Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Kathrine V. Booth,^a* David J. Watkin,^b Sarah F. Jenkinson^a and George W. J. Fleet^a

^aDepartment of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and ^bDepartment of Chemical Chrystallography, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England

Correspondence e-mail: victoria.booth@chem.ox.ac.uk

Key indicators

Single-crystal X-ray study T = 150 KMean σ (C–C) = 0.003 Å R factor = 0.038 wR factor = 0.102 Data-to-parameter ratio = 10.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2007 International Union of Crystallography All rights reserved

The relative configuration at C-2 of 2,4-dimethyl-3,4-Oisopropylidene-L-arabinono lactone, C₁₀H₁₆O₅, which exists in the boat form, was unequivocally established by X-ray crystallographic analysis. The absolute configuration was determined by the use of 2-C-methyl-D-ribonolactone as a starting material.

Received 26 January 2007 Accepted 29 January 2007

Comment

Rare and new monosaccharides have potential both as healthy dietary alternatives (Sun et al., 2007; Skytte, 2002) and for specific chemotherapeutic uses (Nakajima et al., 2004; Menavuvu et al., 2006; Hossain et al., 2006). Branched 2-C-methyl pentoses have become readily available by treatment of an Amadori ketose with aqueous calcium hydroxide (Hotchkiss et al., 2007) and are key intermediates in the synthesis of 2-Cmethyl nucleosides, a new class of drugs for the treatment of hepatitis C (Sorbera et al., 2006). Carbohydrates with a branch at C-2 may also be accessed by the reaction of ketoses and deoxyketoses with cyanide (Hotchkiss et al., 2004; Soengas et al., 2005). In contrast, there have been no biological studies on unprotected monosaccharides with more than one carbon branch.

The protected lactone (4) is a key intermediate in the synthesis of monosaccharides with two C-methyl branches (Booth et al., 2007). 2-C-Methyl-D-ribonolactone, (1), prepared by the green environmentally friendly aqueous isomerization of D-glucose (Hotchkiss et al., 2006), may be converted to the 3-C-methyl-L-erythronolactone (2) as previously described (Barrett & Dhanak, 1987; Barrett et al., 1989). Sequential treatment of (2) with methyl magnesium bromide followed by aqueous cyanide leads to the isolation of a major crystalline product which has a new stereogenic centre, which could be either the epimeric ribo- (3) or arabinolactone (4). X-ray crystallographic analysis resolved the ambiguity at C-2 and unequivocally established the relative stereochemistry as the arabinono-1,5-lactone (4), which exists in a boat form; the absolute configuration of (4) is determined by the use of 2-C-methyl-D-ribonolactone (1) as the starting material.

The molecular structure of (4) is shown in Fig. 1. The molecular geometry contains no unusual features. The largest

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Figure 2

Part of the hydrogen-bonded (dotted lines) ribbon lying parallel to a. The image has been rotated about c (out of the plane of the ribbon) to clarify the hydrogen-bonding chain. The molecule corresponding to the published coordinates does not form any hydrogen bonds within the natural unit cell. [Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}$, -y + 1, $z + \frac{1}{2}$; (iii) $-x + \frac{3}{2}$, -y + 1, $z + \frac{1}{2}$.]

differences from the Mogul norms (Bruno et al., 2004) are C2-O3 (0.02 Å, Mogul s.u. 0.01 Å) and C3-C9-O8 (3.4 Å, Mogul s.u. 1.9°). The crystal structure consists of broad

ribbons of hydrogen-bonded molecules lying with the plane of the ribbon perpendicular to b, and the length of the ribbon lying along a (Fig. 2). The hydrogen bonds form the backbone of the ribbon, with the individual molecules lying alternately on either side. The backbone of each ribbon lies above and parallel to the interface between two ribbons in the adjacent layers.

Experimental

2,4-Dimethyl-3,4-O-isopropylidene-L-arabinono lactone (4) was crystallized from a mix of ethyl acetate and cyclohexane by vapour diffusion: m.p. 385–391 K; $[\alpha]_D^{23}$ +131 (c, 1.5 in chloroform)

Crystal data

$C_{10}H_{16}O_5$	Z = 4
$M_r = 216.23$	$D_x = 1.331 \text{ Mg m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation
a = 6.3457 (2) Å	$\mu = 0.11 \text{ mm}^{-1}$
b = 12.0530 (4) Å	T = 150 K
c = 14.1034 (5) Å	Plate, colourless
V = 1078.69 (6) Å ³	$0.40 \times 0.40 \times 0.20 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer ω scans Absorption correction: multi-scan (DÊNZO/SCALEPACK; Otwinowski & Minor, 1997) $T_{\min} = 0.82, \ T_{\max} = 0.98$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.102$ S = 0.861421 reflections 136 parameters H-atom parameters constrained

6458 measured reflections 1421 independent reflections 1301 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.051$ $\theta_{\rm max} = 27.5^{\circ}$

 $w = 1/[\sigma^2(F^2) + (0.07P)^2$ + 0.5P],where $P = [\max(F_0^2, 0) + 2F_c^2]/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$O8-H1\cdots O7^{iv}$	0.88	1.99	2.870 (2)	178
Symmetry code: (iv)	$x - \frac{1}{2}, -y + \frac{3}{2}, -$	-z.		

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the starting material. The relatively large ratio of minimum to maximum corrections applied in the multi-scan process (1:1.2) reflects effects in addition to absorption, possibly connected with the flake-like aspect of the sample. Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multiscan inter-frame scaling (DENZO/SCALEPACK; Otwinowski & Minor, 1997).

The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C-H in the range 0.93-0.98 Å, O-H = 0.82 Å) and $U_{iso}(H)$ (in the range 1.2–1.5 times U_{eq} of the parent atom), after which the positions were refined with riding constraints.

organic papers

Data collection: *COLLECT* (Nonius, 2001); cell refinement: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO/SCALEPACK*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *CRYSTALS*.

A generous gift of 2-C-methyl-D-ribonolactone from Novartis Pharma AG Basel is gratefully acknowledged.

References

- Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Barrett, A. G. M., Bezuidenhoudt, B. C. B., Dhanak, D., Gasiecki, A. F., Howell, A. R., Lee, A. C. & Russell, M. A. (1989). J. Org. Chem. 54, 3321– 3324.
- Barrett, A. G. M. & Dhanak, D. (1987). *Tetrahedron Lett.* 28, 3327–3330. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J.
- (2003). J. Appl. Cryst. **36**, 1487.

Booth, V. K., Best, D., Jenkinson, S. F. & Fleet, G. W. J. (2007). In preparation. Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H.,

Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motnerwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144. Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098.

- Hossain, M. A., Wakabayashi, H., Izuishi, K., Okano, K., Yachida, S., Tokuda, M., Izumori, K. & Maeta, H. J. (2006). *Biosci. Bioeng.* 101, 369–371.
- Hotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). *Tetrahedron Lett.* 47, 315–318.
- Hotchkiss, D. J., Soengas, R., Booth, K. V., Weymouth-Wilson, A. C., Eastwick-Field, V. & Fleet, G. W. J. (2007). *Tetrahedron Lett.* 48, 517–520.
- Hotchkiss, D. J., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). *Tetrahedron Lett.* 45, 9461–9464.
- Menavuvu, B. T., Poonperm, W., Leang, K., Noguchi, N., Okada, H., Morimoto, K., Granstrom, T. B., Takada, G. & Izumori, K. J. (2006). *Biosci. Bioeng.* 101, 340–345.
- Nakajima, Y., Gotanda, T., Uchimiya, H., Furukawa, T., Haraguchi, M., Ikeda, R., Sumizawa, T., Yoshida, H. & Akiyama, S. (2004). *Cancer Res.* 64, 1794– 1801.
- Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Skytte, U. P. (2002). Cereal Foods World, 47, 224.

- Soengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). *Tetrahedron Lett.* 46, 5755–5759.
- Sorbera, L. A., Castaner, J. & Leeson, P. A. (2006). Drugs Future, **31**, 320-324.
- Sun, Y. X., Hayakawa, S., Ogawa, M. & Izumori, K. (2007). Food Contr. 18, 220–227.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

supporting information

Acta Cryst. (2007). E63, o1128–o1130 [https://doi.org/10.1107/S160053680700476X]

2,4-Dimethyl-3,4-O-isopropylidene-L-arabinono-1,5-lactone

Kathrine V. Booth, David J. Watkin, Sarah F. Jenkinson and George W. J. Fleet

F(000) = 464

 $\theta = 5-27^{\circ}$

 $\mu = 0.11 \text{ mm}^{-1}$ T = 150 K

Plate, colourless

 $0.40 \times 0.40 \times 0.20 \text{ mm}$

 $D_{\rm x} = 1.331 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1339 reflections

2,4-Dimethyl-3,4-O-isopropylidene-L-arabinono lactone

Crystal data

C₁₀H₁₆O₅ $M_r = 216.23$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 6.3457 (2) Å b = 12.0530 (4) Å c = 14.1034 (5) Å V = 1078.69 (6) Å³ Z = 4

Data collection	
Nonius KappaCCD diffractometer	6458 measured reflections 1421 independent reflections
Graphite monochromator ω scans Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997)	1301 reflections with $I > 2\sigma(I)$ $R_{int} = 0.051$ $\theta_{max} = 27.5^\circ, \ \theta_{min} = 5.3^\circ$ $h = -8 \rightarrow 8$ $k = -15 \rightarrow 15$
$T_{\min} = 0.82, T_{\max} = 0.98$ Refinement	$l = -18 \rightarrow 18$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.102$ S = 0.86 1421 reflections 136 parameters 0 restraints	Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F^2) + (0.07P)^2 + 0.5P],$ where $P = [\max(F_o^2, 0) + 2F_c^2]/3$ $(\Delta/\sigma)_{max} = 0.000299$ $\Delta\rho_{max} = 0.26 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.18 \text{ e } \text{Å}^{-3}$

Fractional	atomic	coordinates	and	' isotropic a	or equival	lent isotropic	displ	lacement	parameters ((A^2))
				1	1	1	-		1	× ۲	-

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.2418 (3)	0.83400 (16)	0.29155 (13)	0.0226	
C2	0.1810 (3)	0.73928 (16)	0.22279 (13)	0.0215	
C3	0.3015 (3)	0.74232 (16)	0.12915 (13)	0.0209	
C4	0.5380 (3)	0.74540 (17)	0.15287 (14)	0.0234	

supporting information

O5	0.5983 (2)	0.81516 (14)	0.22116 (11)	0.0313
C6	0.4429 (4)	0.89114 (18)	0.26103 (16)	0.0299
O7	0.6698 (2)	0.68862 (15)	0.11399 (10)	0.0312
O8	0.2491 (3)	0.84518 (11)	0.08425 (10)	0.0283
C9	0.2504 (4)	0.64316 (17)	0.06758 (14)	0.0253
O10	0.2439 (2)	0.64042 (11)	0.27115 (9)	0.0235
C11	0.2262 (4)	0.66333 (16)	0.37041 (14)	0.0279
O12	0.2837 (3)	0.77729 (11)	0.37897 (9)	0.0289
C13	0.0003 (5)	0.6445 (2)	0.40394 (18)	0.0429
C14	0.3840 (5)	0.5936 (2)	0.42241 (15)	0.0407
C15	0.0713 (4)	0.92003 (18)	0.30548 (17)	0.0333
H21	0.0287	0.7394	0.2085	0.0263*
H61	0.5088	0.9295	0.3166	0.0383*
H62	0.4079	0.9467	0.2084	0.0377*
H91	0.3402	0.6474	0.0096	0.0402*
H92	0.1033	0.6442	0.0475	0.0414*
H93	0.2831	0.5762	0.1055	0.0416*
H131	-0.0088	0.6629	0.4733	0.0662*
H132	-0.0928	0.6940	0.3641	0.0656*
H133	-0.0343	0.5655	0.3920	0.0667*
H141	0.3784	0.6088	0.4914	0.0584*
H142	0.5234	0.6119	0.3969	0.0597*
H143	0.3535	0.5157	0.4100	0.0591*
H151	0.1210	0.9798	0.3445	0.0480*
H152	0.0386	0.9522	0.2446	0.0501*
H153	-0.0564	0.8859	0.3313	0.0484*
H1	0.2235	0.8363	0.0234	0.0405*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0272 (10)	0.0237 (9)	0.0169 (8)	-0.0009 (9)	-0.0020 (8)	-0.0002 (7)
C2	0.0211 (9)	0.0243 (9)	0.0189 (9)	-0.0011 (8)	0.0007 (7)	-0.0011 (7)
C3	0.0226 (9)	0.0223 (9)	0.0176 (8)	-0.0006 (8)	-0.0016 (7)	0.0009 (7)
C4	0.0242 (9)	0.0309 (10)	0.0152 (8)	-0.0017 (9)	0.0010 (8)	0.0048 (8)
05	0.0234 (7)	0.0404 (8)	0.0301 (8)	-0.0062 (7)	-0.0002 (7)	-0.0081 (7)
C6	0.0332 (12)	0.0278 (10)	0.0287 (11)	-0.0059 (9)	0.0009 (10)	-0.0062 (9)
O7	0.0249 (7)	0.0461 (9)	0.0226 (7)	0.0056 (7)	0.0034 (6)	0.0007 (7)
08	0.0378 (9)	0.0276 (7)	0.0195 (7)	0.0021 (7)	-0.0042 (6)	0.0031 (5)
C9	0.0280 (10)	0.0290 (9)	0.0190 (8)	-0.0017 (10)	-0.0025 (8)	-0.0035 (7)
O10	0.0317 (8)	0.0217 (6)	0.0171 (6)	-0.0023 (7)	0.0037 (6)	-0.0005 (5)
C11	0.0430 (12)	0.0232 (9)	0.0176 (9)	-0.0003 (10)	0.0063 (9)	-0.0023 (7)
012	0.0458 (9)	0.0237 (7)	0.0172 (7)	-0.0011 (7)	-0.0037 (7)	-0.0004(5)
C13	0.0550 (16)	0.0391 (13)	0.0345 (13)	-0.0082 (12)	0.0226 (12)	-0.0031 (11)
C14	0.0671 (18)	0.0324 (11)	0.0226 (10)	0.0087 (12)	-0.0016 (11)	0.0031 (9)
C15	0.0399 (13)	0.0294 (10)	0.0307 (11)	0.0070 (10)	0.0012 (10)	-0.0042 (9)

Geometric parameters (Å, °)

C1—C2	1.547 (3)	С9—Н91	0.998
C1—C6	1.513 (3)	С9—Н92	0.975
C1—O12	1.435 (2)	С9—Н93	0.990
C1—C15	1.511 (3)	O10—C11	1.431 (2)
C2—C3	1.526 (3)	C11—O12	1.426 (2)
C2010	1.430 (2)	C11—C13	1.526 (3)
C2—H21	0.987	C11—C14	1.499 (3)
C3—C4	1.538 (3)	C13—H131	1.005
C3—O8	1.431 (2)	C13—H132	1.010
С3—С9	1.512 (3)	C13—H133	0.992
C4—O5	1.335 (3)	C14—H141	0.991
C4—O7	1.212 (3)	C14—H142	0.980
O5—C6	1.459 (3)	C14—H143	0.974
С6—Н61	1.002	C15—H151	0.960
С6—Н62	1.025	C15—H152	0.965
O8—H1	0.880	C15—H153	0.979
C2C1C6	111 59 (16)	H91C9H92	107.9
$C_2 = C_1 = C_0$	103 50 (14)	C3-C9-H93	106.8
$C_{2} = C_{1} = 0_{12}$	107.74 (17)	H91—C9—H93	111 4
C_{2} C_{1} C_{15}	114 17 (18)	H92—C9—H93	111.6
C_{6} C_{1} C_{15}	109 17 (17)	$C^2 = O10 = C11$	106 50 (14)
012-C1-C15	110 37 (16)	010-011-012	104.39(15)
C1-C2-C3	113.57 (16)	010 - C11 - C13	110.36 (19)
C1 - C2 - O10	104.26 (14)	012-C11-C13	110.94 (19)
$C_3 - C_2 - O_{10}$	107.03 (15)	010-C11-C14	108.53 (17)
C1—C2—H21	111.8	012-C11-C14	109.1 (2)
C3—C2—H21	108.3	C13—C11—C14	113.12 (19)
O10-C2-H21	111.9	C1—O12—C11	109.79 (15)
C2—C3—C4	107.53 (16)	C11—C13—H131	108.8
C2—C3—O8	106.69 (15)	C11—C13—H132	106.8
C4—C3—O8	107.58 (16)	H131—C13—H132	112.2
С2—С3—С9	111.74 (16)	C11—C13—H133	107.3
С4—С3—С9	110.67 (17)	H131—C13—H133	111.4
O8—C3—C9	112.38 (15)	H132—C13—H133	110.1
C3—C4—O5	116.88 (18)	C11—C14—H141	110.7
C3—C4—O7	124.15 (19)	C11—C14—H142	107.3
O5—C4—O7	118.97 (19)	H141—C14—H142	110.6
C4—O5—C6	118.67 (16)	C11—C14—H143	108.6
C1—C6—O5	113.22 (16)	H141—C14—H143	110.3
C1-C6-H61	109.9	H142—C14—H143	109.3
O5—C6—H61	108.0	C1—C15—H151	110.7
C1-C6-H62	108.7	C1—C15—H152	108.3
O5—C6—H62	106.1	H151—C15—H152	106.3
H61—C6—H62	110.9	C1—C15—H153	110.7
C3—O8—H1	111.6	H151—C15—H153	111.9

supporting information

C3—C9—H91 C3—C9—H92	107.9 111.2	H152—C15—H153	108.8
Hydrogen-bond geometry (Å, °)			

Symmetry code: (i) x-1/2, -y+3/2, -z.