organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

James C. Knight,* Thomas Tatchell and Ian A. Fallis

Main Building, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, Wales

Correspondence e-mail: knightjc@cardiff.ac.uk

Key indicators

Single-crystal X-ray study T = 150 KMean σ (C–C) = 0.002 Å R factor = 0.049 wR factor = 0.136 Data-to-parameter ratio = 17.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2-(Cyclohexylamino)-1,4-naphthoquinone

The molecules of the title compound, $C_{16}H_{17}NO_2$, interact by $\pi-\pi$ stacking between the naphthoquinone ring systems.

Received 31 January 2007 Accepted 1 February 2007

Comment

In research focusing on the development of redox-active naphthoquinone-based chealting agents we have observed unexpected reactivity of amine-substituted chloronapthoquinones and we report here a by-product from one of our syntheses. In an attempt to prepare 3-(cyclohexylamino)-2-(ptolylsulfanyl)naphthalene-1,4-dione by reaction of 2-chloro-3-(cyclohexylamino)naphthalene-1,4-dione with thiocresol under basic conditions, we isolated the title compound, (I), in modest vield. We postulate that the dechlorinated product was obtained via a quinolic intermediate obtained after oxidation of thiocresol to the corresponding disulfide. The reduction of chloronaphthoquinones has been described before (Reynolds et al., 1964), but what is unusual here is that a low-potential aminoquinone is acting as an oxidant. Elimination of HCl from the intermediate 2-chloro-3-(cyclohexylamino)naphthalene-1,4-diol would be readily achieved under the basic conditions employed to afford the title compound.

In (I), the naphthoquinone system is substituted with a cyclohexylamino group in position 2 (Fig. 1). The cyclohexyl group is in the chair conformation with an average C–C bond length of 1.496 (2) Å which lies well within the range of classical values. The central C10–N1–C11 angle is 126.73 (12)°, a value which is slightly more obtuse than that found in the related compound 3-chloro-2-pyrrolidino-1,4-naphthoquinone (Lynch *et al.*, 2002). An acute intramolecular N–H···O bond (Table 1) helps to establish the molecular conformation of (I).

The molecular packing diagram (Fig. 2) shows the occurrance of centrosymmetric intermolecular π - π stacking of the C1/C2/C3/C8/C9/C10 aromatic ring, with a centroid–centroid distance of 3.8694 (8) Å.

Experimental

3-Chloro-2-(cyclohexylamino)-1,4-naphthoquinone (0.5 g, 1.73 mmol), potassium carbonate (365 mg, 2.64 mmol) and *p*-thiotoluene (241 mg, 2.54 mmol) were reacted in acetonitrile (40 ml). The solu-

© 2007 International Union of Crystallography

All rights reserved

Figure 1

View of the molecular structure of (I), showing 50% displacement ellipsoids (H atoms are represented by spheres of arbitrary radius).

tion mixture was refluxed overnight under an inert nitrogen atmosphere. This solution was filtered, dried and purified by flash column chromatography (SiO₂) using CHCl₃ as the eluant. The title compound was found at $R_{\rm F} = 0.36$. Ruby-red blocks of (I) were obtained by slow evaporation of a CHCl₃ solution (yield 185 mg, 42%).

Crystal data

 $C_{16}H_{17}NO_2$ $M_r = 255.31$ Monoclinic, $P2_1/c$ a = 10.3204 (3) Å b = 6.3380 (2) Å c = 18.9664 (7) Å $\beta = 96.179$ (1)° V = 1233.40 (7) Å³

Data collection

Bruker–Nonius KappaCCD diffractometer φ and ω scans Absorption correction: multi-scan (SORTAV; Blessing, 1995) $T_{\rm min} = 0.954, T_{\rm max} = 0.980$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.136$ S = 1.05 3094 reflections 172 parameters H-atom parameters constrained Z = 4 $D_x = 1.375 \text{ Mg m}^{-3}$ Mo K α radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 150 (2) KBlock, red $0.52 \times 0.40 \times 0.22 \text{ mm}$

11095 measured reflections 3094 independent reflections 2075 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.068$ $\theta_{\text{max}} = 28.7^{\circ}$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0722P)^{2} + 0.0683P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.21 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.28 \text{ e } \text{\AA}^{-3}$

Figure 2

The packing of (I) showing the π - π stacking. The dashed line indicates the intramolecular hydrogen bond.

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1\cdots O2$	0.88	2.19	2.5917 (16)	107

The H atoms were placed in calculated positions (C-H = 0.95–1.00 and N-H = 0.88 Å) and refined as riding, with $U_{iso}(H) = 1.2Ueq(C,N)$.

Data collection: *COLLECT* (Nonius, 2000); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *SCALEPACK* and *DENZO* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Lynch, D. E. & McClenaghan, I. (2002). Acta Cryst. C58, o704-o707.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.
- Reynolds, G. A. & Van Allan, J. A. (1964). J. Org. Chem. 29, 3591–3593.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supporting information

Acta Cryst. (2007). E63, o1226-o1227 [https://doi.org/10.1107/S1600536807005466]

2-(Cyclohexylamino)-1,4-naphthoquinone

James C. Knight, Thomas Tatchell and Ian A. Fallis

2-(Cyclohexylamino)-1,4-naphthoquinone

Crystal data

C₁₆H₁₇NO₂ $M_r = 255.31$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 10.3204 (3) Å b = 6.3380 (2) Å c = 18.9664 (7) Å $\beta = 96.179$ (1)° V = 1233.40 (7) Å³ Z = 4

Data collection

Bruker–Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (SORTAV; Blessing, 1995) $T_{\min} = 0.954, T_{\max} = 0.980$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.136$ S = 1.052944 reflections 172 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 544 $D_x = 1.375 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6520 reflections $\theta = 2.9-27.5^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 150 KBlock, red $0.52 \times 0.40 \times 0.22 \text{ mm}$

11095 measured reflections 3094 independent reflections 2075 reflections with $I > 2\sigma(I)$ $R_{int} = 0.068$ $\theta_{max} = 28.7^{\circ}, \theta_{min} = 3.1^{\circ}$ $h = -13 \rightarrow 12$ $k = -8 \rightarrow 8$ $l = -23 \rightarrow 24$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0722P)^2 + 0.0683P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.21$ e Å⁻³ $\Delta\rho_{min} = -0.28$ e Å⁻³

Special details

Experimental. ¹H NMR (CDCl₃): δ 1.10–1.35 (*m*, 5H, Cy ring), 1.55 (*m*, 1H, Cy ring), 1.70 (*m*, 2H, Cy ring), 1.95 [*dd*, (*J*_{HH} = 1.70 + 3.40 Hz), 2H, Cy ring], 3.20 [quintet, (*J*_{HH} = 3.20 Hz), 1H, Cy ring], 5.65 (*s*, 1H, Ar), 5.75 [*d*, (*J*_{HH} = 5.77 Hz), 1H, NH], 7.45 [*t*, (*J*_{HH} = 7.50 Hz), 1H, Ar], 7.60 [*t*, (*J*_{HH} = 7.60 Hz), 1H, Ar], 7.90 [*d*, (*J*_{HH} = 7.90 Hz), 1H, Ar] and 7.95 [*d*, (*J*_{HH} = 8.00 Hz), 1H, Ar]. ¹³C NMR (CDCl₃): δ 24.56, 25.46, 31.64, 31.86, 51.12, 100.73, 126.07, 126.21, 130.56, 131.56, 133.66, 134.67, 146.67, 182.09, 182.82. IR (KBr) cm⁻¹: 3342, 3041, 2926, 2856, 1671, 1619, 1597, 1571, 1522, 1441, 1350, 1304, 1267, 1250, 1120, 1098, 1002, 952, 890, 862, 778, 726, 669, 635 and 565.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.62825 (14)	0.2358 (2)	1.01432 (8)	0.0225 (3)
H1A	0.6059	0.1130	0.9870	0.027*
C2	0.54304 (13)	0.3009 (2)	1.06508 (8)	0.0218 (3)
C3	0.57619 (13)	0.4910 (2)	1.10630 (7)	0.0188 (3)
C4	0.49385 (14)	0.5627 (2)	1.15364 (8)	0.0243 (4)
H4	0.4178	0.4850	1.1610	0.029*
C5	0.52166 (15)	0.7429 (2)	1.18922 (8)	0.0272 (4)
Н5	0.4660	0.7931	1.2223	0.033*
C6	0.63093 (15)	0.8536 (3)	1.17734 (8)	0.0279 (4)
H6	0.6487	0.9837	1.2014	0.033*
C7	0.71608 (14)	0.7814 (2)	1.13138 (8)	0.0233 (3)
H7	0.7925	0.8591	1.1246	0.028*
C8	0.68908 (13)	0.5990 (2)	1.09624 (7)	0.0189 (3)
С9	0.78112 (13)	0.5186 (2)	1.04880 (8)	0.0189 (3)
C10	0.73880 (13)	0.3397 (2)	1.00320 (7)	0.0192 (3)
C11	0.80372 (14)	0.1429 (2)	0.89982 (8)	0.0205 (3)
H11	0.7102	0.0986	0.8930	0.025*
C12	0.88468 (16)	-0.0420 (2)	0.92266 (9)	0.0280 (4)
H12A	0.8546	-0.1035	0.9660	0.034*
H12B	0.9767	0.0019	0.9338	0.034*
C13	0.87457 (16)	-0.2031 (2)	0.86481 (9)	0.0318 (4)
H13A	0.7837	-0.2553	0.8573	0.038*
H13B	0.9314	-0.3242	0.8799	0.038*
C14	0.91285 (15)	-0.1184 (3)	0.79535 (9)	0.0290 (4)
H14A	1.0056	-0.0755	0.8014	0.035*
H14B	0.9021	-0.2302	0.7587	0.035*
C15	0.83056 (15)	0.0644 (2)	0.77231 (8)	0.0264 (4)
H15A	0.7386	0.0192	0.7621	0.032*
H15B	0.8592	0.1251	0.7284	0.032*
C16	0.84189 (14)	0.2266 (2)	0.82992 (8)	0.0219 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

H16A	0.7854	0.3481	0.8148	0.026*
H16B	0.9330	0.2779	0.8371	0.026*
N1	0.81963 (11)	0.30046 (19)	0.95388 (7)	0.0238 (3)
H1	0.8897	0.3801	0.9550	0.029*
O1	0.44263 (10)	0.20911 (18)	1.07492 (6)	0.0347 (3)
O2	0.88904 (9)	0.59166 (16)	1.04622 (6)	0.0265 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0255 (8)	0.0203 (7)	0.0222 (8)	-0.0047 (6)	0.0055 (6)	-0.0034 (6)
C2	0.0224 (8)	0.0225 (7)	0.0214 (8)	-0.0028 (6)	0.0058 (6)	0.0004 (6)
C3	0.0203 (7)	0.0209 (7)	0.0151 (8)	0.0024 (6)	0.0014 (6)	0.0004 (6)
C4	0.0195 (7)	0.0299 (8)	0.0240 (9)	0.0020 (6)	0.0046 (6)	-0.0011 (7)
C5	0.0254 (8)	0.0322 (8)	0.0244 (9)	0.0057 (7)	0.0048 (6)	-0.0066 (7)
C6	0.0312 (8)	0.0256 (8)	0.0262 (9)	0.0045 (7)	0.0005 (7)	-0.0063 (7)
C7	0.0256 (8)	0.0216 (7)	0.0226 (8)	-0.0006 (6)	0.0023 (6)	-0.0013 (6)
C8	0.0211 (7)	0.0204 (7)	0.0150 (8)	0.0017 (6)	0.0015 (6)	0.0008 (6)
C9	0.0208 (7)	0.0196 (7)	0.0167 (8)	-0.0028 (6)	0.0036 (6)	0.0026 (6)
C10	0.0205 (7)	0.0211 (7)	0.0166 (8)	0.0001 (6)	0.0042 (6)	-0.0008 (6)
C11	0.0220 (7)	0.0221 (7)	0.0187 (8)	-0.0049 (6)	0.0075 (6)	-0.0048 (6)
C12	0.0358 (9)	0.0242 (8)	0.0235 (9)	-0.0030 (7)	0.0015 (7)	0.0015 (6)
C13	0.0363 (9)	0.0198 (8)	0.0387 (11)	0.0008 (7)	0.0015 (8)	-0.0048 (7)
C14	0.0238 (8)	0.0290 (8)	0.0347 (10)	0.0001 (7)	0.0056 (7)	-0.0136 (7)
C15	0.0281 (8)	0.0308 (8)	0.0212 (9)	-0.0047 (7)	0.0067 (6)	-0.0051 (7)
C16	0.0246 (7)	0.0207 (7)	0.0212 (8)	-0.0008 (6)	0.0055 (6)	-0.0005 (6)
N1	0.0245 (7)	0.0239 (6)	0.0249 (7)	-0.0095 (5)	0.0112 (5)	-0.0086 (5)
01	0.0315 (6)	0.0334 (6)	0.0423 (8)	-0.0142 (5)	0.0190 (5)	-0.0103 (5)
O2	0.0237 (6)	0.0269 (6)	0.0301 (7)	-0.0069 (5)	0.0092 (4)	-0.0069 (5)

Geometric parameters (Å, °)

C1-C10	1.3535 (19)	C11—N1	1.4281 (18)	
C1—C2	1.433 (2)	C11—C12	1.477 (2)	
C1—H1A	0.9500	C11—C16	1.519 (2)	
C2—O1	1.2201 (16)	C11—H11	1.0000	
C2—C3	1.457 (2)	C12—C13	1.494 (2)	
C3—C4	1.378 (2)	C12—H12A	0.9900	
С3—С8	1.3820 (19)	C12—H12B	0.9900	
C4—C5	1.342 (2)	C13—C14	1.514 (2)	
C4—H4	0.9500	C13—H13A	0.9900	
С5—С6	1.367 (2)	C13—H13B	0.9900	
С5—Н5	0.9500	C14—C15	1.475 (2)	
С6—С7	1.381 (2)	C14—H14A	0.9900	
С6—Н6	0.9500	C14—H14B	0.9900	
С7—С8	1.349 (2)	C15—C16	1.495 (2)	
С7—Н7	0.9500	C15—H15A	0.9900	
С8—С9	1.468 (2)	C15—H15B	0.9900	

supporting information

C9—O2	1.2120 (16)	C16—H16A	0.9900
C9—C10	1.464 (2)	C16—H16B	0.9900
C10—N1	1.3419 (18)	N1—H1	0.8800
	()		
C10-C1-C2	123.59 (13)	C16—C11—H11	108.8
C10-C1-H1A	118.2	C11—C12—C13	109.52 (13)
C2-C1-H1A	118.2	C11-C12-H12A	109.8
$01-C^2-C^1$	123.94 (13)	C13— $C12$ — $H12A$	109.8
$01 - C^2 - C^3$	117.81 (13)	C11 - C12 - H12R	109.8
C1 $C2$ $C3$	117.01(13) 118.23(12)	C_{12} C_{12} H_{12B}	109.8
$C_1 - C_2 - C_3$	110.23(12) 120.07(12)	$\begin{array}{c} 13 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\$	109.8
C4 - C3 - C8	120.97(13)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.2
$C_{4} - C_{3} - C_{2}$	119.79 (13)	C12 - C13 - C14	113.14 (13)
$C_{8} - C_{3} - C_{2}$	119.23 (13)	C12—C13—H13A	109.0
C5-C4-C3	119.67 (14)	C14—C13—H13A	108.9
C5—C4—H4	120.2	С12—С13—Н13В	108.9
C3—C4—H4	120.2	С14—С13—Н13В	108.9
C4—C5—C6	119.30 (15)	H13A—C13—H13B	107.8
C4—C5—H5	120.4	C15—C14—C13	109.90 (13)
C6—C5—H5	120.4	C15—C14—H14A	109.7
C5—C6—C7	121.76 (15)	C13—C14—H14A	109.7
С5—С6—Н6	119.1	C15—C14—H14B	109.7
С7—С6—Н6	119.1	C13—C14—H14B	109.7
C8—C7—C6	118.97 (14)	H14A—C14—H14B	108.2
С8—С7—Н7	120.5	C14—C15—C16	109.05 (13)
С6—С7—Н7	120.5	C14—C15—H15A	109.9
C7—C8—C3	119.27 (14)	C16—C15—H15A	109.9
С7—С8—С9	119.16 (13)	C14—C15—H15B	109.9
C3—C8—C9	121.57 (13)	C16—C15—H15B	109.9
Q2-C9-C10	119.27 (13)	H15A—C15—H15B	108.3
02 - C9 - C8	123.40(13)	C15—C16—C11	112.98 (12)
C_{10} C_{9} C_{8}	117 33 (12)	C15 $C16$ $H16A$	109.0
N1 - C10 - C1	117.53(12) 128.03(14)	C_{11} C_{16} H_{16A}	109.0
N1 C10 C9	120.03(14) 112.78(12)	C_{15} C_{16} H_{16B}	109.0
$C_{1} = C_{10} = C_{2}$	112.70(12) 110.10(12)	$C_{11} = C_{16} = H_{16} B$	109.0
C1 - C10 - C9	119.19(13) 100.08(12)	$H_{16A} = C_{16} = H_{16B}$	109.0
NI = CII = CI2	109.06 (12)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.8 12(.72.(12))
	111.20(12) 100.07(12)	CIO-NI-UI	120.75 (12)
	109.97 (12)	CIO—NI—HI	116.6
NI-CII-HII	108.8	CII—NI—HI	116.6
C12—C11—H11	108.8		
C10 C1 C2 O1	170.28(14)	C_{3} C_{8} C_{9} C_{10}	10.3(2)
$C_{10} = C_{1} = C_{2} = C_{1}^{2}$	1/9.20(14)	C_{3} C_{6} C_{7} C_{10} N_{1}	10.3(2) -174.88(14)
$C_{10} - C_{1} - C_{2} - C_{3}$	0.9(2)	$C_2 = C_1 = C_1 O_1 = O_1$	-1/4.00(14)
01 - 02 - 03 - 04	-1.0(2)	$C_2 = C_1 = C_1 = C_2$	5.2(2)
01 - 02 - 03 - 04	177.50 (14)	02-09-010-N1	-11.0(2)
01 - 02 - 03 - 08	-1/9./9 (13)	C8-C9-C10-N1	169.59 (12)
C1—C2—C3—C8	-1.3 (2)	O2—C9—C10—C1	168.95 (13)
C8—C3—C4—C5	1.7 (2)	C8—C9—C10—C1	-10.5(2)
C2—C3—C4—C5	-177.05 (13)	N1—C11—C12—C13	-176.86(12)

C3—C4—C5—C6	0.6 (2)	C16—C11—C12—C13	-54.66 (16)	
C4—C5—C6—C7	-2.2 (2)	C11—C12—C13—C14	56.74 (18)	
C5—C6—C7—C8	1.4 (2)	C12—C13—C14—C15	-57.82 (17)	
C6—C7—C8—C3	1.0 (2)	C13—C14—C15—C16	56.06 (16)	
C6—C7—C8—C9	-178.34 (13)	C14—C15—C16—C11	-57.67 (17)	
C4—C3—C8—C7	-2.5 (2)	N1-C11-C16-C15	178.25 (12)	
C2—C3—C8—C7	176.24 (13)	C12-C11-C16-C15	57.32 (16)	
C4—C3—C8—C9	176.77 (13)	C1-C10-N1-C11	2.6 (2)	
C2—C3—C8—C9	-4.4 (2)	C9-C10-N1-C11	-177.49 (13)	
C7—C8—C9—O2	10.2 (2)	C12-C11-N1-C10	-99.26 (17)	
C3—C8—C9—O2	-169.11 (13)	C16—C11—N1—C10	139.29 (15)	
C7—C8—C9—C10	-170.40 (12)			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1…O2	0.88	2.19	2.5917 (16)	107