

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Roland Peter Archer,^a* Elizabeth Tyrrell^a and Kuldip Singh^b

^aSchool of Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston-Upon-Thames KT1 2EE, England, and ^bDepartment of Chemistry, George Porter Building, University of Leicester, University Road, Leicester LE1 7RH, England

Correspondence e-mail: k965764@kingston.ac.uk

Key indicators

Single-crystal X-ray study T = 150 K Mean σ (C–C) = 0.003 Å R factor = 0.055 wR factor = 0.131 Data-to-parameter ratio = 15.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Colupulone

The structure of the title compound (systematic name: 3,5dihydroxy-2-isobutyryl-4,6,6-tris(3-methyl-but-2-enyl)cyclohexa-2,4-dienone), $C_{25}H_{36}O_4$, is of interest with respect to its biological activity. The structure displays $O-H\cdots O=C$ intraand intermolecular interactions, with $O\cdots O$ distances of 2.398 (2) and 2.6846 (19) Å, respectively.

Comment

Hop α -acids consist of humulone and cohumulone (Moir, 2000) and the β -acids consist mainly of lupulone and colupulone (Moir, 2000), the ratio of these depending greatly on the variety of hops analysed (Nickerson & Williams, 1986). There is evidence of other analogues of these compounds but they are in relatively low abundance.

Colupulone, (I) (Fig. 1), was first identified as a hop β -acid in 1914 (Wöllmer, 1925) and since this discovery its structure has been the subject of a great deal of debate. Indeed Harris *et al.* (1952) proposed an ether linkage for one of the isoprenyl groups of colupulone and the corresponding β -acids.

© 2007 International Union of Crystallography All rights reserved

Figure 1 The molecular structure of (I), with 50% probability ellipsoids and the labelling scheme.

organic papers

Received 9 February 2007 Accepted 22 February 2007

organic papers

Colupulone shows evidence of tautomerization by ¹H and ¹³C NMR spectroscopy (Borremans et al., 1975). The septet resonance for the methine proton in the acyl side chain exists as two separate resonances in CDCl₃, integrating for 0.7 and 0.3 protons at δ 4.02 and δ 4.19 p.p.m., respectively. There is also evidence from ¹H NMR spectroscopy of intramolecular hydrogen bonding. The strongly hydrogen-bonded proton has a chemical shift of around δ 19 p.p.m. (Borremans *et al.*, 1975).

In the molecular structure of (I), intramolecular hydrogen bonding is evident (Fig. 2). We have also identified the presence of intermolecular hydrogen bonding, O3-H3...O2ⁱ [symmetry code: (i) $\frac{1}{2} - x, \frac{1}{2} + y, z$] (Fig. 2 and Table 1). It has become apparent from our studies that any attempts to transform (I) into esters and ethers have furnished oils as the product. This is a result of disruption of the intermolecular hydrogen-bonding character by protection of the enolic hydroxyl function which prevents the molecule forming crystalline materials.

Experimental

Colupulone was synthesized according to a literature method (Drewett & Laws, 1970). Crystals were obtained from acetonitrile.

Crystal data

C ₂₅ H ₃₆ O ₄	$V = 4734.4 (13) \text{ Å}^3$
$M_r = 400.54$	Z = 8
Orthorhombic, Pbca	Mo $K\alpha$ radiation
a = 20.331 (3) Å	$\mu = 0.07 \text{ mm}^{-1}$
b = 10.9190 (18) Å	T = 150 (2) K
c = 21.327 (4) Å	$0.31 \times 0.23 \times 0.19 \text{ mm}$
Data collection	

Bruker SMART CCD area-detector
diffractometer
Absorption correction: none
32137 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.055$	272 parameters
$wR(F^2) = 0.131$	H-atom parameters constrained
S = 1.09	$\Delta \rho_{\rm max} = 0.24 \ {\rm e} \ {\rm \AA}^{-3}$
4169 reflections	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

4169 independent reflections

3337 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.083$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1-H1···O4	0.84	1.63	2.398 (2)	151
$O3-H3\cdots O2^i$	0.84	1.94	2.6846 (19)	147

Symmetry code: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, z$.

All H atoms bound to carbon were treated as riding atoms [C-H $0.95-1.00 \text{ Å}; U_{iso}(\text{H}) = 1.2U_{eq}(\text{C}) \text{ or } 1.5U_{eq}(\text{methyl C})].$ For the hydroxyl groups, O-H = 0.84 Å and $U_{iso}(H) = 1.5U_{eq}(O)$.

Figure 2

The packing of (I); the H atoms and side chains have been excluded for clarity with the exception of the hydroxyl H atoms

Data collection: SMART (Bruker, 1998): cell refinement: SMART: data reduction: SHELXTL (Sheldrick, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL.

We thank Kingston University for their financial support during this project and the Chemistry Department at the University of Leicester for generous assistance in providing all of the X-ray data in this series of investigations.

References

Borremans, F., De Potter, M. & De Keukeleire, D. (1975). Org. Magn. Reason. 7 415-417

Bruker (1998). SMART for Windows NT. Version 5.050. Bruker AXS Inc., Madison, Wisconsin, USA.

Drewett, K. & Laws, D. (1970). J. Inst. Brew. 79, 188-190.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565

Harris, G., Howard, G. A. & Pollock, J. R. A. (1952). J. Inst. Brew. 52, 413-416. Moir, M. (2000). J. Am. Soc. Brew. Chem. 58, 131-146.

Nickerson, G. & Williams, P. (1986). J. Am. Soc. Brew. Chem. 44, 91-94.

- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Wöllmer, W. (1925). Ber. 58, 672-678.

supporting information

Acta Cryst. (2007). E63, o1511-o1512 [https://doi.org/10.1107/S1600536807008860]

Colupulone

Roland Peter Archer, Elizabeth Tyrrell and Kuldip Singh

3,5-dihydroxy-2-isobutyryl-4,6,6-tris(3-methyl-but-2-enyl)cyclohexa-2,4- dienone

Crystal data

$C_{25}H_{36}O_4$	F(000) = 1744
$M_r = 400.54$	$D_{\rm x} = 1.124 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, Pbca	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 941 reflections
a = 20.331 (3) Å	$\theta = 2.8 - 23.6^{\circ}$
b = 10.9190 (18) Å	$\mu=0.07~\mathrm{mm}^{-1}$
c = 21.327 (4) Å	T = 150 K
V = 4734.4 (13) Å ³	Block, colourless
Z = 8	$0.31 \times 0.23 \times 0.19 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector	3337 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.083$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 25.0^\circ, \theta_{\rm min} = 1.9^\circ$
Graphite monochromator	$h = -24 \rightarrow 24$
φ and ω scans	$k = -12 \rightarrow 12$
32137 measured reflections	$l = -25 \rightarrow 25$
4169 independent reflections	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.055$	Hydrogen site location: inferred from
$wR(F^2) = 0.131$	neighbouring sites
<i>S</i> = 1.09	H-atom parameters constrained
4169 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0514P)^2 + 1.5184P]$
272 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{ m max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta ho_{\min} = -0.17 \text{ e} \text{ \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	-0.00694 (6)	0.04980 (12)	0.07693 (7)	0.0333 (4)	
H1	-0.0245	-0.0188	0.0707	0.050*	
O2	0.18238 (7)	-0.19466 (11)	0.10076 (6)	0.0286 (3)	
03	0.19023 (7)	0.24462 (12)	0.11214 (7)	0.0306 (3)	
Н3	0.2307	0.2328	0.1069	0.046*	
04	-0.01922 (6)	-0.16638 (13)	0.06097 (7)	0.0351 (4)	
C1	0.05570 (9)	0.03562 (17)	0.08592 (8)	0.0239 (4)	
C2	0.08445 (9)	-0.08359 (17)	0.08385 (8)	0.0227 (4)	
C3	0.15365 (9)	-0.09496 (17)	0.09656 (8)	0.0225 (4)	
C4	0.19628 (9)	0.02100 (17)	0.10312 (9)	0.0227 (4)	
C5	0.15750 (9)	0.13858 (16)	0.10366 (8)	0.0225 (4)	
C6	0.09181 (9)	0.14548 (17)	0.09824 (8)	0.0233 (4)	
C7	0.04143 (10)	-0.18582 (18)	0.07092 (9)	0.0272 (5)	
C8	0.06381 (11)	-0.31679 (18)	0.06736 (11)	0.0382 (5)	
H8	0.0962	-0.3316	0.1019	0.046*	
C9	0.00558 (13)	-0.4039 (2)	0.07632 (15)	0.0639 (8)	
H9A	-0.0142	-0.3899	0.1176	0.096*	
H9B	0.0210	-0.4888	0.0735	0.096*	
H9C	-0.0273	-0.3888	0.0436	0.096*	
C10	0.09843 (12)	-0.3379 (2)	0.00469 (12)	0.0532 (7)	
H10A	0.0677	-0.3213	-0.0297	0.080*	
H10B	0.1134	-0.4231	0.0022	0.080*	
H10C	0.1364	-0.2829	0.0014	0.080*	
C11	0.05512 (10)	0.26498 (18)	0.10449 (9)	0.0283 (5)	
H11A	0.0862	0.3339	0.0987	0.034*	
H11B	0.0212	0.2703	0.0713	0.034*	
C12	0.02278 (11)	0.2758 (2)	0.16748 (11)	0.0408 (6)	
H12	-0.0125	0.2210	0.1753	0.049*	
C13	0.03739 (12)	0.3522 (2)	0.21335 (11)	0.0446 (6)	
C14	-0.00031 (18)	0.3509 (3)	0.27410 (14)	0.0823 (10)	
H14A	-0.0244	0.4282	0.2788	0.124*	
H14B	0.0304	0.3413	0.3092	0.124*	
H14C	-0.0315	0.2825	0.2739	0.124*	
C15	0.08984 (14)	0.4486 (3)	0.21026 (14)	0.0678 (8)	
H15A	0.1113	0.4458	0.1691	0.102*	
H15B	0.1225	0.4336	0.2432	0.102*	
H15C	0.0700	0.5295	0.2165	0.102*	
C16	0.23623 (9)	0.01285 (18)	0.16486 (9)	0.0255 (4)	
H16A	0.2609	-0.0653	0.1653	0.031*	
H16B	0.2687	0.0804	0.1657	0.031*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C17	0.19463 (10)	0.01982 (19)	0.22288 (9)	0.0305 (5)
H17	0.1714	0.0943	0.2292	0.037*
C18	0.18646 (12)	-0.0655 (2)	0.26632 (10)	0.0403 (6)
C19	0.14351 (14)	-0.0438 (3)	0.32266 (12)	0.0622 (8)
H19A	0.1238	0.0379	0.3199	0.093*
H19B	0.1701	-0.0495	0.3609	0.093*
H19C	0.1086	-0.1057	0.3239	0.093*
C20	0.21876 (17)	-0.1888 (2)	0.26475 (13)	0.0692 (9)
H20A	0.2473	-0.1943	0.2279	0.104*
H20B	0.1850	-0.2527	0.2626	0.104*
H20C	0.2451	-0.2000	0.3028	0.104*
C21	0.24403 (9)	0.02169 (18)	0.04592 (9)	0.0264 (4)
H21A	0.2728	0.0947	0.0487	0.032*
H21B	0.2725	-0.0518	0.0480	0.032*
C22	0.20898 (10)	0.02299 (18)	-0.01575 (9)	0.0295 (5)
H22	0.1790	0.0886	-0.0221	0.035*
C23	0.21460 (11)	-0.05632 (19)	-0.06268 (10)	0.0344 (5)
C24	0.25942 (14)	-0.1652 (2)	-0.06232 (12)	0.0529 (7)
H24A	0.2921	-0.1567	-0.0958	0.079*
H24B	0.2336	-0.2398	-0.0692	0.079*
H24C	0.2819	-0.1704	-0.0217	0.079*
C25	0.17428 (13)	-0.0418 (3)	-0.12109 (11)	0.0512 (7)
H25A	0.1434	-0.1103	-0.1246	0.077*
H25B	0.2034	-0.0408	-0.1577	0.077*
H25C	0.1497	0.0354	-0.1191	0.077*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0220 (8)	0.0318 (8)	0.0461 (9)	0.0006 (6)	-0.0042 (6)	-0.0017 (7)
O2	0.0270 (7)	0.0206 (7)	0.0382 (8)	0.0017 (6)	-0.0041 (6)	-0.0005 (6)
O3	0.0248 (8)	0.0199 (7)	0.0471 (9)	-0.0016 (6)	0.0022 (7)	-0.0027 (6)
O4	0.0256 (8)	0.0352 (8)	0.0444 (9)	-0.0049 (6)	-0.0056 (6)	-0.0012 (7)
C1	0.0213 (10)	0.0298 (11)	0.0205 (10)	0.0006 (8)	0.0009 (8)	0.0014 (8)
C2	0.0237 (10)	0.0241 (10)	0.0203 (10)	-0.0018 (8)	-0.0006 (8)	0.0013 (8)
C3	0.0275 (11)	0.0206 (10)	0.0193 (10)	0.0007 (8)	0.0014 (8)	-0.0002 (8)
C4	0.0215 (10)	0.0216 (10)	0.0248 (10)	0.0015 (8)	0.0000 (8)	-0.0009 (8)
C5	0.0279 (11)	0.0199 (10)	0.0197 (10)	-0.0016 (8)	0.0018 (8)	-0.0003 (8)
C6	0.0269 (11)	0.0238 (10)	0.0191 (10)	0.0021 (8)	0.0003 (8)	0.0021 (8)
C7	0.0271 (11)	0.0310 (11)	0.0234 (10)	-0.0049 (9)	-0.0010 (8)	0.0020 (9)
C8	0.0376 (13)	0.0262 (11)	0.0507 (14)	-0.0052 (9)	-0.0162 (11)	-0.0003 (10)
C9	0.0539 (17)	0.0300 (14)	0.108 (2)	-0.0141 (12)	-0.0243 (16)	0.0060 (14)
C10	0.0453 (15)	0.0512 (16)	0.0631 (17)	0.0170 (12)	-0.0228 (13)	-0.0275 (13)
C11	0.0285 (11)	0.0259 (11)	0.0305 (11)	0.0057 (9)	-0.0034 (9)	0.0009 (9)
C12	0.0378 (13)	0.0344 (13)	0.0502 (15)	0.0058 (10)	0.0114 (11)	0.0012 (11)
C13	0.0449 (14)	0.0517 (15)	0.0371 (14)	0.0107 (12)	0.0069 (11)	-0.0044 (12)
C14	0.103 (3)	0.092 (3)	0.0523 (19)	0.015 (2)	0.0286 (18)	-0.0075 (17)
C15	0.0607 (18)	0.080 (2)	0.0630 (19)	-0.0052 (16)	-0.0026 (15)	-0.0267 (16)

supporting information

C16	0.0241 (10)	0.0224 (10)	0.0300 (11)	0.0007 (8)	-0.0021 (8)	-0.0007 (8)
C17	0.0319 (11)	0.0304 (11)	0.0292 (11)	0.0022 (9)	-0.0042 (9)	-0.0052 (9)
C18	0.0498 (15)	0.0441 (14)	0.0271 (12)	-0.0090 (11)	-0.0011 (10)	-0.0030 (10)
C19	0.0665 (18)	0.085 (2)	0.0356 (15)	-0.0203 (16)	0.0094 (13)	-0.0009 (14)
C20	0.123 (3)	0.0405 (15)	0.0438 (16)	0.0043 (16)	0.0103 (16)	0.0124 (12)
C21	0.0253 (10)	0.0231 (10)	0.0308 (11)	-0.0006 (8)	0.0061 (8)	-0.0010 (9)
C22	0.0302 (11)	0.0261 (11)	0.0321 (12)	0.0005 (9)	0.0073 (9)	0.0037 (9)
C23	0.0414 (13)	0.0337 (12)	0.0283 (12)	-0.0045 (10)	0.0101 (10)	-0.0005 (9)
C24	0.0763 (19)	0.0400 (14)	0.0423 (15)	0.0105 (13)	0.0096 (13)	-0.0095 (11)
C25	0.0549 (16)	0.0668 (18)	0.0319 (13)	-0.0033 (13)	0.0041 (11)	-0.0080 (12)

Geometric parameters (Å, °)

O1—C1	1.297 (2)	C14—H14A	0.9800
O1—H1	0.8400	C14—H14B	0.9800
O2—C3	1.239 (2)	C14—H14C	0.9800
O3—C5	1.348 (2)	C15—H15A	0.9800
О3—Н3	0.8400	C15—H15B	0.9800
O4—C7	1.269 (2)	C15—H15C	0.9800
C1—C2	1.428 (3)	C16—C17	1.501 (3)
C1—C6	1.431 (3)	C16—H16A	0.9900
C2—C3	1.438 (3)	C16—H16B	0.9900
C2—C7	1.445 (3)	C17—C18	1.324 (3)
C3—C4	1.541 (3)	С17—Н17	0.9500
C4—C5	1.507 (3)	C18—C20	1.498 (3)
C4—C16	1.550 (3)	C18—C19	1.504 (3)
C4—C21	1.559 (3)	C19—H19A	0.9800
C5—C6	1.342 (3)	C19—H19B	0.9800
C6—C11	1.509 (3)	C19—H19C	0.9800
C7—C8	1.503 (3)	C20—H20A	0.9800
C8—C10	1.528 (3)	С20—Н20В	0.9800
C8—C9	1.531 (3)	С20—Н20С	0.9800
С8—Н8	1.0000	C21—C22	1.496 (3)
С9—Н9А	0.9800	C21—H21A	0.9900
С9—Н9В	0.9800	C21—H21B	0.9900
С9—Н9С	0.9800	C22—C23	1.329 (3)
C10—H10A	0.9800	С22—Н22	0.9500
C10—H10B	0.9800	C23—C24	1.498 (3)
C10—H10C	0.9800	C23—C25	1.500 (3)
C11—C12	1.500 (3)	C24—H24A	0.9800
C11—H11A	0.9900	C24—H24B	0.9800
C11—H11B	0.9900	C24—H24C	0.9800
C12—C13	1.319 (3)	C25—H25A	0.9800
C12—H12	0.9500	С25—Н25В	0.9800
C13—C15	1.500 (4)	С25—Н25С	0.9800
C13—C14	1.506 (4)		
C1—O1—H1	109.5	H14A—C14—H14B	109.5

С5—О3—Н3	109.5	C13—C14—H14C	109.5
01—C1—C2	120.41 (17)	H14A—C14—H14C	109.5
O1—C1—C6	115.52 (17)	H14B—C14—H14C	109.5
C2—C1—C6	124.06 (17)	C13—C15—H15A	109.5
C1—C2—C3	118.25 (16)	C13—C15—H15B	109.5
C1—C2—C7	117.56 (17)	H15A—C15—H15B	109.5
C3—C2—C7	124.16 (17)	C13—C15—H15C	109.5
O2—C3—C2	123.42 (17)	H15A—C15—H15C	109.5
O2—C3—C4	116.77 (16)	H15B—C15—H15C	109.5
C2—C3—C4	119.77 (16)	C17—C16—C4	113.72 (15)
C5—C4—C3	113.99 (15)	C17—C16—H16A	108.8
C5—C4—C16	108.47 (15)	C4—C16—H16A	108.8
C3—C4—C16	108.96 (15)	C17—C16—H16B	108.8
C5—C4—C21	109.13 (15)	C4—C16—H16B	108.8
C3—C4—C21	106.45 (15)	H16A—C16—H16B	107.7
C16—C4—C21	109.80 (15)	C18—C17—C16	127.7 (2)
C6—C5—O3	117.04 (16)	C18—C17—H17	116.1
C6—C5—C4	124.59 (17)	С16—С17—Н17	116.1
O3—C5—C4	118.34 (16)	C17—C18—C20	124.2 (2)
C5—C6—C1	118.63 (17)	C17—C18—C19	121.4 (2)
C5—C6—C11	122.19 (17)	C20—C18—C19	114.4 (2)
C1—C6—C11	119.18 (17)	С18—С19—Н19А	109.5
O4—C7—C2	119.40 (18)	C18—C19—H19B	109.5
O4—C7—C8	116.42 (17)	H19A—C19—H19B	109.5
C2-C7-C8	124.17 (17)	C18—C19—H19C	109.5
C7—C8—C10	109.11 (18)	H19A—C19—H19C	109.5
C7—C8—C9	110.54 (19)	H19B—C19—H19C	109.5
C10—C8—C9	111.8 (2)	C18—C20—H20A	109.5
С7—С8—Н8	108.4	C18—C20—H20B	109.5
C10—C8—H8	108.4	H20A—C20—H20B	109.5
C9—C8—H8	108.4	C18—C20—H20C	109.5
C8—C9—H9A	109.5	H20A—C20—H20C	109.5
C8—C9—H9B	109.5	H20B—C20—H20C	109.5
H9A—C9—H9B	109.5	C_{22} C_{21} C_{4}	113.03 (16)
C8—C9—H9C	109.5	C22—C21—H21A	109.0
H9A—C9—H9C	109.5	C4—C21—H21A	109.0
H9B-C9-H9C	109.5	C22—C21—H21B	109.0
C8-C10-H10A	109.5	C4-C21-H21B	109.0
C8-C10-H10B	109.5	$H_{21}A - C_{21} - H_{21}B$	107.8
H10A—C10—H10B	109.5	C_{23} C_{22} C_{21}	128.0 (2)
C8-C10-H10C	109.5	C_{23} C_{22} H_{22}	116.0
H10A—C10—H10C	109.5	C21—C22—H22	116.0
H10B-C10-H10C	109.5	C_{22} C_{23} C_{24}	124.5 (2)
C_{12} C_{11} C_{6}	111.35 (16)	C_{22} C_{23} C_{25}	120.6(2)
C12—C11—H11A	109.4	C24—C23—C25	114.9 (2)
C6—C11—H11A	109.4	C23—C24—H24A	109.5
C12—C11—H11B	109.4	C23—C24—H24B	109.5
C6—C11—H11B	109.4	H24A—C24—H24B	109.5

H11A—C11—H11B	108.0	C23—C24—H24C	109.5
C13—C12—C11	128.0 (2)	H24A—C24—H24C	109.5
C13—C12—H12	116.0	H24B—C24—H24C	109.5
C11—C12—H12	116.0	С23—С25—Н25А	109.5
C12—C13—C15	124.8 (2)	С23—С25—Н25В	109.5
C12—C13—C14	121.2 (3)	H25A—C25—H25B	109.5
C15—C13—C14	114.0 (2)	С23—С25—Н25С	109.5
C13—C14—H14A	109.5	H25A—C25—H25C	109.5
C13—C14—H14B	109.5	H25B—C25—H25C	109.5
O1—C1—C2—C3	-177.59 (17)	C2-C1-C6-C11	-175.01 (17)
C6—C1—C2—C3	1.8 (3)	C1—C2—C7—O4	1.2 (3)
O1—C1—C2—C7	0.6 (3)	C3—C2—C7—O4	179.19 (18)
C6—C1—C2—C7	179.90 (17)	C1—C2—C7—C8	-179.78 (18)
C1—C2—C3—O2	174.21 (17)	C3—C2—C7—C8	-1.8 (3)
C7—C2—C3—O2	-3.8 (3)	O4—C7—C8—C10	102.3 (2)
C1—C2—C3—C4	-8.2 (3)	C2C7C8C10	-76.7 (2)
C7—C2—C3—C4	173.82 (17)	O4—C7—C8—C9	-21.0 (3)
O2—C3—C4—C5	-174.53 (16)	C2—C7—C8—C9	159.9 (2)
C2—C3—C4—C5	7.7 (2)	C5-C6-C11-C12	-102.4 (2)
O2—C3—C4—C16	-53.2 (2)	C1—C6—C11—C12	77.8 (2)
C2-C3-C4-C16	128.99 (17)	C6-C11-C12-C13	112.2 (3)
O2—C3—C4—C21	65.1 (2)	C11—C12—C13—C15	1.9 (4)
C2—C3—C4—C21	-112.66 (18)	C11—C12—C13—C14	-180.0 (2)
C3—C4—C5—C6	-0.8 (3)	C5-C4-C16-C17	57.1 (2)
C16—C4—C5—C6	-122.4 (2)	C3—C4—C16—C17	-67.5 (2)
C21—C4—C5—C6	118.0 (2)	C21—C4—C16—C17	176.26 (16)
C3—C4—C5—O3	176.98 (15)	C4-C16-C17-C18	116.5 (2)
C16—C4—C5—O3	55.4 (2)	C16-C17-C18-C20	-0.1 (4)
C21—C4—C5—O3	-64.2 (2)	C16—C17—C18—C19	179.1 (2)
O3—C5—C6—C1	176.78 (16)	C5-C4-C21-C22	-64.2 (2)
C4—C5—C6—C1	-5.4 (3)	C3—C4—C21—C22	59.3 (2)
O3—C5—C6—C11	-3.0 (3)	C16—C4—C21—C22	177.07 (16)
C4—C5—C6—C11	174.79 (17)	C4—C21—C22—C23	-123.4 (2)
O1—C1—C6—C5	-175.44 (17)	C21—C22—C23—C24	-0.6 (3)
C2-C1-C6-C5	5.2 (3)	C21—C22—C23—C25	178.8 (2)
O1-C1-C6-C11	4.4 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
01—H1…O4	0.84	1.63	2.398 (2)	151
O3—H3…O2 ⁱ	0.84	1.94	2.6846 (19)	147

Symmetry code: (i) -x+1/2, y+1/2, z.