$ cation, bromine ion, and water molecules in the complex are linked together *via* O—H···Br and O—H···O hydrogen bonds generating a one-dimensional chain (Fig.2, Table 1).

S2. Experimental

Solid $CoSO_4$ '7H₂O (0.5 mmol, 0.141 g), KBr(1.0 mmol, 0.119 g) and 2,2'-bipy (1 mmol, 0.156 g) was dissolved in 20 ml of the mixed solvent of ethanol and water in a ratio of 1:4(ν/ν). Under continuous stirring, 5 ml (1 mol/*L*) solution of Na₂CO₃ was added dropwise until a purple solution resulted. The solution was filtered and left at room temperature. After slow evaporation over a period of a week, block red crystals of (I) were obtained.

S3. Refinement

The H atoms of the water molecules were located in a difference synthesis and refined with distance restraints O—H = 0.85 (1)Å and H…H = 1.34 (2) Å. The remaining H atoms were positioned geometrically with C—H = 0.93 Å, and were refined as riding with U_{iso} (H)=1.2 U_{eq} (C).

Figure 1

The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

One-dimensional structure of (I) linked by hydrogen bonds.

Bis(2,2'-bipyridyl- $\kappa^2 N, N'$)(carbonato- $\kappa^2 O, O'$)cobalt(III) bromide trihydrate

Hall symbol: -P 1 <i>a</i> = 9.1281 (1) Å
<i>b</i> = 9.6652 (2) Å

c = 13.0732 (2) Å $\alpha = 92.054 (1)^{\circ}$ $\beta = 102.315 (1)^{\circ}$ $\gamma = 91.448 (1)^{\circ}$ $V = 1125.48 (3) \text{ Å}^{3}$ Z = 2 F(000) = 572 $D_{x} = 1.668 \text{ Mg m}^{-3}$

Data collection

Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.654, T_{\max} = 0.801$

Refinement

Refinement on F^2 Hydrogen siteLeast-squares matrix: fullneighbourin $R[F^2 > 2\sigma(F^2)] = 0.028$ H atoms treate $wR(F^2) = 0.084$ and constraiS = 1.08 $w = 1/[\sigma^2(F_o^2)]$ 4411 reflections $where P = (A_{11}, A_{22}, A$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Col	0.26787 (3)	0.01455 (3)	0.244258 (18)	0.02444 (10)	
Br1	0.68362 (3)	0.61581 (3)	0.14986 (2)	0.06088 (12)	
C1	0.3267 (2)	-0.2651 (2)	0.31331 (18)	0.0361 (5)	

14734 measured reflections 4411 independent reflections 4000 reflections with $I > 2\sigma(I)$ $R_{int} = 0.020$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 2.1^{\circ}$ $h = -10 \rightarrow 11$ $k = -11 \rightarrow 11$ $l = -16 \rightarrow 16$

Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0499P)^2 + 0.4188P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.31$ e Å⁻³ $\Delta\rho_{min} = -0.57$ e Å⁻³ Extinction correction: *SHELXL*, Fc*=kFc[1+0.001xFc²\lambda³/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0160 (12)

H1	0.2315	-0.2896	0.2742	0.043*
C2	0.4099 (3)	-0.3639 (2)	0.37077 (19)	0.0421 (5)
H2	0.3717	-0.4542	0.3702	0.051*
C3	0.5510(3)	-0.3268 (2)	0.42920 (18)	0.0422 (5)
Н3	0.6083	-0.3917	0.4694	0.051*
C4	0.6063 (2)	-0.1933 (2)	0.42761 (17)	0.0369 (5)
H4	0.7016	-0.1672	0.4660	0.044*
C5	0.5184 (2)	-0.0982(2)	0.36814 (14)	0.0278 (4)
C6	0.5627 (2)	0.0465 (2)	0.35739 (14)	0.0278 (4)
C7	0.7009 (2)	0.1073 (2)	0.40451 (17)	0.0366 (5)
H7	0.7727	0.0569	0.4478	0.044*
C8	0.7303 (3)	0.2439 (3)	0.38614 (19)	0.0436 (5)
H8	0.8224	0.2865	0.4169	0.052*
C9	0.6221 (3)	0.3167 (2)	0.3219 (2)	0.0430 (5)
H9	0.6406	0.4087	0.3086	0.052*
C10	0.4857 (2)	0.2511 (2)	0.27730 (17)	0.0354 (5)
H10	0.4126	0.3004	0.2342	0.042*
C11	0.3835 (2)	-0.1361 (2)	0.07871 (17)	0.0331 (4)
H11	0.4386	-0.1880	0.1312	0.040*
C12	0.3882 (3)	-0.1675 (2)	-0.02410 (18)	0.0390 (5)
H12	0.4445	-0.2404	-0.0409	0.047*
C13	0.3086 (3)	-0.0894 (3)	-0.10162 (17)	0.0399 (5)
H13	0.3101	-0.1097	-0.1715	0.048*
C14	0.2262 (2)	0.0193 (2)	-0.07523 (15)	0.0341 (5)
H14	0.1740	0.0744	-0.1266	0.041*
C15	0.2232 (2)	0.0443 (2)	0.02917 (15)	0.0263 (4)
C16	0.1368 (2)	0.1543 (2)	0.06733 (15)	0.0265 (4)
C17	0.0429 (2)	0.2405 (2)	0.00477 (17)	0.0338 (4)
H17	0.0303	0.2332	-0.0677	0.041*
C18	-0.0327 (2)	0.3386 (2)	0.0514 (2)	0.0413 (5)
H18	-0.0990	0.3964	0.0106	0.050*
C19	-0.0085 (3)	0.3493 (2)	0.1585 (2)	0.0447 (6)
H19	-0.0560	0.4167	0.1910	0.054*
C20	0.0864 (3)	0.2598 (2)	0.21795 (18)	0.0395 (5)
H20	0.1021	0.2673	0.2906	0.047*
O3	-0.0230 (2)	-0.0747 (2)	0.37222 (16)	0.0604 (5)
C21	0.0755 (2)	-0.0408 (2)	0.32724 (17)	0.0368 (5)
N1	0.45605 (18)	0.11867 (17)	0.29456 (13)	0.0282 (3)
N2	0.37927 (18)	-0.13463 (17)	0.31232 (12)	0.0281 (3)
N3	0.30138 (17)	-0.03247 (17)	0.10536 (12)	0.0265 (3)
N4	0.15670 (18)	0.16221 (17)	0.17294 (13)	0.0292 (4)
01	0.08496 (15)	-0.08699 (15)	0.23240 (11)	0.0321 (3)
O2	0.18851 (16)	0.04514 (16)	0.36505 (11)	0.0341 (3)
O4	0.1357 (3)	0.4381 (3)	0.43419 (18)	0.0666 (6)
05	0.9249 (3)	0.6454 (3)	0.37190 (19)	0.0676 (6)
O6	0.3364 (3)	0.4743 (3)	0.1049 (2)	0.0754 (7)
H4A	0.109 (4)	0.409 (3)	0.4873 (19)	0.084 (12)*
H4B	0.075 (3)	0.498 (3)	0.410 (2)	0.061 (9)*

H6A	0 331 (3)	0 445 (4)	0 0429 (13)	0 074 (12)*
H5A	0.939 (3)	0.7312 (12)	0.379 (2)	0.055 (9)*
H6B	0.423 (2)	0.510 (4)	0.125 (2)	0.082 (12)*
H5B	0.856 (3)	0.630 (3)	0.3190 (19)	0.086 (12)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Co1	0.02552 (15)	0.02518 (16)	0.02032 (14)	0.00563 (10)	-0.00088 (10)	0.00176 (10)
Br1	0.05214 (18)	0.0591 (2)	0.0695 (2)	0.00644 (13)	0.00614 (14)	0.01561 (15)
C1	0.0349 (11)	0.0304 (11)	0.0403 (12)	0.0004 (8)	0.0015 (9)	0.0057 (9)
C2	0.0496 (13)	0.0294 (11)	0.0486 (13)	0.0054 (9)	0.0114 (11)	0.0107 (10)
C3	0.0474 (13)	0.0386 (13)	0.0398 (12)	0.0159 (10)	0.0036 (10)	0.0143 (10)
C4	0.0358 (11)	0.0412 (13)	0.0302 (10)	0.0108 (9)	-0.0025 (8)	0.0049 (9)
C5	0.0287 (9)	0.0325 (11)	0.0212 (9)	0.0064 (8)	0.0022 (7)	0.0016 (8)
C6	0.0295 (9)	0.0318 (11)	0.0210 (9)	0.0051 (8)	0.0027 (7)	0.0001 (8)
C7	0.0312 (10)	0.0439 (13)	0.0311 (10)	0.0020 (9)	-0.0008(8)	-0.0013 (9)
C8	0.0387 (12)	0.0451 (14)	0.0438 (13)	-0.0090 (10)	0.0043 (10)	-0.0082 (10)
C9	0.0501 (13)	0.0308 (12)	0.0478 (13)	-0.0054 (10)	0.0111 (11)	-0.0022 (10)
C10	0.0403 (11)	0.0289 (11)	0.0361 (11)	0.0032 (9)	0.0054 (9)	0.0035 (9)
C11	0.0323 (10)	0.0320 (11)	0.0349 (11)	0.0084 (8)	0.0064 (8)	0.0028 (8)
C12	0.0407 (12)	0.0376 (12)	0.0410 (12)	0.0079 (9)	0.0142 (10)	-0.0039 (10)
C13	0.0415 (12)	0.0504 (14)	0.0286 (10)	0.0009 (10)	0.0109 (9)	-0.0057 (9)
C14	0.0323 (10)	0.0435 (12)	0.0245 (10)	0.0009 (9)	0.0010 (8)	0.0048 (9)
C15	0.0230 (9)	0.0283 (10)	0.0261 (9)	0.0007 (7)	0.0017 (7)	0.0027 (8)
C16	0.0235 (9)	0.0263 (10)	0.0279 (9)	0.0004 (7)	0.0009 (7)	0.0034 (8)
C17	0.0303 (10)	0.0341 (11)	0.0351 (11)	0.0037 (8)	0.0008 (8)	0.0110 (9)
C18	0.0345 (11)	0.0324 (12)	0.0550 (14)	0.0109 (9)	0.0016 (10)	0.0155 (10)
C19	0.0439 (12)	0.0327 (12)	0.0583 (15)	0.0143 (10)	0.0116 (11)	0.0008 (11)
C20	0.0456 (12)	0.0354 (12)	0.0377 (11)	0.0143 (10)	0.0082 (9)	-0.0017 (9)
O3	0.0540 (11)	0.0702 (13)	0.0655 (12)	-0.0069 (9)	0.0345 (10)	-0.0080 (10)
C21	0.0353 (11)	0.0412 (12)	0.0339 (11)	0.0074 (9)	0.0065 (9)	0.0011 (9)
N1	0.0304 (8)	0.0269 (9)	0.0257 (8)	0.0042 (7)	0.0023 (6)	0.0010 (6)
N2	0.0292 (8)	0.0282 (9)	0.0251 (8)	0.0036 (6)	0.0012 (6)	0.0031 (6)
N3	0.0264 (8)	0.0259 (8)	0.0256 (8)	0.0043 (6)	0.0015 (6)	0.0015 (6)
N4	0.0295 (8)	0.0291 (9)	0.0274 (8)	0.0063 (7)	0.0019 (6)	0.0005 (7)
01	0.0260 (7)	0.0374 (8)	0.0298 (7)	0.0018 (6)	-0.0003 (5)	-0.0014 (6)
O2	0.0387 (8)	0.0394 (8)	0.0229 (7)	0.0030 (6)	0.0040 (6)	-0.0022 (6)
O4	0.0692 (14)	0.0753 (16)	0.0579 (13)	0.0224 (12)	0.0159 (11)	0.0070 (11)
05	0.0678 (14)	0.0646 (15)	0.0665 (14)	0.0084 (11)	0.0022 (11)	0.0222 (11)
O6	0.0618 (14)	0.0878 (18)	0.0730 (17)	-0.0079 (12)	0.0045 (11)	0.0232 (14)

Geometric parameters (Å, °)

Co1—O1	1.8896 (14)	C11—C12	1.377 (3)	
Co1—O2	1.8897 (14)	C11—H11	0.9300	
Co1—N2	1.9195 (16)	C12—C13	1.376 (3)	
Co1—N4	1.9238 (16)	C12—H12	0.9300	

Co1—N1	1.9440 (17)	C13—C14	1.383 (3)
Co1—N3	1.9447 (16)	C13—H13	0.9300
Co1—C21	2.314 (2)	C14—C15	1.384 (3)
C1—N2	1.339 (3)	C14—H14	0.9300
C1—C2	1.378 (3)	C15—N3	1.352 (2)
C1—H1	0.9300	C15—C16	1.474 (3)
C2—C3	1.381 (3)	C16—N4	1.353 (3)
С2—Н2	0.9300	C16—C17	1.373 (3)
C3—C4	1.377 (3)	C17—C18	1.385 (3)
C3—H3	0.9300	С17—Н17	0.9300
C4-C5	1 384 (3)	C18—C19	1 370 (4)
C4—H4	0.9300	C18—H18	0.9300
C5—N2	1,353(2)	$C_{19} - C_{20}$	1,379(3)
C_{5}	1.355(2) 1 467(3)	C19—H19	0.9300
C6 N1	1.407(3) 1.357(2)	C_{20} N/	1342(3)
C6 C7	1.337(2) 1 387(3)	C_{20} H20	1.342(3)
C_{0}	1.387(3) 1.380(3)	C_{20} -1120	1,210(3)
$C_7 = U_7$	0.0200	03-021	1.219(3)
C^{2}	0.9300	$C_{21} = 0_{2}$	1.307(3)
C8_C9	1.378 (4)		1.324(3)
	0.9300	04—H4A	0.839 (10)
C9—C10	1.384 (3)	O4—H4B	0.841 (10)
C9—H9	0.9300	US—HSA	0.835 (10)
C10—N1	1.339 (3)	O5—H5B	0.837 (10)
C10—H10	0.9300	O6—H6A	0.841 (10)
C11—N3	1.346 (3)	O6—H6B	0.840 (10)
O1—Co1—O2	69.26 (6)	N3—C11—H11	119.1
O1—Co1—N2	91.31 (7)	C12—C11—H11	119.1
O2—Co1—N2	88.81 (7)	C13—C12—C11	119.1 (2)
O1—Co1—N4	88.69 (7)	C13—C12—H12	120.4
O2—Co1—N4	92.44 (7)	C11—C12—H12	120.4
N2—Co1—N4	178.66 (7)	C12—C13—C14	119.7 (2)
O1—Co1—N1	165.27 (7)	C12—C13—H13	120.2
O2—Co1—N1	96.93 (7)	C14—C13—H13	120.2
N2—Co1—N1	83.06 (7)	C13—C14—C15	118.66 (19)
N4—Co1—N1	97.25 (7)	C13—C14—H14	120.7
O1—Co1—N3	97.79 (6)	C15—C14—H14	120.7
02—Co1—N3	166.44 (7)	N3—C15—C14	121.61 (18)
N2—Co1—N3	95.69 (7)	N3—C15—C16	114.35 (16)
N4-Co1-N3	82.99 (7)	C14—C15—C16	124.04 (18)
N1—Co1—N3	96 31 (7)	N4—C16—C17	121.78 (18)
01-C01-C21	34.90(7)	N4—C16—C15	113 11 (16)
0^{2} —Co1—C21	34 39 (7)	C17 - C16 - C15	125 10 (18)
N_{2} Col C21	89 09 (7)	C16-C17-C18	118 9 (2)
N4-Co1-C21	91.68 (7)	C16-C17-H17	120.6
N1 - Co1 - C21	131.00(7)	C18 - C17 - H17	120.0
$N_3 = C_0 I = C_2 I$	132.64 (7)	C19 - C18 - C17	119.2 (2)
$N_2 = C_1 = C_2$	132.07(7) 1218(2)	C19 - C18 - C17	120 /
1N2 - C1 - C2	121.0 (2)	017-010-1110	120.4

119.1	C17—C18—H18	120.4
119.1	C18—C19—C20	119.7 (2)
118.9 (2)	C18—C19—H19	120.1
120.5	С20—С19—Н19	120.1
120.5	N4—C20—C19	121.3 (2)
119.6 (2)	N4—C20—H20	119.4
120.2	С19—С20—Н20	119.4
120.2	O3—C21—O2	125.6 (2)
119.1 (2)	O3—C21—O1	124.9 (2)
120.4	O2—C21—O1	109.44 (18)
120.4	O3—C21—Co1	177.39 (19)
121.01 (19)	O2—C21—Co1	54.74 (10)
113.60 (16)	O1—C21—Co1	54.75 (10)
125.38 (18)	C10—N1—C6	119.14 (17)
121.44 (19)	C10—N1—Co1	126.97 (14)
114.04 (17)	C6—N1—Co1	113.81 (14)
124.51 (18)	C1—N2—C5	119.56 (17)
118.9 (2)	C1—N2—Co1	125.30 (14)
120.5	C5—N2—Co1	115.00 (14)
120.5	C11—N3—C15	119.05 (17)
119.6 (2)	C11—N3—Co1	127.02 (14)
120.2	C15—N3—Co1	113.76 (12)
120.2	C20—N4—C16	119.12 (17)
119.1 (2)	C20—N4—Co1	125.47 (14)
120.4	C16—N4—Co1	115.00 (13)
120.4	C21—O1—Co1	90.36 (12)
121.8 (2)	C21—O2—Co1	90.87 (12)
119.1	H4A—O4—H4B	106.4 (16)
119.1	H5A—O5—H5B	106.9 (16)
121.83 (19)	H6A—O6—H6B	105.4 (16)
	119.1 119.1 119.1 119.1 $118.9 (2)$ 120.5 120.5 120.2 120.2 120.2 120.2 120.4 120.4 120.4 $121.01 (19)$ $113.60 (16)$ $125.38 (18)$ $121.44 (19)$ $114.04 (17)$ $124.51 (18)$ $118.9 (2)$ 120.5 120.5 120.5 120.5 120.5 $119.6 (2)$ 120.2 120.2 120.2 120.2 $19.1 (2)$ 120.4 $121.8 (2)$ 119.1 119.1 $121.83 (19)$	119.1 $C17-C18-H18$ 119.1 $C18-C19-C20$ 118.9 (2) $C18-C19-H19$ 120.5 $C20-C19-H19$ 120.5 $N4-C20-H20$ 120.2 $C19-C20-H20$ 120.2 $C3-C21-O2$ 19.1 (2) $O3-C21-O1$ 120.4 $O2-C21-C01$ 121.01 (19) $O2-C21-C01$ 125.38 (18) $C10-N1-C6$ 121.44 (19) $C10-N1-C01$ 124.51 (18) $C1-N2-C5$ 118.9 (2) $C1-N2-C01$ 120.5 $C11-N3-C15$ 119.6 (2) $C11-N3-C01$ 124.51 (18) $C1-N2-C5$ 118.9 (2) $C1-N3-C15$ 119.6 (2) $C11-N3-C01$ 120.2 $C20-N4-C16$ 121.44 $C10-N1-C01$ 124.51 (18) $C1-N2-C5$ 118.9 (2) $C1-N2-C01$ 120.5 $C11-N3-C15$ 119.6 (2) $C11-N3-C01$ 120.2 $C20-N4-C16$ 119.1 (2) $C20-N4-C01$ 120.4 $C21-O1-C01$ 121.8 (2) $C21-O2-C01$ 121.8 (2) $C21-O2-C01$ 119.1 $H4A-O4-H4B$ 119.1 $H5A-O5-H5B$ 121.83 (19) $H6A-O6-H6B$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O4—H4 B ···O5 ⁱ	0.84 (1)	2.00(1)	2.832 (3)	172 (3)
O4—H4A···O5 ⁱⁱ	0.84 (1)	2.02 (1)	2.847 (3)	171 (4)
O5—H5 <i>A</i> ···O3 ⁱⁱⁱ	0.84 (1)	1.91 (1)	2.735 (3)	171 (3)
O5—H5 <i>B</i> ···Br1	0.84 (1)	2.42 (1)	3.247 (2)	169 (3)
O6—H6 <i>B</i> ···Br1	0.84 (1)	2.51 (1)	3.345 (2)	170 (3)
O6—H6A···Br1 ^{iv}	0.84 (1)	2.54 (1)	3.378 (3)	173 (3)

Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+1; (iii) x+1, y+1, z; (iv) -x+1, -y+1, -z.