Structure Reports

Online
ISSN 1600-5368

Hazel S. Wilkinson and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail:
w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.022$
$w R$ factor $=0.057$
Data-to-parameter ratio $=31.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Hexane-1,6-diammonium bis(dihydrogenarsenate): infinite anionic layers containing $R_{6}^{6}(24)$ loops

The title compound, $\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{H}_{2} \mathrm{AsO}_{4}{ }^{-}$, contains a network of doubly protonated centrosymmetric hexane-1,6diammonium cations and dihydrogenarsenate anions. These species interact by way of cation-to-anion $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and anion-to-anion $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, the latter leading to infinite sheets of the $\mathrm{H}_{2} \mathrm{AsO}_{4}^{-}$anions.

Comment

The title compound, (I) (Fig. 1), was prepared as part of our ongoing studies of hydrogen-bonding interactions in the molecular salts of oxo-anions (Wilkinson \& Harrison, 2005).

(I)

The tetrahedral $\mathrm{H}_{2} \mathrm{AsO}_{4}{ }^{-}$anion in (I) [mean $\mathrm{As}-\mathrm{O}=$ 1.683 (2) \AA] shows the usual distinction (Table 1) between the protonated and unprotonated $\mathrm{As}-\mathrm{O}$ bond lengths. The complete hexane-1,6-diammonium dication has a centre of symmetry at the mid-point of the $\mathrm{C} 3-\mathrm{C} 3^{\mathrm{i}}$ bond [symmetry code: (i) $-x,-y,-z]$. The $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ torsion angle of $-72.87(18)^{\circ}$ indicates a gauche conformation for these four atoms within the dication, whereas $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 3^{\mathrm{i}}$ are anti [torsion angle $=179.17(19)^{\circ}$]

As well as Coulombic forces, the component species in (I) interact by way of a network of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2). The $\mathrm{H}_{2} \mathrm{AsO}_{4}^{-}$units are linked into infinite sheets (Fig. 2) by way of the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bonds. The $\mathrm{O} 3-\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{ii}}$ bond (see Table 2 for symmetry code) results in inversion-generated dimeric pairs of $\mathrm{H}_{2} \mathrm{AsO}_{4}{ }^{-}$tetrahedra linked by a double (i.e. $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}+\mathrm{O} \cdots \mathrm{H}-\mathrm{O}$) hydrogen bond. The $\mathrm{O} 4-\mathrm{H} 2 \cdots \mathrm{O} 1^{\mathrm{iii}}$ bond links the dimers into an infinte sheet (Fig. 3) propagating in (100). The As $\cdots \mathrm{As}^{\mathrm{ii}}$ and

Figure 1
The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radius. The hydrogen bond is indicated by a double-dashed line. [Symmetry code: (i) $-x,-y,-z$.]

Received 13 February 2007
Accepted 14 February 2007

Figure 2
Detail of a part of a (100) hydrogen-bonded sheet of $\mathrm{H}_{2} \mathrm{AsO}_{4}^{-}$groups in (I), with hydrogen bonds indicated by double-dashed lines. Symmetry codes as in Table 2

Figure 3
The packing in (I), viewed down [010], showing the (100) dihydrogenarsenate layers mediated by the organic cations. H atoms have been omitted for clarity.

As..Asiii separations are 4.3922 (3) and 4.8900 (3) \AA, respectively. A supramolecular $R_{6}^{6}(24)$ loop (Bernstein et al., 1995) arises for each circuit of six tetrahedra within the sheet.

The anionic sheets are bridged by the organic cations, each of which participates in three nearly linear $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions from its $-\mathrm{NH}_{3}{ }^{+}$group (Table 2), resulting in a layered crystal structure (Fig. 3).

Guanidinium dihydrogenarsenate, $\mathrm{CH}_{6} \mathrm{~N}_{3} \cdot \mathrm{H}_{2} \mathrm{AsO}_{4}$ (Wilkinson \& Harrison, 2005), contains a hydrogen-bonded tetrahedral sheet topology similar to that in the title compound, despite the different cation-anion ratio in $\mathrm{CH}_{6} \mathrm{~N}_{3} \cdot \mathrm{H}_{2} \mathrm{AsO}_{4}$.

Experimental

An aqueous 1,6-diaminohexane solution ($0.5 \mathrm{M}, 10 \mathrm{ml}$) was added to an aqueous $\mathrm{H}_{3} \mathrm{AsO}_{4}$ solution ($0.5 \mathrm{M}, 10 \mathrm{ml}$), resulting in a clear solution. A mass of chunks and blocks of (I) grew as the water evaporated over the course of a few days.

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{2}{ }^{2+} .2 \mathrm{AsH}_{2} \mathrm{O}_{4}{ }^{-}$
$M_{r}=400.10$
Monoclinic, $P 2_{1} / c$
$a=9.5237$ (5) \AA
$b=10.1029(5) \AA$
$c=8.0747$ (4) \AA
$\beta=108.385(1)^{\circ}$

Data collection

Bruker SMART 1000 CCD area-
detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 1999)
$T_{\text {min }}=0.314, T_{\text {max }}=0.589$
(expected range $=0.295-0.553)$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.057$
$S=0.99$
2649 reflections

$$
\begin{aligned}
& V=737.27(6) \AA^{3} \\
& Z=2 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=4.56 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& 0.33 \times 0.31 \times 0.13 \mathrm{~mm}
\end{aligned}
$$

7129 measured reflections 2649 independent reflections 2187 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.018$

83 parameters

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.52 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.53$ e \AA^{-3}

Table 1
Selected bond lengths (\AA).

As1-O1	$1.6501(11)$	As1-O4	$1.6998(13)$
As1-O2	$1.6656(11)$	As1-O3	$1.7169(11)$

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H1 $\cdots \mathrm{O}^{\text {ii }}$	0.92	1.70	$2.6103(15)$	169
O4-H2 $\cdots 1^{\text {iii }}$	0.86	1.71	$2.5613(16)$	170
N1-H3 \cdots O2	0.89	2.01	$2.8938(17)$	172
N1-H4 $\cdots \mathrm{O}^{\text {iii }}$	0.89	2.12	$2.9681(19)$	159
N1-H5 $\cdots 1^{\text {iv }}$	0.89	1.89	$2.7714(16)$	169

Symmetry codes: (ii) $-x+1,-y+1,-z+1$; (iii) $\quad x,-y+\frac{1}{2}, z-\frac{1}{2}$; (iv)
$-x+1, y-\frac{1}{2},-z+\frac{3}{2}$.
The O-bound H atoms were found in difference maps and refined as riding on their carrier O atoms in their as-found relative positions. The other H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=$ $0.97 \AA$ and $\mathrm{N}-\mathrm{H}=0.89 \AA$, and refined as riding atoms. $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (carrier) for all H atoms.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

HSW thanks the Carnegie Trust for the Universities of Scotland for an undergraduate vacation studentship.

metal-organic papers

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (1999). SMART (Version 5.624), SAINT (Version 6.02a) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wilkinson, H. S. \& Harrison, W. T. A. (2005). Acta Cryst. E61, m2023m2025.

supporting information

Acta Cryst. (2007). E63, m902-m904 [https://doi.org/10.1107/S1600536807007672]
Hexane-1,6-diammonium bis(dihydrogenarsenate): infinite anionic layers containing $R_{6}{ }^{6}(24)$ loops

Hazel S. Wilkinson and William T. A. Harrison

Hexane-1,6-diammonium bis(dihydrogenarsenate)

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{2}{ }^{2+} .2 \mathrm{AsH}_{2} \mathrm{O}_{4}^{-}$
$M_{r}=400.10$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=9.5237$ (5) \AA
$b=10.1029(5) \AA$
$c=8.0747(4) \AA$
$\beta=108.385(1)^{\circ}$
$V=737.27(6) \AA^{3}$
$Z=2$

Data collection

Bruker SMART 1000 CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
$T_{\min }=0.314, T_{\text {max }}=0.589$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.057$
$S=0.99$
2649 reflections
83 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$F(000)=404$
$D_{\mathrm{x}}=1.802 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4034 reflections
$\theta=2.3-32.5^{\circ}$
$\mu=4.56 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, colourless
$0.33 \times 0.31 \times 0.13 \mathrm{~mm}$

7129 measured reflections
2649 independent reflections
2187 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=32.5^{\circ}, \theta_{\text {min }}=2.3^{\circ}$
$h=-14 \rightarrow 11$
$k=-15 \rightarrow 10$
$l=-12 \rightarrow 12$

Secondary atom site location: difference Fourier map
Hydrogen site location: difmap and geom
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0336 P)^{2}\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.52 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.53$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\text {eq }}$
As1	$0.606026(16)$	$0.386539(14)$	$0.738786(17)$	$0.02384(5)$
O1	$0.62562(15)$	$0.38557(10)$	$0.94925(14)$	$0.0325(2)$
O2	$0.43378(12)$	$0.35753(10)$	$0.61094(14)$	$0.0277(2)$
O3	$0.66259(15)$	$0.54220(12)$	$0.70262(14)$	$0.0411(3)$
H1	0.6218	0.5675	0.5883	0.049^{*}
O4	$0.72953(15)$	$0.28059(16)$	$0.69736(19)$	$0.0584(4)$
H2	0.6928	0.2329	0.6059	0.070^{*}
N1	$0.30110(15)$	$0.13220(12)$	$0.39759(17)$	$0.0276(3)$
H3	0.3475	0.1963	0.4699	0.033^{*}
H4	0.3171	0.1418	0.2954	0.033^{*}
H5	0.3354	0.0539	0.4432	0.033^{*}
C1	$0.13969(19)$	$0.13983(17)$	$0.3713(2)$	$0.0341(3)$
H1A	0.1030	0.2257	0.3230	0.041^{*}
H1B	0.1230	0.1316	0.4833	0.041^{*}
C2	$0.05421(18)$	$0.03200(17)$	$0.2497(2)$	$0.0330(3)$
H2A	0.1027	-0.0523	0.2869	0.040^{*}
H2B	-0.0445	0.0266	0.2596	0.040^{*}
C3	$0.04181(19)$	$0.05463(17)$	$0.0598(2)$	$0.0349(3)$
H3A	-0.0081	0.1382	0.0217	0.042^{*}
H3B	0.1404	0.0612	0.0498	0.042^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
As1	$0.02682(8)$	$0.02320(8)$	$0.01871(7)$	$-0.00187(5)$	$0.00318(5)$	$-0.00245(5)$
O1	$0.0462(7)$	$0.0285(5)$	$0.0195(5)$	$-0.0035(5)$	$0.0055(5)$	$0.0019(4)$
O2	$0.0270(5)$	$0.0288(5)$	$0.0230(5)$	$-0.0047(4)$	$0.0019(4)$	$0.0001(4)$
O3	$0.0503(8)$	$0.0394(7)$	$0.0247(5)$	$-0.0200(6)$	$-0.0007(5)$	$0.0064(5)$
O4	$0.0353(7)$	$0.0683(10)$	$0.0603(9)$	$0.0106(6)$	$-0.0012(6)$	$-0.0400(8)$
N1	$0.0296(6)$	$0.0261(6)$	$0.0238(6)$	$-0.0021(5)$	$0.0035(5)$	$-0.0016(4)$
C1	$0.0320(8)$	$0.0372(9)$	$0.0314(8)$	$0.0057(6)$	$0.0077(6)$	$-0.0043(6)$
C2	$0.0256(7)$	$0.0395(9)$	$0.0310(8)$	$-0.0040(6)$	$0.0049(6)$	$0.0003(6)$
C3	$0.0334(8)$	$0.0365(9)$	$0.0303(8)$	$-0.0104(7)$	$0.0037(6)$	$-0.0006(6)$

Geometric parameters (A, ${ }^{\circ}$)

As1-O1	1.6501 (11)	C1-C2	1.520 (2)
As1-O2	1.6656 (11)	C1-H1A	0.9700
As1-O4	1.6998 (13)	C1-H1B	0.9700
As1-O3	1.7169 (11)	C2-C3	1.518 (2)
O3-H1	0.9179	C2-H2A	0.9700
O4-H2	0.8586	C2-H2B	0.9700
N1-C1	1.486 (2)	C3-C3 ${ }^{\text {i }}$	1.516 (3)
N1-H3	0.8900	C3-H3A	0.9700
N1-H4	0.8900	C3-H3B	0.9700
N1-H5	0.8900		
O1-As1-O2	113.99 (6)	C2-C1-H1A	109.2
O1-As1-O4	109.78 (7)	N1-C1-H1B	109.2
O2-As1-O4	112.00 (6)	C2-C1-H1B	109.2
O1-As1-O3	103.94 (5)	H1A-C1-H1B	107.9
O2-As1-O3	110.87 (5)	C3-C2-C1	113.58 (14)
O4-As1-O3	105.64 (8)	C3-C2-H2A	108.8
As1-O3-H1	111.7	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.8
As1-O4-H2	113.8	C3-C2-H2B	108.8
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 3$	109.5	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.8
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 4$	109.5	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	107.7
H3-N1-H4	109.5	C3- 3 - 3 - 2	113.04 (17)
C1-N1-H5	109.5	C3- 3 - -H 3 A	109.0
H3-N1-H5	109.5	C2-C3-H3A	109.0
H4-N1-H5	109.5	C3i-C3-H3B	109.0
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	111.98 (13)	C2-C3-H3B	109.0
N1-C1-H1A	109.2	H3A-C3-H3B	107.8
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-72.87 (18)	C1-C2-C3-C3	179.17 (19)

Symmetry code: (i) $-x,-y,-z$.
Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 1 \cdots \mathrm{O}^{\text {ii }}$	0.92	1.70	$2.6103(15)$	169
$\mathrm{O} 4-\mathrm{H} 2 \cdots 1^{\text {iii }}$	0.86	1.71	$2.5613(16)$	170
$\mathrm{~N} 1-\mathrm{H} 3 \cdots \mathrm{O} 2$	0.89	2.01	$2.8938(17)$	172
$\mathrm{~N} 1-\mathrm{H} 4 \cdots \mathrm{O}^{\text {iii }}$	0.89	2.12	$2.9681(19)$	159
$\mathrm{~N} 1-\mathrm{H} 5 \cdots 1^{\text {iv }}$	0.89	1.89	$2.7714(16)$	169

Symmetry codes: (ii) $-x+1,-y+1,-z+1$; (iii) $x,-y+1 / 2, z-1 / 2$; (iv) $-x+1, y-1 / 2,-z+3 / 2$.

[^0]: (C) 2007 International Union of Crystallography All rights reserved

