Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Simona Chessa and Joseph A. Wright*

School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, England

Correspondence e-mail:
joseph.wright@uea.ac.uk

Key indicators

Single-crystal X-ray study
$T=140 \mathrm{~K}$
Mean $\sigma(\mathrm{N}-\mathrm{C})=0.005 \AA$
R factor $=0.021$
$w R$ factor $=0.032$
Data-to-parameter ratio $=17.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Redetermination of catena-poly[[sodium(I)-tri- μ-dimethylformamide- $\kappa^{6} \mathrm{O}: O$] iodide] at 140 K

The structure of the title compound, $\left\{\left[\mathrm{Na}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{3}\right] \mathrm{I}\right\}_{n}$, has been redetermined at 140 (2) K. The Na^{+}cations lie on sites of 32 point symmetry and are linked into one-dimensional chains via bridging DMF molecules lying on mirror planes. The coordination geometry of Na^{+}is intermediate between octahedral and trigonal prismatic. The I^{-}anions lie on sites of $\overline{6}$ point symmetry between the chains.

Comment

The structure of the title compound, (I), has been determined previously at room temperature (Gobillon et al., 1962; Batsanov \& Struchkov, 1994). In the first case, all atoms were refined using only isotropic displacement parameters. The second determination gave unsatisfactory R values ($R=$ 0.140). Compound (I) has been obtained as a by-product of a Heck reaction involving an aryl iodide in DMF, using $\mathrm{Na}_{2} \mathrm{CO}_{3}$ as base. We have taken this opportunity to redetermine the structure of (I) at 140 (2) K, leading to significantly improved precision.

(I)

The Na^{+}cation in (I) is coordinated by six DMF molecules lying on mirror planes (Fig. 1). The bond distances (Table 1) and coplanar nature of $\mathrm{O} 1, \mathrm{C} 1$ and N 1 suggests a degree of double-bond character between C 1 and N 1 in addition to that between C 1 and O 1 . This suggests the presence of a partial positive charge on N 1 and a partial negative charge on O 1 , as suggested by Gobillon et al. (1962), which may lead to enhanced electrostatic interaction between the DMF molecules and the Na^{+}cation.

The geometry at Na 1 is intermediate between octahedral and trigonal prismatic; when viewed along the c axis (Fig. 2),

Received 22 January 2007
Accepted 11 February 2007

Figure 1
Part of the polymeric structure of (I), viewed approximately perpendicular to the c axis, showing displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted. [Symmetry codes: (i) $-x+y$, $-x, \frac{1}{2}-z$; (ii) $y, x,-\frac{1}{2}+z$; (iii) $-y, x-y, z$; (iv) $y, x, \frac{1}{2}+z$; (v) $-x,-x+y$, $-\frac{1}{2}+z$; (vi) $-x,-x+y, \frac{1}{2}+z$; (vii) $x-y,-y,-z$; (viii) $x-y,-y, 1-z$.]

Figure 2
Perspective view of (I) along the c axis. H atoms have been omitted.
the angle between O atoms in successive layers is 29.0°. The bridging DMF molecules generate one-dimensional chains along c. The positions of the DMF molecules alternate along the c axis, leading to an $A B A B$ pattern of DMF sites.

Gobillon et al. (1962) have described the structure of (I) as containing $\mathrm{C}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bonds, involving C 1 and C 3 . The C \cdots I distances determined in the current study [C1 \cdots I1 $=4.261$ (3) and C3 \cdots I1 4.349 (4) Å] are outside the normal range for such an interaction, based on the van der Waals radii of the elements involved (Pauling, 1960). The interaction of the cationic polymer with the anions is, therefore, best described as largely electrostatic.

Experimental

Crystals of (I) were obtained by crystallization from a hexanechloroform (1:1) mixture of the solid residues from a Heck reaction. A mixture of 1-butyl-3-methylimidazolium hexafluorophosphate $(0.188 \mathrm{ml}, 1.0 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(112 \mathrm{mg}, 0.50 \mathrm{mmol})$ and triphenyl-
phosphane ($256 \mathrm{mg}, 1.0 \mathrm{mmol}$) was suspended in dry tetrahydrofuran $(15 \mathrm{ml})$ and stirred overnight under nitrogen. The resulting brown suspension was evaporated in vacuo and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The dried residue was then used as a catalyst for a Mizoroki-Heck reaction, according to the following typical procedure. Iodobenzene $(1.0 \mathrm{mmol})$, sodium acetate $(1.5 \mathrm{mmol})$, and tert-butyl acrylate (1.4 mmol) were placed in a Schlenk tube under N_{2}, and the reagents were suspended in dimethylformamide (DMF, 3 ml), before injection of the catalyst $(0.05 \mathrm{mmol})$ in DMF (3 ml). The reaction mixture was stirred for 8 h at 353 K , before cooling and extraction of the organic components with several portions of hexane. Extraction of the residue with chloroform followed by layering with hexane yielded crystals of (I).

Crystal data

$\left[\mathrm{Na}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{3}\right] \mathrm{I}$
$M_{r}=369.18$
Hexagonal, $P \overline{6} 2 c$
$a=11.8038$ (14) \AA
$c=6.3881$ (7) A 。
$V=770.81(15) \AA^{3}$

Data collection

Oxford Diffraction Xcalibur3 CCD diffractometer
Absorption correction: multi-scan (ABSPACK; Oxford Diffraction, 2006)
$T_{\text {min }}=0.621, T_{\text {max }}=0.979$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.032$
$S=1.01$
657 reflections
37 parameters
H -atom parameters constrained

$$
\Delta \rho_{\max }=0.41 \mathrm{e}^{\AA^{-3}}
$$

$\Delta \rho_{\min }=-0.35 \mathrm{e}^{-3}$
Absolute structure: Flack (1983),
281 Friedel pairs
Flack parameter: 0.00 (3)

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{O} 1$	$1.238(3)$	$\mathrm{C} 3-\mathrm{N} 1$	$1.457(4)$
$\mathrm{C} 1-\mathrm{N} 1$	$1.316(4)$	$\mathrm{Na} 1-\mathrm{O} 1$	$2.3954(15)$
$\mathrm{C} 2-\mathrm{N} 1$	$1.460(5)$		
$\mathrm{O} 1-\mathrm{Na} 1-\mathrm{O} 1^{\mathrm{i}}$	$80.40(5)$	$\mathrm{O} 1-\mathrm{Na} 1-\mathrm{O} 1^{\mathrm{ii}}$	$87.62(7)$

Symmetry codes: (i) $-x+y,-x,-z+\frac{1}{2}$; (ii) $y, x, z-\frac{1}{2}$.
H atoms were included in calculated positions and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for H 1 , and $\mathrm{C}-\mathrm{H}=0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for the methyl groups. The methyl groups were allowed to rotate about their local threefold axes.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2003), WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).

The authors thank the EPSRC for funding and Dr David Hughes for the provision of X-ray facilities.

metal-organic papers

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Batsanov, A. S. \& Struchkov, Yu. T. (1994). Koord. Khim. 20, 354-356 (In Russian); Chem. Abs. 121, 218187.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Gobillon, Y., Piret, P. \& van Meerssche, M. (1962). Bull. Soc. Chim. Fr. pp. 551-555.
Oxford Diffraction (2006). ABSPACK, CrysAlis CCD and CrysAlis RED Versions 1.171. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca: Cornell University Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supporting information

Acta Cryst. (2007). E63, m787-m789 [https://doi.org/10.1107/S1600536807007052]

Redetermination of catena-poly[[sodium(I)-tri- μ-dimethylformamide- $\left.\kappa^{6} \mathrm{O}: \mathrm{O}\right]$ iodide] at 140 K

Simona Chessa and Joseph A. Wright

catena-poly [[sodium(I)-tri- μ-dimethylformamide- $\kappa^{6} \mathrm{O}: O$] iodide]

Crystal data

$\left[\mathrm{Na}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{3}\right] \mathrm{I}$
$M_{r}=369.18$
Hexagonal, $P \overline{6} 2 c$
Hall symbol: P-6c -2c
$a=11.8038$ (14) \AA
$c=6.3881$ (7) \AA
$V=770.81(15) \AA^{3}$
$Z=2$
$F(000)=368$

Data collection

Oxford Diffraction Xcalibur3 CCD
diffractometer
Radiation source: Enhance (Mo) X-ray Source
Graphite monochromator
Thin-slice φ and ω scans
Absorption correction: multi-scan
(ABSPACK; Oxford Diffraction, 2006)
$T_{\text {min }}=0.621, T_{\text {max }}=0.979$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.032$
$S=1.01$
657 reflections
37 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
$D_{\mathrm{x}}=1.591 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4526 reflections
$\theta=3.8-27.5^{\circ}$
$\mu=2.11 \mathrm{~mm}^{-1}$
$T=140 \mathrm{~K}$
Needle, colourless
$0.25 \times 0.04 \times 0.01 \mathrm{~mm}$

10001 measured reflections
657 independent reflections
607 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.054$
$\theta_{\text {max }}=27.6^{\circ}, \theta_{\text {min }}=3.8^{\circ}$
$h=-15 \rightarrow 15$
$k=-15 \rightarrow 15$
$l=-8 \rightarrow 8$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0162 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.41 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.35$ e \AA^{-3}
Absolute structure: Flack (1983), 281 Friedel pairs
Absolute structure parameter: 0.00 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
C1	$0.2666(3)$	$0.2349(3)$	0.2500	$0.0182(6)$	
H1	0.3494	0.2396	0.2500	0.022^{*}	
C2	$0.1453(3)$	$0.3513(4)$	0.2500	$0.0249(9)$	
H2A	0.0717	0.2648	0.2152	0.037^{*}	0.50
H2B	0.1515	0.4151	0.1458	0.037^{*}	0.50
H2C	0.1315	0.3775	0.3890	0.037^{*}	0.50
C3	$0.3875(3)$	$0.4718(3)$	0.2500	$0.0261(8)$	
H3A	0.3957	0.5170	0.3826	0.039^{*}	0.50
H3B	0.3864	0.5254	0.1337	0.039^{*}	0.50
H3C	0.4620	0.4575	0.2336	0.039^{*}	0.50
I1	0.6667	0.3333	0.2500	$0.02405(9)$	
N1	$0.2663(3)$	$0.3463(3)$	0.2500	$0.0197(6)$	
Na1	0.0000	0.0000	0.0000	$0.0191(3)$	
O1	$0.1683(2)$	$0.12459(19)$	0.2500	$0.0206(5)$	

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0183(16)$	$0.0198(16)$	$0.0173(15)$	$0.0100(14)$	0.000	0.000
C2	$0.021(2)$	$0.0151(17)$	$0.0412(19)$	$0.0106(15)$	0.000	0.000
C3	$0.0259(18)$	$0.0160(16)$	$0.0264(18)$	$0.0029(15)$	0.000	0.000
I1	$0.02509(11)$	$0.02509(11)$	$0.02196(14)$	$0.01255(6)$	0.000	0.000
N1	$0.0200(16)$	$0.0160(15)$	$0.0238(14)$	$0.0095(14)$	0.000	0.000
Na1	$0.0177(5)$	$0.0177(5)$	$0.0219(8)$	$0.0088(2)$	0.000	0.000
O1	$0.0156(11)$	$0.0141(10)$	$0.0298(12)$	$0.0057(9)$	0.000	0.000

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

C1-O1	1.238 (3)	C3-H3A	0.980
C1-N1	1.316 (4)	С3-H3B	0.980
C1-H1	0.950	C3-H3C	0.980
$\mathrm{C} 2-\mathrm{N} 1$	1.460 (5)	$\mathrm{Na} 1-\mathrm{O} 1$	2.3954 (15)
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.980	Na1-O1 ${ }^{\text {i }}$	2.3954 (15)
C2-H2B	0.980	$\mathrm{Na} 1-\mathrm{O} 1^{\text {ii }}$	2.3954 (15)
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	0.980	$\mathrm{Na} 1-\mathrm{Na} 1^{\text {iii }}$	3.1941 (4)
$\mathrm{C} 3-\mathrm{N} 1$	1.457 (4)	$\mathrm{O} 1-\mathrm{Na} 1^{\text {iii }}$	2.3954 (15)

$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$	125.5 (3)	$\mathrm{O} 1-\mathrm{Na} 1-\mathrm{O} 1^{\text {i }}$	117.02 (8)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1$	117.2	$\mathrm{O} 1^{\text {iii }}-\mathrm{Na} 1-\mathrm{O} 1^{\text {i }}$	87.62 (7)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1$	117.2	$\mathrm{Ol}^{\mathrm{v}}-\mathrm{Na} 1-\mathrm{Ol}^{\text {i }}$	80.40 (5)
N1-C2-H2A	109.5	$\mathrm{Ol}^{\text {iv }}-\mathrm{Na} 1-\mathrm{O} 1^{\text {ii }}$	87.62 (7)
N1-C2-H2B	109.5	$\mathrm{O} 1-\mathrm{Na} 1-\mathrm{O}^{1 i}$	80.40 (5)
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5	$\mathrm{O} 1{ }^{\text {iii- }}$ - $\mathrm{Na} 1-\mathrm{O} 1^{\text {ii }}$	80.40 (5)
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5	$\mathrm{O} 1^{\mathrm{v}}-\mathrm{Na}-\mathrm{Ol}^{\text {ii }}$	117.02 (8)
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5	$\mathrm{O} 1{ }^{\text {i }}-\mathrm{Na} 1-\mathrm{O} 1^{\text {ii }}$	157.01 (9)
$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5	$\mathrm{O} 1^{\text {iv }}-\mathrm{Na} 1-\mathrm{Na} 1^{\text {vi }}$	48.19 (3)
N1-C3-H3A	109.5	$\mathrm{O} 1-\mathrm{Na} 1-\mathrm{Na} 1^{\text {vi }}$	131.81 (3)
N1-C3-H3B	109.5	$\mathrm{O} 1^{\text {iii }}$ - $\mathrm{Na} 1-\mathrm{Na} 1^{\text {vi }}$	131.81 (3)
H3A-C3-H3B	109.5	$\mathrm{O} 1{ }^{\text {v }}-\mathrm{Na} 1-\mathrm{Na} 1^{\text {vi }}$	48.19 (3)
N1-C3-H3C	109.5	$\mathrm{O} 1{ }^{\text {i }}-\mathrm{Na} 1-\mathrm{Na} 1^{\text {vi }}$	48.19 (3)
$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5	$\mathrm{O} 1{ }^{\text {ii }}-\mathrm{Na} 1-\mathrm{Na} 1^{\text {vi }}$	131.81 (3)
$\mathrm{H} 3 \mathrm{~B}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5	$\mathrm{O} 1^{\text {iv }}-\mathrm{Na} 1-\mathrm{Na} 1^{\text {iii }}$	131.81 (3)
C1-N1-C3	121.6 (3)	$\mathrm{O} 1-\mathrm{Na} 1-\mathrm{Na} 1^{\text {iii }}$	48.19 (3)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	122.2 (3)	$\mathrm{O} 1^{\text {iii }}$ - $\mathrm{Na} 1-\mathrm{Na} 1{ }^{\text {iii }}$	48.19 (3)
C3-N1-C2	116.2 (3)	$\mathrm{O} 1^{\text {v }}-\mathrm{Na} 1-\mathrm{Na} 1^{\text {iii }}$	131.81 (3)
$\mathrm{O} 1{ }^{\text {iv }}-\mathrm{Na} 1-\mathrm{O} 1$	157.01 (9)	$\mathrm{O} 1{ }^{\text {i }}$ - $\mathrm{Na} 1-\mathrm{Na} 1^{\text {iii }}$	131.81 (3)
$\mathrm{Ol}^{\text {iv }}-\mathrm{Na}-\mathrm{O} 1^{\text {iii }}$	117.02 (8)	$\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Na} 1-\mathrm{Na} 1^{\text {iii }}$	48.19 (3)
$\mathrm{O} 1-\mathrm{Na}-\mathrm{Ol}^{\text {iii }}$	80.40 (5)	$\mathrm{Na} 1{ }^{\text {vi }}-\mathrm{Na} 1-\mathrm{Na} 1^{\text {iii }}$	180.0
$\mathrm{Ol}^{\mathrm{iv}}-\mathrm{Na}-\mathrm{Ol}^{\text {v }}$	80.40 (5)	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Na} 1$	134.40 (8)
$\mathrm{O} 1-\mathrm{Na}-\mathrm{Ol}^{\text {v }}$	87.62 (7)	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Na} 1^{\text {iii }}$	134.40 (8)
$\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Na}-\mathrm{Ol}^{\mathrm{v}}$	157.01 (9)	$\mathrm{Na} 1-\mathrm{O} 1-\mathrm{Na} 1^{\text {iii }}$	83.62 (6)
$\mathrm{O} 1^{\mathrm{iv}}-\mathrm{Na}-\mathrm{Ol}^{\text {i }}$	80.40 (5)		

[^1]
[^0]: (C) 2007 International Union of Crystallography All rights reserved

[^1]: Symmetry codes: (i) $x-y,-y,-z$; (ii) $-y, x-y, z$; (iii) $-x+y,-x,-z+1 / 2$; (iv) $-x,-x+y, z-1 / 2$; (v) $y, x, z-1 / 2$; (vi) $-x+y,-x,-z-1 / 2$.

