Structure Reports

Online
ISSN 1600-5368

Craig Williamson, John M. D. Storey and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail:
w.harrison@abdn.ac.uk

Key indicators
Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
Disorder in main residue
R factor $=0.039$
$w R$ factor $=0.097$
Data-to-parameter ratio $=9.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Ethyl 2-(2-formylphenoxy)ethanoateethyl 2-(2-carboxyphenoxy)ethanoate [0.682 (7)/0.318 (7)]

In the title cocrystal, $0.682 \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \cdot 0.318 \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{5}$, the carboxylic acid constituent shows an intramolecular $\mathrm{O}-$ H $\cdot \cdots(\mathrm{O}, \mathrm{O})$ hydrogen bond.

Comment

The title compound, (I)/(II) (Fig. 1), is a cocrystal of a substituted benzaldehyde and benzoic acid that arose unexpectedly during our studies of novel cyclization reactions (Williamson et al., 2005). Auto-oxidation reactions of benzaldehydes, probably proceeding via a radical mechanism, have been known for many years (Mulcahy \& Watt, 1952).

Except for the aldehyde -H and carboxylic acid -OH groups, all the atoms in (I)/(II) are equivalent and overlap in the cocrystal, and the geometric parameters for (I)/(II) may be regarded as normal (Allen et al., 1987). Compound (II) displays a bifurcated intramolecular $\mathrm{O}-\mathrm{H} \cdots(\mathrm{O}, \mathrm{O})$ bond (Table 1). The fact that (II) prefers (or is forced) to form this intramolecular interaction may help to explain why the aldehyde and acid are able to crystallize together.

Two short intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions occur in the cocrystal (Table 1). For the $\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 1^{\mathrm{i}}$ bond (see Table 1 for symmetry code), the O atom of the aldehyde/ carboxylic acid $\mathrm{C}=\mathrm{O}$ group serves as one of the acceptors. Thus, regardless of the identity of an individual molecule (aldehyde or acid), an infinite (along [010]) $C(6)$ chain (Bernstein et al., 1995) generated by the 2_{1} screw axis is established. There are no $\pi-\pi$ stacking interactions observed in this cocrystal; the minimum separation of the centroids of the benzene rings of nearby molecules is greater than $4.8 \AA$.

Experimental

A dry two-necked flask was charged with $\mathrm{NaH}(0.360 \mathrm{~g}, 15 \mathrm{mmol})$, which had been washed with dry petrol ($3 \times 1 \mathrm{ml}$). Dry dimethylformamide (40 ml) was added and the suspension cooled to 273 K . Salicylaldehyde ($1.220 \mathrm{~g}, 1.06 \mathrm{ml}, 10 \mathrm{mmol}$) was added, and the solution stirred for 20 min . Ethyl bromoacetate $(2.12 \mathrm{~g}, 1.20 \mathrm{ml}$, 11 mmol) was added in one portion. The solution was allowed to warm to room temperature and was then stirred for $1 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(60 \mathrm{ml})$ was added, followed by extraction with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{ml})$. The organic fractions were combined, washed with saturated brine (75 ml) and

Received 14 February 2007 Accepted 15 February 2007
dried over MgSO_{4}, and the solvent was removed in vacuo. Chromatography, eluting with 20% EtOAc in hexane, collecting the fraction with $R_{\mathrm{f}}=0.22$, yielded the desired product as an oil, which crystallized slowly at room temperature ($1.90 \mathrm{~g}, 91 \%$; m.p. $333-337 \mathrm{~K}$). Analysis: $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4}$ requires: C 63.45 , H 5.81%; found $\mathrm{C} 61.80, \mathrm{H}, 5.72 \%$. IR ($\mathrm{KBr}, \nu_{\text {max }}, \mathrm{cm}^{-1}$): 2954.0 (Ar), 2843.3 [$\mathrm{C}=\mathrm{O}$ (aldehyde)], 1740.3 $[\mathrm{C}=\mathrm{O}$ (ester)], $1695.9[\mathrm{C}=\mathrm{O}$ (aldehyde) $]$.

Recrystallization from EtOH did not succeed immediately. However, colourless needles were obtained upon slow (7d) evaporation of an ethanol solution. It is likely that auto-oxidation occurred at this stage to yield the final cocrystal of (I)/(II).

Crystal data

$0.682 \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \cdot 0.318 \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{5}$	$V=1045.41(8) \AA^{3}$
$M_{r}=213.29$	$Z=4$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$	Mo $K \alpha$ radiation
$a=4.8119(2) \AA \AA \AA$	$\mu=0.11 \mathrm{~mm}^{-1}$
$b=13.5528(6) \AA$	$T=120(2) \mathrm{K}$
$c=15.6831(7) \AA$	$0.42 \times 0.25 \times 0.08 \mathrm{~mm}$

Data collection

Nonius KappaCCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2003)
$T_{\text {min }}=0.957, T_{\text {max }}=0.993$

$$
V=1045.41(8) \AA^{3}
$$

Z
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=120(2) \mathrm{K}$
$0.42 \times 0.25 \times 0.08 \mathrm{~mm}$

9977 measured reflections 1419 independent reflections 1129 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.046$

157 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.19 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.23 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O2-H2 \cdots O3	0.99	1.70	$2.497(5)$	134
O2-H2 2 O4	0.99	2.50	$3.395(5)$	151
C6-H6 O1 $^{\mathrm{i}}$	0.95	2.56	3.504 (3)	174
${\text { C8-H8B } \cdots \text { O }^{\text {ii }}}^{\text {C }}$	0.99	2.43	$3.354(3)$	155

Symmetry codes: (i) $-x, y-\frac{1}{2},-z+\frac{3}{2}$; (ii) $x-1, y, z$.
Anomalous dispersion was negligible and Friedel pairs were merged before refinement. The molecules of (I) and (II) are achiral, and thus the observed non-centrosymmetric space group must arise from a packing effect. After initial modelling as the expected aldehyde [compound (I)], very high residuals ($w R>0.40$) and a large difference peak near atom C 1 resulted. Modelling the crystal structure as compound (II) also resulted in very high residuals, and unreasonable $U^{i j}$ values for atom O2. Refinement as a cocrystal of (I) + (II) (occupancies of the $-\mathrm{O} 2-\mathrm{H} 2$ and -H 1 groups/atoms attached to atom C 1 refined with their sum constrained to unity) rapidly converged to a physically plausible result with low residuals.

The C11 methyl group is disordered over two positions of equal occupancy [refined value for the first component $=0.50$ (3)]. The $\mathrm{O}-$ bound H atom was located in a difference map and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})$. All C-bound H atoms were placed in

Figure 1
The structures of two molecules in the cocrystal, with one represented as the acid, (II), and one as the aldehyde, (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radius. Hydrogen bonds are indicated by doubledashed lines. Only one disorder component of the C 11 methyl group is shown. (Symmetry code as in Table 1.)
calculated positions, with $\mathrm{C}-\mathrm{H}=0.95-0.99 \AA$, and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ (methyl C).

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski \& Minor, 1997), and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the EPSRC National Crystallographic Service, University of Southampton, for the X-ray data collection.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Mulcahy, M. F. R. \& Watt, I. C. (1952). Proc. R. Soc. London Ser. A, 211, 1029.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Williamson, C., Storey, J. M. D. \& Harrison, W. T. A. (2005). Acta Cryst. E61, o1566-o1568.

supporting information

Acta Cryst. (2007). E63, o1426-o1427 [https://doi.org/10.1107/S1600536807007738]

Ethyl 2-(2-formylphenoxy)ethanoate-ethyl 2-(2-carboxyphenoxy)ethanoate [0.682 (7)/0.318 (7)]

Craig Williamson, John M. D. Storey and William T. A. Harrison

Ethyl 2-(2-formylphenoxy)ethanoate-ethyl 2-(2-carboxyphenoxy)ethanoate [0.682 (7)/0.318 (7)]

Crystal data

$0.682 \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \cdot 0.318 \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{5}$
$M_{r}=213.29$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Hall symbol: P 2ac 2ab
$a=4.8119$ (2) \AA
$b=13.8528$ (6) \AA
$c=15.6831$ (7) \AA
$V=1045.41(8) \AA^{3}$
$Z=4$

Data collection

Nonius KappaCCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω and φ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
$T_{\text {min }}=0.957, T_{\text {max }}=0.993$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.098$
$S=1.06$
1419 reflections
157 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$F(000)=450$
$D_{\mathrm{x}}=1.355 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1430 reflections
$\theta=2.9-27.5^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Slab, colourless
$0.42 \times 0.25 \times 0.08 \mathrm{~mm}$

9977 measured reflections
1419 independent reflections
1129 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.046$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=3.9^{\circ}$
$h=-6 \rightarrow 5$
$k=-17 \rightarrow 13$
$l=-20 \rightarrow 20$

Secondary atom site location: difference Fourier map
Hydrogen site location: difmap and geom
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0559 P)^{2}+0.0632 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.19 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.23$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 1997), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.031 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
C1	0.3059 (5)	0.92120 (16)	0.70792 (15)	0.0331 (5)	
H1	0.4298	0.9021	0.7520	0.040*	0.682 (7)
C2	0.0918 (5)	0.85223 (14)	0.67935 (13)	0.0279 (5)	
C3	-0.0628 (5)	0.87175 (16)	0.60610 (14)	0.0326 (5)	
H3	-0.0302	0.9299	0.5756	0.039*	
C4	-0.2616 (5)	0.80823 (17)	0.57725 (15)	0.0342 (6)	
H4	-0.3644	0.8221	0.5270	0.041*	
C5	-0.3106 (5)	0.72371 (17)	0.62229 (14)	0.0325 (5)	
H5	-0.4472	0.6796	0.6023	0.039*	
C6	-0.1631 (5)	0.70251 (15)	0.69608 (13)	0.0279 (5)	
H6	-0.2014	0.6452	0.7272	0.033*	
C7	0.0399 (4)	0.76560 (15)	0.72365 (13)	0.0257 (5)	
C8	0.1580 (5)	0.66534 (15)	0.84300 (13)	0.0276 (5)	
H8A	0.1944	0.6077	0.8074	0.033*	
H8B	-0.0354	0.6621	0.8643	0.033*	
C9	0.3585 (4)	0.66947 (15)	0.91613 (13)	0.0276 (5)	
C10	0.4839 (6)	0.5919 (2)	1.04427 (16)	0.0456 (7)	
H10A	0.5094	0.6564	1.0703	0.055*	
H10B	0.6683	0.5650	1.0294	0.055*	
C11A	0.324 (3)	0.5233 (10)	1.1055 (6)	0.046 (2)	0.50 (3)
H11A	0.4306	0.5151	1.1582	0.068*	0.50 (3)
H11B	0.2988	0.4604	1.0780	0.068*	0.50 (3)
H11C	0.1419	0.5512	1.1188	0.068*	0.50 (3)
C11B	0.449 (6)	0.5058 (10)	1.0888 (11)	0.065 (5)	0.50 (3)
H11D	0.5727	0.5053	1.1385	0.098*	0.50 (3)
H11E	0.4948	0.4514	1.0514	0.098*	0.50 (3)
H11F	0.2559	0.5003	1.1078	0.098*	0.50 (3)
O1	0.3320 (3)	1.00164 (11)	0.67838 (12)	0.0434 (5)	
O2	0.4619 (10)	0.9054 (4)	0.7772 (3)	0.037 (2)	0.318 (7)
H2	0.4288	0.8436	0.8074	0.045*	0.318 (7)
O3	0.1994 (3)	0.75114 (10)	0.79483 (9)	0.0306 (4)	
O4	0.5400 (3)	0.72816 (12)	0.92481 (11)	0.0384 (4)	
O5	0.3060 (3)	0.59732 (10)	0.96963 (9)	0.0321 (4)	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0332(12)$	$0.0300(12)$	$0.0360(12)$	$0.0012(10)$	$0.0098(11)$	$-0.0001(10)$
C2	$0.0286(11)$	$0.0231(10)$	$0.0319(11)$	$0.0051(9)$	$0.0095(9)$	$-0.0015(10)$
C3	$0.0343(12)$	$0.0319(12)$	$0.0316(12)$	$0.0089(10)$	$0.0067(10)$	$0.0057(10)$
C4	$0.0314(12)$	$0.0395(13)$	$0.0316(11)$	$0.0059(11)$	$0.0005(10)$	$0.0045(10)$
C5	$0.0274(11)$	$0.0344(12)$	$0.0357(12)$	$-0.0015(11)$	$-0.0010(10)$	$-0.0042(10)$
C6	$0.0271(11)$	$0.0235(10)$	$0.0330(11)$	$-0.0008(9)$	$0.0027(10)$	$0.0001(9)$
C7	$0.0261(11)$	$0.0240(11)$	$0.0271(11)$	$0.0053(9)$	$0.0039(9)$	$-0.0013(9)$
C8	$0.0277(11)$	$0.0257(11)$	$0.0296(11)$	$0.0018(10)$	$0.0022(9)$	$0.0016(9)$
C9	$0.0235(10)$	$0.0280(11)$	$0.0314(11)$	$0.0047(10)$	$0.0017(10)$	$-0.0015(9)$
C10	$0.0481(15)$	$0.0493(15)$	$0.0395(14)$	$0.0060(13)$	$-0.0176(12)$	$0.0030(13)$
C11A	$0.043(5)$	$0.061(5)$	$0.033(3)$	$-0.003(4)$	$-0.007(4)$	$0.009(3)$
C11B	$0.089(12)$	$0.050(5)$	$0.057(6)$	$-0.013(6)$	$-0.040(7)$	$0.016(4)$
O1	$0.0448(10)$	$0.0260(8)$	$0.0595(11)$	$-0.0027(8)$	$0.0151(10)$	$0.0015(8)$
O2	$0.033(3)$	$0.034(3)$	$0.045(4)$	$-0.008(2)$	$-0.002(2)$	$0.008(2)$
O3	$0.0330(9)$	$0.0288(8)$	$0.0300(8)$	$-0.0045(7)$	$-0.0035(7)$	$0.0051(6)$
O4	$0.0288(9)$	$0.0407(9)$	$0.0456(9)$	$-0.0056(8)$	$-0.0043(8)$	$0.0014(8)$
O5	$0.0359(9)$	$0.0298(8)$	$0.0306(8)$	$0.0015(7)$	$-0.0069(7)$	$0.0017(7)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{O} 1$	1.213 (3)	C8-H8A	0.9900
$\mathrm{C} 1-\mathrm{O} 2$	1.339 (5)	C8-H8B	0.9900
$\mathrm{C} 1-\mathrm{C} 2$	1.475 (3)	C9-04	1.201 (3)
C1-H1	0.9500	C9-O5	1.329 (3)
C2-C3	1.395 (3)	C10-C11B	1.392 (11)
C2-C7	1.409 (3)	C10-O5	1.452 (3)
C3-C4	1.377 (3)	C10-C11A	1.555 (10)
C3-H3	0.9500	C10-H10A	0.9900
C4-C5	1.388 (3)	C10-H10B	0.9900
C4-H4	0.9500	C11A-H11A	0.9800
C5-C6	1.389 (3)	C11A-H11B	0.9800
C5-H5	0.9500	C11A-H11C	0.9800
C6-C7	1.380 (3)	C11B-H11D	0.9800
C6-H6	0.9500	C11B-H11E	0.9800
C7-O3	1.369 (3)	C11B-H11F	0.9800
C8-O3	1.422 (2)	$\mathrm{O} 2-\mathrm{H} 2$	0.9903
C8-C9	1.500 (3)		
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	113.7 (3)	O4-C9-O5	125.2 (2)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	123.5 (2)	O4-C9-C8	125.47 (19)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	122.2 (3)	O5-C9-C8	109.36 (17)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1$	117.9	C11B-C10-O5	112.2 (5)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	118.6	C11B-C10-C11A	26.8 (9)
C3-C2-C7	118.5 (2)	O5-C10-C11A	103.7 (4)
C3-C2-C1	119.8 (2)	C11B-C10-H10A	125.6

supporting information

C7-C2-C1	121.7 (2)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	121.2 (2)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.4
C2-C3-H3	119.4
C3-C4-C5	119.3 (2)
C3-C4-H4	120.3
C5-C4-H4	120.3
C4-C5-C6	121.0 (2)
C4-C5-H5	119.5
C6-C5-H5	119.5
C7-C6-C5	119.3 (2)
C7-C6-H6	120.4
C5-C6-H6	120.4
O3-C7-C6	124.01 (18)
$\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 2$	115.30 (19)
C6-C7-C2	120.7 (2)
O3-C8-C9	106.51 (17)
O3-C8-H8A	110.4
C9-C8-H8A	110.4
O3-C8-H8B	110.4
C9-C8-H8B	110.4
H8A-C8-H8B	108.6
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	10.7 (3)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-179.3 (3)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	-170.1 (2)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	0.0 (4)
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	0.0 (3)
C1-C2-C3-C4	179.2 (2)
C2-C3-C4-C5	0.5 (3)
C3-C4-C5-C6	0.3 (3)
C4-C5-C6-C7	-1.6 (3)
C5-C6-C7-O3	-179.22 (18)
C5-C6-C7-C2	2.1 (3)
C3-C2-C7-O3	179.91 (18)

O5-C10-H10A	111.0
C11A-C10-H10A	111.0
C11B-C10-H10B	84.4
O5-C10-H10B	111.0
C11A-C10-H10B	111.0
H10A-C10-H10B	109.0
C10-C11A-H11A	109.5
C10-C11A-H11B	109.5
H11A-C11A-H11B	109.5
C10-C11A-H11C	109.5
H11A-C11A-H11C	109.5
H11B-C11A-H11C	109.5
C10-C11B-H11D	109.5
C10-C11B-H11E	109.5
H11D-C11B-H11E	109.5
C10-C11B-H11F	109.5
H11D-C11B-H11F	109.5
H11E-C11B-H11F	109.5
C1-O2-H2	116.0
C7-O3-C8	118.48 (17)
C9-O5-C10	$115.81(18)$

$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7-\mathrm{O} 3$	$0.7(3)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$	$-1.3(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$	$179.48(19)$
$\mathrm{O} 3-\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 4$	$-8.5(3)$
$\mathrm{O} 3-\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 5$	$172.12(16)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{O} 3-\mathrm{C} 8$	$1.0(3)$
$\mathrm{C} 2-\mathrm{C} 7-\mathrm{O} 3-\mathrm{C} 8$	$179.79(18)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{O} 3-\mathrm{C} 7$	$-179.91(17)$
$\mathrm{O} 4-\mathrm{C} 9-\mathrm{O} 5-\mathrm{C} 10$	$0.8(3)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 5-\mathrm{C} 10$	$-179.85(18)$
$\mathrm{C} 11 \mathrm{~B}-\mathrm{C} 10-\mathrm{O} 5-\mathrm{C} 9$	$-169.3(15)$
$\mathrm{C} 11 \mathrm{~A}-\mathrm{C} 10-\mathrm{O} 5-\mathrm{C} 9$	$163.9(6)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 2 \cdots \mathrm{O} 3$	0.99	1.70	$2.497(5)$	134
$\mathrm{O} 2 — \mathrm{H} 2 \cdots \mathrm{O} 4$	0.99	2.50	$3.395(5)$	151
$\mathrm{C} 6-\mathrm{H} 6 \cdots 1^{\mathrm{i}}$	0.95	2.56	$3.504(3)$	174
$\mathrm{C} 8 — \mathrm{H} 8 B \cdots \mathrm{O} 4{ }^{\mathrm{ii}}$	0.99	2.43	$3.354(3)$	155

Symmetry codes: (i) $-x, y-1 / 2,-z+3 / 2$; (ii) $x-1, y, z$.

[^0]: © 2007 International Union of Crystallography All rights reserved

