organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Michela Simone,^a* George W. J. Fleet^a and David J. Watkin^b

^aDepartment of Organic Chemistry, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and ^bDepartment of Chemical Crystallography, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England

Correspondence e-mail: michela_simone@yahoo.co.uk

Key indicators

Single-crystal X-ray study T = 150 K Mean σ (C–C) = 0.003 Å R factor = 0.033 wR factor = 0.033 Data-to-parameter ratio = 13.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

5-O-tert-Butyldiphenylsilyl-2-C-hydroxymethyl-2,3-O-isopropylidene-2'-O-trifluoromethanesulfonyl-D-ribono-1,4-lactone

The title compound, $C_{26}H_{31}F_3O_8SSi$, provides a unique example of the crystal structure of an organic trifluoromethanesulfonate attached to a primary C atom. The absolute configuration is determined by the use of D-ribose as the starting material. Received 22 January 2007 Accepted 27 January 2007

Comment

Sulfonate esters provide a wide range of leaving groups for nucleophilic substitution reactions in organic chemistry (Bentley, 1991). A β -oxygen substituent very substantially retards either S_N1 or S_N2 reactions (Shaik, 1983); in carbohydrate chemistry, where there is always a β -oxygen, nucleophilic substitutions at secondary carbons are usually too slow if a mesylate or a tosylate is used as a leaving group (Richardson, 1969). However trifluoromethanesulfonate (Howells & McCown, 1977; Rakita, 2004) is an excellent leaving group with a rate increase of around 10⁵ in comparison to tosylate in S_N1 (Takeuchi et al., 1988) and S_N2 reactions (Streitwieser et al., 1968), and in decarboxylative eliminations (Fleming & Ramarao, 2004). Trifluoromethanesulfonates are relatively unstable; few crystal structures of organic trifluoromethanesulfonates have been reported. The first crystal structure of a secondary trifluoromethanesulfonate was reported by Barnes et al. (1996) and a further two have been reported (Hung et al., 2001; Tremmel et al., 2003). Although two crystal structures of primary trifluoromethanesulfonates of carboranes have been published (Herzog et al., 1999; Kalinin et al., 2005), the present paper reports the first example of the crystal structure of a primary trifluoromethanesulfonate, (3).

© 2007 International Union of Crystallography All rights reserved

Figure 1

The molecular structure of (3), with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Figure 2

Packing diagram of (3) viewed along the c axis, showing the columns of molecules lying parallel to a.

In a study of secondary structures of novel peptides (Jockusch et al., 2006), the synthesis of a number of carbonbranched sugar amino acids (Simone et al., 2005) required displacements by nucleophiles $(X^{-} = N_{3}^{-}, I^{-})$ of the leaving group in the very hindered neopentyl trifluoromethanesulfonate (3), yielding (4). D-Ribose was converted to the protected hamamelonolactone (1) (Ho. 1979, 1985) as previously described. The less hindered primary alcohol in (1) was selectively protected as the very bulky tert-butyldiphenylsilyl ether (2). Esterification of the remaining neopentyl alcohol in (2) with trifluoromethanesulfonic (triflic) anhydride gave the trifluoromethanesulfonate (3) as a stable crystalline compound, allowing the first X-ray crystallographic analysis of a primary organic trifluoromethanesulfonate. The crystal structure of (3) confirmed the relative stereochemistry and the integrity of the trifluoromethanesulfonate functional group; the absolute configuration of (3) was determined by the use of D-ribose as the starting material.

There are no unusual bond lengths or angles in the structure (Fig. 1), the largest differences from the Mogul norms (Bruno et al., 2004) being O8-Si1 (0.02 Å; Mogul s.u. 0.01 Å) and S1-O5-O4 (5.9°; Mogul s.u. 3.7°). The Flack parameter refined to -0.04(7), enabling the absolute configuration of the molecule to be assigned with confidence.

The crystal structure consists of discrete molecules without any specific strong interactions between them. The molecules are well separated in the b and c directions, giving the appearance of columns in close contact, parallel to a (Fig. 2).

Experimental

Triflic anhydride (97 µl, 0.58 mmol) was added dropwise to a stirred solution of the silvl ether (2) (203 mg, 0.44 mmol) in dichloromethane (1.7 ml) containing dry pyridine (79 µl) at 243 K under an atmosphere of argon. After 20 min, thin layer chromatography (ethyl acetate/cyclohexane, 1:4) indicated the presence of a major UV-active product $(R_{\rm f} = 0.45)$ and complete consumption of the starting material ($R_{\rm f} = 0.11$). The reaction mixture was diluted with dichloromethane (20 ml), and washed with aqueous hydrochloric acid solution (1*M*, 2.0 ml), then with a buffer solution $[pH 7, K_2H_2PO_4]$ (0.51 M)/NaOH (0.38 M), 1.0 ml]. The organic layers were dried (magnesium sulfate) and filtered, and the filtrate was concentrated in vacuo to give a residue which was purified by flash column chromatography (ethyl acetate/cyclohexane, 1:6 to 1:3), to yield the trifluoromethanesulfonate (3) (239 mg, 91% yield) as a colourless oil which crystallized on standing. M.p. 367–370 K; $[\alpha]_D^{25}$ +9.0 (c, 0.94 in acetonitrile); v_{max} (thin film): 1785 (s, C=O) cm⁻¹. A sample of (3), suitable for X-ray crystallographic analysis, was obtained via solvent evaporation (ethyl acetate/cyclohexane).

Crystal data

C26H31F3O8SSi Z = 4 $M_r = 588.67$ Mo $K\alpha$ radiation Orthorhombic, P212121 a = 7.7889 (1) Å $\mu = 0.22 \text{ mm}^{-1}$ b = 17.0479 (3) Å T = 150 Kc = 21.2824 (3) Å Block, colourless V = 2825.97 (7) Å³

Data collection

Nonius KappaCCD diffractometer ω scans

Absorption correction: multi-scan (DÊNZO/SCALEPACK; Otwinowski & Minor, 1997) $T_{\rm min} = 0.93, T_{\rm max} = 0.96$

 $D_x = 1.384 \text{ Mg m}^{-3}$ $0.32 \times 0.24 \times 0.20 \ \text{mm}$

29606 measured reflections 6416 independent reflections 4788 reflections with $I > 3\sigma(I)$ $R_{\rm int}=0.055$ $\theta_{\rm max} = 27.5^{\circ}$

organic papers

Refinement

Refinement on F Watkin, 1979) 0.297, 0.0573 and $R[F^2 > 2\sigma(F^2)] = 0.033$ wR(F²) = 0.033 0.0793 $(\Delta/\sigma)_{\rm max} = 0.002$ $\Delta \rho_{\rm max} = 0.32 \text{ e } \text{\AA}^{-3}$ S = 1.06 $\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$ 4788 reflections 353 parameters Absolute structure: Flack (1983). H-atom parameters not refined 2791 Friedel pairs Chebychev polynomial with three Flack parameter: -0.04(7)parameters (Carruthers &

All H atoms were found in difference Fourier maps, but were repositioned geometrically after each cycle of refinement; C-H = 1.00 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *COLLECT* (Nonius, 2001).; cell refinement: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO/SCALEPACK*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *CRYSTALS*.

Financial support (to MS) provided through the European Community's Human Potential Programme under contract HPRN-CT-2002-00173 is gratefully acknowledged.

References

- Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Barnes, J. C., Brimacombe, J. S. & Kabir, A. K. M. S. (1996). Acta Cryst. C52, 416–418.

- Bentley, T. W. (1991). The Chemistry of Sulphonic Acids, Esters and their Derivatives, edited by S. Patai & S. Rappoport, pp. 671–696. Chichester: Wiley.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Bruno, I. J., Cole, J. C., Kessler, M., Jie, L., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.

- Carruthers, J. R. & Watkin, D. J. (1979). Acta Cryst. A35, 698-699.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Fleming, I. & Ramarao, C. (2004). Org. Biomol. Chem. 2, 1504-1510.
- Herzog, A., Knobler, C. B., Hawthorne, M. F., Maderna, A. & Siebert, W. (1999). J. Org. Chem. 64, 1045–1048.
- Ho, P.-T. (1979). Can. J. Chem. 57, 381.
- Ho, P.-T. (1985). Can. J. Chem. 63, 2221-2224.
- Howells, R. D. & McCown, J. D. (1977). Chem. Rev. 77, 69-92.
- Hung, S. C., Wang, C. C., Chang, S. W. & Chen, C. S. (2001). *Tetrahedron Lett.* **42**, 1321–1324.
- Jockusch, R. A., Talbot, F. O., Simone, M. I., Rogers, P. S., Fleet, G. W. J. & Simons, J. P. (2006). J. Am. Chem. Soc. 128, 16771–16777.
- Kalinin, V. N., Rys, E. G., Tyutyunov, A. A., Starikov, Z. A., Korlyukov, A. A., Ol'shevskaya, V. A., Sung, D. D., Ponomaryov, A. B., Petrovskii, P. V. & Hey-Hawkins, E. (2005). *Dalton Trans.* pp. 903–908.
- Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Rakita, P. E. (2004). Chim. Oggi, 22, 48-50.
- Richardson, A. C. (1969). Carbohydr. Res. 10, 395-402.
- Shaik, S. S. (1983). J. Am. Chem. Soc. 105, 4359-4367.
- Simone, M. I., Soengas, R., Newton, C. R., Watkin, D. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5761–5765.
- Streitwieser, A., Wilkins, C. L. & Kiehlmann, E. (1968). J. Am. Chem. Soc. 90, 1598–1601.
- Takeuchi, K., Ikai, K., Shibata, T. & Tsugeno, A. (1988). J. Org. Chem. 53, 2852–2855.
- Tremmel, P., Brand, J., Knapp, V. & Geyer, A. (2003). Eur. J. Org. Chem. pp. 878–884.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

Acta Cryst. (2007). E63, o1088–o1090 [https://doi.org/10.1107/S1600536807004436]

5-O-tert-Butyldiphenylsilyl-2-C-hydroxymethyl-2,3-O-isopropylidene-2'-O-trifluoromethanesulfonyl-D-ribono-1,4-lactone

Michela Simone, George W. J. Fleet and David J. Watkin

5-*O-tert*-Butyldiphenylsilyl-2-C-hydroxymethyl- 2,3-*O*-isopropylidene-2'-*O*-trifluoromethanesulfonyl-D-ribono-1,4-lactone

Crystal data

C ₂₆ H ₃₁ F ₃ O ₈ SSi $M_r = 588.67$ Orthorhombic, $P2_12_12_1$ a = 7.7889 (1) Å b = 17.0479 (3) Å c = 21.2824 (3) Å V = 2825.97 (7) Å ³	$D_{\rm x} = 1.384 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 29606 reflections $\theta = 5-28^{\circ}$ $\mu = 0.22 \text{ mm}^{-1}$ T = 150 K Block, colourless
Z = 4	$0.32 \times 0.24 \times 0.20$ mm
F(000) = 1232	
Data collection	
Nonius KappaCCD diffractometer Graphite monochromator ω scans Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) $T_{\min} = 0.93, T_{\max} = 0.96$	29606 measured reflections 6416 independent reflections 4788 reflections with $I > 3\sigma(I)$ $R_{int} = 0.055$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 5.2^{\circ}$ $h = -10 \rightarrow 10$ $k = -22 \rightarrow 22$ $l = -27 \rightarrow 27$
Refinement	
Refinement on <i>F</i> Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.033$ S = 1.06 4788 reflections 353 parameters Primary atom site location: structure-invariant direct methods	H-atom parameters not refined Chebychev polynomial with three parameters (Carruthers & Watkin, 1979) 0.297, 0.0573 and 0.0793 $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.32$ e Å ⁻³ $\Delta\rho_{min} = -0.31$ e Å ⁻³ Absolute structure: Flack (1983), 2791 Friedel pairs
Hydrogen site location: inferred from neighbouring sites	Absolute structure parameter: $-0.04(7)$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.1132 (2)	-0.09395 (8)	0.30408 (7)	0.0304

C1	0.1544 (3)	-0.05246 (12)	0.35539(11)	0.0290
C2	0.0421 (3)	0.02148 (11)	0.36056 (9)	0.0236
C3	-0.0810(3)	0.01558 (11)	0.30473 (9)	0.0232
C4	-0.0154 (3)	-0.05425 (11)	0.2658 (1)	0.0266
02	0.2640 (2)	-0.07288(9)	0.39182 (9)	0.0408
C5	0.1602 (2)	0.09126 (12)	0.3645 (1)	0.0265
03	0.05389(19)	0.16164 (8)	0.35441 (7)	0.0291
S1	0.11475 (8)	0.24270(3)	0.37960 (3)	0.0328
04	0.0571(3)	0.3005(1)	0.33682(9)	0.0519
05	0.0071(0)	0.2394(1)	0.40186(9)	0.0470
C6	-0.0229(3)	0.2591(1) 0.25115(14)	0.44861(11)	0.0389
E0 F1	0.0229(3)	0.1936(1)	0.48786 (7)	0.0565
F7	-0.18620(19)	0.1930(1) 0.24010(11)	0.43724(8)	0.0570
F2 F3	0.18020(19) 0.0084(3)	0.24919(11) 0.31886(0)	0.43224(8) 0.47665(8)	0.0570
06	-0.06340(17)	0.31880(9) 0.01053(8)	0.41450 (6)	0.0014
00	-0.00340(17)	0.01933(8)	0.41439(0)	0.0202
07	-0.24320(17)	0.00347(8)	0.33208(7)	0.0273
C/	-0.2262(3)	-0.01392(12)	0.39767 (9)	0.0249
C8	-0.3641(3)	0.02811 (14)	0.43398 (11)	0.0350
C9	-0.228/(3)	-0.10197 (12)	0.40774 (11)	0.0328
C10	0.0686 (3)	-0.02992 (12)	0.2051 (1)	0.0286
08	0.19443 (18)	0.02857 (8)	0.21883 (6)	0.0260
Sil	0.28595 (7)	0.08423 (3)	0.16397 (3)	0.0229
C11	0.4132 (3)	0.15675 (11)	0.21083 (9)	0.0240
C12	0.4015 (3)	0.23743 (12)	0.1981 (1)	0.0296
C13	0.4952 (3)	0.29198 (14)	0.23258 (12)	0.0382
C14	0.6027 (3)	0.26699 (14)	0.28012 (11)	0.0380
C15	0.6171 (3)	0.18799 (14)	0.29389 (11)	0.0344
C16	0.5230 (3)	0.13321 (12)	0.2595 (1)	0.0282
C17	0.1131 (3)	0.13991 (11)	0.1223 (1)	0.0268
C18	0.1020 (3)	0.15241 (14)	0.0574 (1)	0.0339
C19	-0.0220(3)	0.20302 (16)	0.03243 (12)	0.0437
C20	-0.1368 (3)	0.24101 (15)	0.07124 (13)	0.0415
C21	-0.1304 (3)	0.22856 (13)	0.13519 (12)	0.0373
C22	-0.0074(3)	0.17878 (13)	0.16037 (11)	0.0302
C23	0.4279 (3)	0.02309 (12)	0.1115 (1)	0.0331
C24	0.5407 (3)	0.07733 (15)	0.07131 (13)	0.0450
C25	0.3262 (4)	-0.03198(15)	0.06794 (13)	0.0462
C26	0.5478 (4)	-0.02684(17)	0.15282 (14)	0.0520
H31	-0.0879	0.0623	0.2764	0.0278*
H41	-0.1155	-0.0882	0 2547	0.0319*
H51	0.2157	0.0935	0.4069	0.0318*
H52	0.2509	0.0933	0.3314	0.0318*
H81	-0.4788	0.0056	0.4228	0.0421*
H87	-0 3433	0.0214	0.4200	0.0421
H83	-0.3620	0.0214	0.4000	0.0421° 0.0421°
110 <i>5</i> 1101	-0.3426	-0.1222	0.4252	0.0421
1171	-0.3430	-0.1232	0.3933	0.0394*
П92 1102	-0.2004	-0.1158	0.4550	0.0394*
H93	-0.13/8	-0.12/0	0.3813	0.0394*

H101	0.1250	-0.0763	0.1851	0.0343*	
H102	-0.0197	-0.0080	0.1759	0.0343*	
H121	0.3243	0.2560	0.1636	0.0356*	
H131	0.4847	0.3492	0.2229	0.0459*	
H141	0.6704	0.3062	0.3047	0.0456*	
H151	0.6949	0.1702	0.3284	0.0413*	
H161	0.5340	0.0762	0.2697	0.0338*	
H181	0.1836	0.1249	0.0286	0.0407*	
H191	-0.0273	0.2117	-0.0140	0.0524*	
H201	-0.2244	0.2774	0.0531	0.0498*	
H211	-0.2144	0.2554	0.1635	0.0448*	
H221	-0.0044	0.1703	0.2068	0.0362*	
H241	0.6161	0.0450	0.0435	0.0540*	
H242	0.6137	0.1106	0.0994	0.0540*	
H243	0.4660	0.1118	0.0449	0.0540*	
H251	0.4078	-0.0628	0.0414	0.0554*	
H252	0.2555	-0.0687	0.0939	0.0554*	
H253	0.2490	-0.0002	0.0403	0.0554*	
H261	0.6237	-0.0595	0.1254	0.0625*	
H262	0.6200	0.0084	0.1795	0.0625*	
H263	0.4775	-0.0618	0.1804	0.0625*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0374 (8)	0.0213 (7)	0.0324 (8)	0.0046 (7)	0.0044 (7)	-0.0000 (6)
C1	0.0265 (11)	0.024 (1)	0.0366 (12)	-0.0007 (8)	0.0010 (9)	0.0024 (9)
C2	0.0252 (9)	0.0197 (9)	0.026(1)	0.0007 (8)	0.0002 (8)	-0.0007 (8)
C3	0.024 (1)	0.0204 (9)	0.025 (1)	-0.0022 (8)	0.0036 (8)	0.0006 (8)
C4	0.0279 (11)	0.021 (1)	0.0307 (11)	-0.0018 (8)	0.0011 (9)	-0.0017 (8)
O2	0.0355 (9)	0.0310 (8)	0.0559 (11)	0.0043 (7)	-0.0122 (8)	0.0044 (8)
C5	0.024 (1)	0.0207 (9)	0.0345 (11)	0.0005 (8)	-0.0006 (8)	-0.0013 (9)
O3	0.0336 (8)	0.0175 (7)	0.0361 (8)	0.0004 (6)	-0.0073 (6)	-0.0029 (6)
S 1	0.0389 (3)	0.0194 (2)	0.0401 (3)	-0.0035 (2)	-0.0035 (2)	-0.0006 (2)
O4	0.0789 (14)	0.0265 (8)	0.050(1)	0.0023 (8)	-0.0019 (11)	0.0130 (8)
O5	0.0369 (9)	0.0346 (9)	0.0696 (12)	-0.0085 (8)	-0.0065 (9)	-0.0110 (9)
C6	0.0456 (14)	0.0291 (12)	0.0421 (13)	0.0050 (11)	-0.0066 (11)	-0.0084 (11)
F1	0.0821 (12)	0.0480 (9)	0.0398 (8)	0.0122 (9)	0.0073 (8)	0.0050 (7)
F2	0.0407 (8)	0.0683 (11)	0.062 (1)	0.0083 (8)	0.0004 (7)	-0.0157 (9)
F3	0.0839 (13)	0.0421 (9)	0.058 (1)	0.0051 (9)	-0.0043 (9)	-0.0248 (8)
O6	0.0255 (7)	0.0303 (8)	0.0229 (7)	-0.0035 (6)	0.0004 (6)	-0.0003 (6)
O7	0.0227 (7)	0.0373 (8)	0.0219 (7)	0.0005 (6)	-0.0003 (6)	0.0025 (6)
C7	0.0248 (9)	0.029(1)	0.0204 (9)	-0.0032 (8)	-0.0005 (8)	0.0004 (8)
C8	0.0318 (12)	0.0400 (13)	0.0334 (12)	0.001 (1)	0.006 (1)	-0.001 (1)
C9	0.0373 (12)	0.0280 (11)	0.0332 (12)	-0.0058 (9)	-0.001 (1)	0.0040 (9)
C10	0.0369 (12)	0.022 (1)	0.026 (1)	-0.0082 (9)	0.0043 (9)	-0.0037 (8)
08	0.0292 (8)	0.0235 (7)	0.0252 (7)	-0.0048 (6)	0.0011 (6)	0.0004 (6)
Si1	0.0250 (2)	0.0192 (2)	0.0244 (3)	-0.0008(2)	0.0023 (2)	0.0000 (2)

C11	0.022(1)	0.0234 (9)	0.027 (1)	-0.0001 (8)	0.0018 (8)	-0.0003 (8)
C12	0.0323 (11)	0.023 (1)	0.0336 (11)	-0.0007 (9)	-0.004 (1)	0.0039 (8)
C13	0.0421 (13)	0.023 (1)	0.0499 (15)	-0.005 (1)	-0.0059 (12)	-0.001 (1)
C14	0.0355 (12)	0.0378 (12)	0.0406 (13)	-0.0091 (11)	-0.007 (1)	-0.008 (1)
C15	0.0290 (11)	0.0413 (13)	0.0330 (12)	-0.002(1)	-0.005 (1)	-0.000(1)
C16	0.0275 (11)	0.0257 (11)	0.0313 (11)	-0.0008 (9)	-0.0026 (9)	0.0026 (9)
C17	0.029(1)	0.0244 (9)	0.027 (1)	-0.0079 (9)	-0.0007 (9)	0.0011 (8)
C18	0.0353 (12)	0.0389 (12)	0.0275 (11)	-0.005 (1)	-0.003 (1)	-0.0002 (9)
C19	0.0471 (15)	0.0461 (14)	0.0378 (13)	-0.0104 (12)	-0.0190 (12)	0.0129 (11)
C20	0.0305 (12)	0.0347 (12)	0.0594 (15)	-0.005 (1)	-0.0136 (11)	0.0123 (12)
C21	0.0293 (11)	0.0308 (12)	0.0518 (15)	0.0004 (9)	-0.0043 (11)	0.001 (1)
C22	0.027 (1)	0.0280 (11)	0.0350 (11)	0.0002 (8)	-0.002 (1)	-0.0008 (9)
C23	0.0385 (12)	0.026 (1)	0.0347 (12)	-0.0003 (9)	0.010(1)	-0.0015 (9)
C24	0.0440 (14)	0.0402 (14)	0.0509 (15)	-0.0037 (12)	0.0219 (12)	-0.0045 (12)
C25	0.0615 (18)	0.0327 (12)	0.0443 (15)	-0.0076 (12)	0.0170 (13)	-0.0145 (11)
C26	0.0543 (16)	0.0439 (15)	0.0579 (17)	0.0234 (13)	0.0083 (13)	-0.0010 (13)

Geometric parameters (Å, °)

01—C1	1.340 (3)	Sil—C17	1.871 (2)
O1—C4	1.458 (3)	Si1—C23	1.886 (2)
C1—C2	1.538 (3)	C11—C12	1.405 (3)
C1—O2	1.205 (3)	C11—C16	1.401 (3)
C2—C3	1.530 (3)	C12—C13	1.391 (3)
C2—C5	1.506 (3)	C12—H121	1.000
C2—O6	1.414 (2)	C13—C14	1.381 (3)
C3—C4	1.538 (3)	C13—H131	1.000
С3—07	1.421 (2)	C14—C15	1.383 (3)
С3—Н31	1.0000	C14—H141	1.000
C4—C10	1.506 (3)	C15—C16	1.395 (3)
C4—H41	1.000	C15—H151	1.000
C5—O3	1.474 (2)	C16—H161	1.000
C5—H51	1.000	C17—C18	1.399 (3)
С5—Н52	1.000	C17—C22	1.407 (3)
O3—S1	1.5563 (14)	C18—C19	1.400 (3)
S1—O4	1.4146 (18)	C18—H181	1.000
S1—O5	1.4166 (18)	C19—C20	1.379 (4)
S1—C6	1.824 (3)	C19—H191	1.000
C6—F1	1.310 (3)	C20—C21	1.378 (4)
C6—F2	1.319 (3)	C20—H201	1.000
C6—F3	1.322 (3)	C21—C22	1.387 (3)
O6—C7	1.436 (2)	C21—H211	1.000
O7—C7	1.435 (2)	C22—H221	1.000
С7—С8	1.505 (3)	C23—C24	1.536 (3)
С7—С9	1.516 (3)	C23—C25	1.539 (3)
C8—H81	1.000	C23—C26	1.539 (3)
С8—Н82	1.000	C24—H241	1.000
С8—Н83	1.000	C24—H242	1.000

С9—Н91	1.000	C24—H243	1.000
С9—Н92	1.000	C25—H251	1.000
С9—Н93	1.000	С25—Н252	1.000
C10—O8	1.428 (2)	С25—Н253	1.000
C10—H101	1.000	C26—H261	1.000
С10—Н102	1.000	С26—Н262	1.000
O8—Si1	1.6648 (14)	С26—Н263	1.000
Sil—C11	1.872 (2)		
C1—O1—C4	112.00 (15)	C10—O8—Si1	123.29 (12)
O1—C1—C2	110.79 (18)	O8—Si1—C11	103.27 (8)
O1—C1—O2	122.78 (19)	O8—Si1—C17	108.29 (9)
C2—C1—O2	126.4 (2)	C11—Si1—C17	107.38 (9)
C1—C2—C3	104.29 (16)	O8—Si1—C23	110.57 (9)
C1—C2—C5	107.68 (16)	C11—Si1—C23	111.7 (1)
C3—C2—C5	118.56 (17)	C17—Si1—C23	114.9 (1)
C1—C2—O6	111.69 (16)	Si1—C11—C12	120.62 (15)
C3—C2—O6	105.43 (15)	Si1—C11—C16	121.83 (15)
C5—C2—O6	109.16 (16)	C12—C11—C16	117.55 (19)
C2—C3—C4	105.13 (16)	C11—C12—C13	121.3 (2)
C2—C3—O7	104.81 (15)	C11—C12—H121	119.4
C4—C3—O7	114.04 (16)	C13—C12—H121	119.4
C2—C3—H31	116.77	C12—C13—C14	119.9 (2)
C4—C3—H31	107.99	C12—C13—H131	120.1
O7—C3—H31	108.30	C14—C13—H131	120.1
O1—C4—C3	106.67 (16)	C13—C14—C15	120.3 (2)
O1-C4-C10	107.98 (17)	C13—C14—H141	119.8
C3—C4—C10	113.14 (16)	C15—C14—H141	119.8
O1—C4—H41	113.58	C14—C15—C16	119.9 (2)
C3—C4—H41	108.45	C14—C15—H151	120.1
C10—C4—H41	107.16	C16—C15—H151	120.1
C2—C5—O3	106.94 (15)	C11—C16—C15	121.12 (19)
C2—C5—H51	110.10	C11—C16—H161	119.4
O3—C5—H51	110.10	C15—C16—H161	119.4
C2—C5—H52	110.10	Si1—C17—C18	126.14 (18)
O3—C5—H52	110.10	Si1—C17—C22	116.46 (16)
H51—C5—H52	109.47	C18—C17—C22	117.1 (2)
C5—O3—S1	120.09 (13)	C17—C18—C19	120.7 (2)
O3—S1—O4	107.4 (1)	C17—C18—H181	119.6
O3—S1—O5	111.51 (9)	C19—C18—H181	119.6
O4—S1—O5	122.81 (12)	C18—C19—C20	120.6 (2)
O3—S1—C6	99.7 (1)	C18—C19—H191	119.7
O4—S1—C6	106.06 (12)	C20—C19—H191	119.7
O5—S1—C6	106.70 (11)	C19—C20—C21	119.7 (2)
S1—C6—F1	110.25 (17)	C19—C20—H201	120.2
S1—C6—F2	110.61 (16)	C21—C20—H201	120.2
F1—C6—F2	109.1 (2)	C20—C21—C22	120.1 (2)
S1—C6—F3	108.90 (18)	C20—C21—H211	120.0

F1 C6 F3	100.4(2)	C22 C21 H211	120.0
F1 = C6 = F3	109.4(2)	$C_{22} = C_{21} = H_2 H_1$	120.0
$F_2 = C_0 = F_3$	100.0(2)	C17 - C22 - C21	121.7(2)
C2—O6—C7	108.58 (14)	C1/C22H221	119.1
C3—O7—C7	109.59 (14)	C21—C22—H221	119.1
O6—C7—O7	104.67 (14)	Si1—C23—C24	109.42 (15)
O6—C7—C8	108.21 (16)	Si1—C23—C25	113.07 (16)
O7—C7—C8	109.10 (17)	C24—C23—C25	109.1 (2)
O6—C7—C9	111.66 (17)	Si1—C23—C26	108.83 (16)
O7—C7—C9	109.92 (16)	C24—C23—C26	107.7 (2)
C8—C7—C9	112.92 (17)	C25—C23—C26	108.6 (2)
С7—С8—Н81	109.5	C23—C24—H241	109.5
С7—С8—Н82	109.5	C23—C24—H242	109.5
H81—C8—H82	109.5	H241—C24—H242	109.5
С7—С8—Н83	109.47	C23—C24—H243	109.5
H81—C8—H83	109.5	H241—C24—H243	109.5
H82—C8—H83	109.5	H242—C24—H243	109.5
С7—С9—Н91	109.5	C23—C25—H251	109.5
С7—С9—Н92	109.47	С23—С25—Н252	109.5
Н91—С9—Н92	109.5	H251—C25—H252	109.5
С7—С9—Н93	109.47	С23—С25—Н253	109.5
Н91—С9—Н93	109.5	H251—C25—H253	109.5
Н92—С9—Н93	109.5	H252—C25—H253	109.5
C4—C10—O8	108.39 (16)	C23—C26—H261	109.5
C4-C10-H101	109.74	C23—C26—H262	109.5
O8-C10-H101	109.74	H261—C26—H262	109.5
C4—C10—H102	109.74	С23—С26—Н263	109.5
O8—C10—H102	109.74	H261—C26—H263	109.5
H101—C10—H102	109.47	H262—C26—H263	109.5