organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Anders E. Håkansson,^a* Graeme Horne,^a George W.J. Fleet^a and David J. Watkin^b

^aDepartment of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and ^bDepartment of Chemical Crystallography, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England

Correspondence e-mail: anders.hakansson@chem.ox.ac.uk

Key indicators

Single-crystal X-ray study T = 190 KMean σ (C–C) = 0.003 Å R factor = 0.028 wR factor = 0.069 Data-to-parameter ratio = 8.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

 $\ensuremath{\mathbb{C}}$ 2007 International Union of Crystallography All rights reserved

(6S)-Methyl-L-swainsonine [(1*R,*2S,6S,8S,8aS)-6-methyloctahydroindolizine-1,2,8-triol]

(6*S*)-Methyl-L-swainsonine, $C_9H_{17}NO_3$, together with the 6*R*-epimer, was formed in a synthetic sequence in which there was an ambiguity in configuration at position C-6. This ambiguity was resolved by establishing the relative stereochemistry of the title compound by X-ray crystallographic analysis. The absolute configuration was determined by the use of D-*glycero*-D-*gulo*-heptono-1,4-lactone as the starting material.

Comment

Imino sugars, in which the ring oxygen of a sugar is replaced, are a class of glycosidase inhibitor with a range of chemotherapeutic targets (Watson et al., 2001; Asano et al., 2000). D-Swainsonine (1), a natural product isolated from Swainsona canescens (Colegate et al., 1979), is a mimic of Dmannofuranose (2) and a powerful α -mannosidase inhibitor. Potential use of 1 for the chemotherapy of cancer (Lagana et al., 2006; Klein et al., 1999; Goss et al., 1997) has led to the publication of over 40 syntheses (Au & Pyne, 2006; Ceccon et al., 2006; Martin et al., 2005; Heimgaertner et al., 2005; Nemr, 2000). L-Swainsonine (4), the enantiomer of the natural product (1), is the corresponding imino sugar mimic of Lrhamnofuranose (3) and is a potent inhibitor of naringinase an α -rhamnosidase (Davis *et al.*, 1996). Very few syntheses of 4, with different therapeutic targets, have been reported (Guo & O'Doherty, 2006; Oishi et al., 1995). No carbon-branched swainsonine analogues have been described. In order to determine how such a substitution changes the structure of the swainsonine nucleus, the C6-methyl analogues (5) and (6) were prepared (Håkansson et al., 2007); in order to firmly establish the relative configuration at C6 of the two epimers, X-ray crystallographic analysis of (6) is reported in this paper. The absolute configuration of (6S)-methyl-L-swainsonine (6) was determined by the use of D-glycero-D-gulo-heptono-1,4lactone as the starting material.

The molecular structure of (6) (Fig. 1) shows no unusual features. The largest differences from the *MOGUL* norms (Bruno *et al.*, 2004) are C5–O6 (0.01 Å) and C11–C10–C1 (2.9°). As is normal in sugar derivatives, all the hydroxyl groups are involved in hydrogen bonding. Each molecule takes part in two different hydrogen-bonded helices (Fig. 2

Received 28 November 2006 Accepted 1 December 2006

and Table 1). The helix around $(\frac{1}{3}, \frac{2}{3}, z)$ only involves O12; that at $(\frac{2}{3}, \frac{1}{3}, z)$ involves both O7 and N2. The fact that each molecule is involved in two helices leads to a very rigid framework and explains the high melting point (422 K).

Experimental

(6S)-Methyl-L-swainsonine (6) (Håkansson et al., 2007) was purified by Dowex 50WX8-200 ion exchange resin (H⁺ form, eluent 2 M aqueous ammonia) and recrystallized from ethyl acetate and cyclohexane to yield fine colourless brittle needles (m.p. 421-423 K). $[\alpha]_D^{21} = +43.7 \ (c = 1.72, H_2O).$

 $D_r = 1.331 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation

Needle, colourless

 $0.80 \times 0.10 \times 0.10 \; \mathrm{mm}$

6022 measured reflections

 $w = 1/[\sigma^2(F^2) + (0.04P)^2]$

where $P = [\max(F_o^2, 0) + 2F_c^2]/3$

+ 0.1P],

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\text{max}} = 0.17 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.12 \text{ e } \text{\AA}^{-3}$

1025 independent reflections

982 reflections with $I > 2\sigma(I)$

 $\mu = 0.10 \text{ mm}^{-1}$

T = 190 K

 $R_{\rm int}=0.044$

 $\theta_{\rm max} = 27.1^\circ$

Crystal data

C₉H₁₇NO₃ $M_r = 187.24$ Trigonal, P31 a = 11.4494 (6) Å c = 6.1727 (2) Å V = 700.76 (6) Å² Z = 3

Data collection

Nonius KappaCCD diffractometer ω scans Absorption correction: multi-scan (DENZO/SCALEPACK: Otwinowski & Minor, 1997) $T_{\rm min} = 0.81, \ T_{\rm max} = 0.99$

Refinement

Refinement on F^2
$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.028 \\ wR(F^2) &= 0.069 \end{split}$$
S = 0.971020 reflections 118 parameters H-atom parameters constrained

Table 1

Selected bond angles (°).

N2-C8-C9	110.76 (14)	C9-C10-C11	113.00 (14)
C8-C9-C10	109.86 (15)	C10-C11-C1	109.68 (13)
C8-C9-C13	112.68 (16)	C10-C11-O12	110.95 (13)
C10-C9-C13	112.04 (15)	C1-C11-O12	110.92 (13)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O12-H3\cdots O12^{i}$	0.85	1.88	2.708 (2)	165
$O6-H5\cdots O7$ $O7-H1\cdots N2^{ii}$	0.82 0.87	1.93	2.541 (2) 2.846 (2)	131 167

Symmetry codes: (i) -y + 1, x - y + 1, $z + \frac{1}{3}$; (ii) -y + 1, x - y, $z + \frac{1}{3}$.

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration assigned from the starting material.

The sample consisted of fine brittle plates which could not be cut without being destroyed. The relatively large ratio of minimum to

Figure 1

The molecular structure of 6, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Figure 2

Part of the crystal structure of 6, with hydrogen bonds shown as dotted lines. Each molecule contributes to two helices. That at $(\frac{1}{3}, \frac{2}{3}, z)$ only involves O12; that at $(\frac{2}{3}, \frac{1}{3}, z)$ involves both O7 and N2. [Symmetry codes: (i) x, y, z - 1; (ii) $-y + 1, x - y, z - \frac{2}{3}$; (iv) $-y + 1, x - y + 1, z - \frac{2}{3}$; (vi) $-x + y, -x + 1, z - \frac{1}{3}$; (vii) $-x + y + 1, -x + 1, z - \frac{1}{3}$.]

maximum corrections applied in the multiscan process (1:1.22) reflects changes in the illuminated volume of the crystal. The changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (DENZO/SCALEPACK; Otwinowski & Minor, 1997).

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C-H in the range 0.93-0.98, O-H = 0.82 Å) and $U_{iso}(H)$ (in the range 1.2–1.5 times U_{eq} of the parent atom), after which the positions were refined with riding constraints.

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: user defined structure solution: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *CRYSTALS*.

References

- Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). *Tetrahedron* Asymmetry, **11**, 1645–1680.
- Au, C. W. G. & Pyne, S. G. (2006). J. Org. Chem. 71, 7097-7099.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.
- Ceccon, J., Greene, A. E. & Poisson, J. F. (2006). Org. Lett. 8, 4739-4742.
- Colegate, S. M., Dorling, P. R. & Huxtable, C. R. (1979). Aust. J. Chem. 32, 2257–2264.
- Davis, B., Bell, A. A., Nash, R. J., Watson, A. A., Griffiths, R. C., Jones, M. G., Smith, C. & Fleet, G. W. J. (1996). *Tetrahedron Lett.* 37, 8565–8568. Görbitz, C. H. (1999). *Acta Cryst.* B55, 1090–1098.

- Goss, P. E., Reid, C. L., Bailey, D. & Dennis, J. W. (1997). *Clin. Cancer Res.* 3, 1077–1086.
- Guo, H. B. & O'Doherty, G. A. (2006). Org. Lett. 8, 1609-1612.
- Håkansson, A. E., van Ameijde, J., Horne, G., Wormald, M. R., Nash, R. J. & Fleet, G. W. J. (2007). In preparation.
- Heimgaertner, G., Raatz, D. & Reiser, O. (2005). Tetrahedron, 61, 643-655.
- Klein, J. L. D., Roberts, J. D., George, M. D., Kurtzberg, J., Breton, P., Chermann, J. C. & Olden, K. (1999). Br. J. Cancer, 80, 87–95.
- Lagana, A., Goetz, J. G., Cheung, P., Raz, A., Dennis, J. W. & Nabi, I. R. (2006). Mol. Cell. Biol. 26, 3181–3193.
- Martin, R., Murruzzu, C., Pericas, M. A. & Riera, A. (2005). J. Org. Chem. 70, 2325–2328.
- Nemr, A. E. (2000). Tetrahedron, 56, 8579-8629.
- Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
- Oishi, T., Iwakuma, T., Hirama, M. & Ito, S. (1995). Synlett, pp. 404-406.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.
- Watson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). *Phytochemistry*, 56, 265–295.

supporting information

Acta Cryst. (2007). E63, o210-o212 [https://doi.org/10.1107/S1600536806052111]

(6*S*)-Methyl-L-swainsonine [(1*R*,2*S*,6*S*,8*S*,8*aS*)-6-methyloctahydroindolizine-1,2,8-triol]

Anders E. Håkansson, Graeme Horne, George W.J. Fleet and David J. Watkin

(1R,2S,6S,8S,8aS)-6-methyloctahydroindolizine-1,2,8-triol

Crystal data

C₉H₁₇NO₃ $M_r = 187.24$ Trigonal, P3₁ Hall symbol: P 31 a = 11.4494 (6) Å c = 6.1727 (2) Å V = 700.76 (6) Å³ Z = 3F(000) = 306

Data collection

Nonius KappaCCD
diffractometer
Graphite monochromator
ω scans
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor,
1997)
$T_{\min} = 0.81, \ T_{\max} = 0.99$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.069$ S = 0.971020 reflections 118 parameters 35 restraints $D_x = 1.331 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1020 reflections $\theta = 1-27^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 190 KPlate, colourless $0.80 \times 0.10 \times 0.10 \text{ mm}$

6022 measured reflections 1025 independent reflections 982 reflections with $I > 2\sigma(I)$ $R_{int} = 0.044$ $\theta_{max} = 27.1^{\circ}, \ \theta_{min} = 2.1^{\circ}$ $h = -14 \rightarrow 14$ $k = -12 \rightarrow 12$ $l = -7 \rightarrow 7$

Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F^2) + (0.04P)^2 + 0.1P],$ where $P = [\max(F_o^2, 0) + 2F_c^2]/3$ $(\Delta/\sigma)_{\max} = 0.000219$ $\Delta\rho_{\max} = 0.17$ e Å⁻³ $\Delta\rho_{\min} = -0.12$ e Å⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.53634 (17)	0.59057 (16)	0.8235 (3)	0.0242	
N2	0.66713 (13)	0.60020 (14)	0.8706 (2)	0.0241	
C3	0.63458 (18)	0.50300 (18)	1.0487 (3)	0.0310	

supporting information

C4	0.49845 (18)	0.38209 (17)	0.9851 (3)	0.0282
C5	0.44047 (17)	0.43864 (18)	0.8097 (3)	0.0273
06	0.44492 (14)	0.38857 (13)	0.6023 (2)	0.0336
07	0.51498 (14)	0.27798 (13)	0.8919 (2)	0.0322
C8	0.76987 (19)	0.73864 (18)	0.9248 (3)	0.0317
C9	0.79406 (18)	0.83322 (17)	0.7343 (3)	0.0321
C10	0.65986 (19)	0.82114 (17)	0.6624 (3)	0.0318
C11	0.54856 (16)	0.67521 (16)	0.6254 (3)	0.0251
012	0.42283 (13)	0.66811 (14)	0.5784 (2)	0.0328
C13	0.86788 (19)	0.8108 (2)	0.5457 (3)	0.0366
H11	0.5121	0.6267	0.9485	0.0292*
H31	0.6278	0.5418	1.1870	0.0378*
H32	0.7014	0.4729	1.0604	0.0364*
H41	0.4386	0.3464	1.1114	0.0336*
H51	0.3485	0.4162	0.8438	0.0326*
H81	0.8522	0.7397	0.9658	0.0365*
H82	0.7392	0.7723	1.0503	0.0356*
H91	0.8513	0.9241	0.7916	0.0356*
H101	0.6293	0.8580	0.7800	0.0391*
H102	0.6720	0.8705	0.5290	0.0394*
H111	0.5694	0.6355	0.4976	0.0293*
H131	0.8958	0.8827	0.4416	0.0520*
H132	0.9472	0.8081	0.5970	0.0527*
H133	0.8066	0.7237	0.4744	0.0519*
H3	0.4063	0.7096	0.6762	0.0529*
Н5	0.4670	0.3317	0.6258	0.0520*
H1	0.4862	0.2075	0.9762	0.0503*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0250 (8)	0.0264 (8)	0.0237 (7)	0.0148 (6)	-0.0011 (6)	-0.0034 (6)
N2	0.0236 (7)	0.0251 (7)	0.0241 (7)	0.0126 (6)	-0.0047(5)	-0.0019 (5)
C3	0.0364 (9)	0.0319 (9)	0.0255 (9)	0.0178 (8)	-0.0056 (7)	0.0014 (6)
C4	0.0305 (9)	0.0283 (8)	0.0276 (8)	0.0161 (7)	0.0032 (6)	0.0027 (7)
C5	0.0240 (8)	0.0287 (8)	0.0302 (8)	0.0141 (7)	-0.0010 (6)	0.0002 (6)
O6	0.0418 (7)	0.0304 (7)	0.0324 (6)	0.0210 (6)	-0.0098 (5)	-0.0078(5)
O7	0.0368 (7)	0.0288 (6)	0.0345 (7)	0.0190 (6)	0.0037 (5)	0.0036 (5)
C8	0.0324 (9)	0.0291 (9)	0.0303 (8)	0.0130 (8)	-0.0088 (7)	-0.0065 (7)
C9	0.0321 (9)	0.0221 (8)	0.0379 (10)	0.0105 (7)	-0.0043 (7)	-0.0031 (7)
C10	0.0360 (10)	0.0253 (8)	0.0369 (10)	0.0174 (8)	-0.0012 (7)	0.0004 (7)
C11	0.0277 (8)	0.0287 (8)	0.0248 (8)	0.0185 (7)	-0.0026 (6)	-0.0029 (6)
O12	0.0348 (7)	0.0411 (7)	0.0318 (6)	0.0260 (6)	-0.0070 (5)	-0.0069 (5)
C13	0.0318 (9)	0.0309 (9)	0.0433 (10)	0.0127 (8)	0.0020 (8)	0.0045 (8)

Geometric parameters (Å, °)

C1—N2	1.474 (2)	С8—С9	1.527 (3)	
C1—C5	1.526 (2)	C8—H81	0.971	
C1C11	1.523 (2)	C8—H82	1.004	
C1—H11	0.979	C9—C10	1.538 (3)	
N2—C3	1.474 (2)	C9—C13	1.534 (3)	
N2—C8	1.464 (2)	C9—H91	0.978	
C3—C4	1.530(2)	C10—C11	1.529 (2)	
С3—Н31	0.983	C10—H101	0.988	
С3—Н32	0.986	C10—H102	0.968	
C4—C5	1.569 (2)	C11—O12	1.430 (2)	
C4—O7	1.419 (2)	C11—H111	0.997	
C4—H41	0.982	O12—H3	0.845	
С5—Об	1.414 (2)	C13—H131	0.964	
С5—Н51	0.974	C13—H132	0.977	
O6—H5	0.821	C13—H133	0.990	
O7—H1	0.875			
N2—C1—C5	102.77 (12)	N2—C8—H81	108.8	
N2-C1-C11	110.11 (13)	C9—C8—H81	111.2	
C5-C1-C11	117.74 (14)	N2—C8—H82	110.3	
N2-C1-H11	107.8	C9—C8—H82	107.2	
C5-C1-H11	109.4	H81—C8—H82	108.6	
C11—C1—H11	108.6	C8—C9—C10	109.86 (15)	
C1—N2—C3	103.09 (13)	C8—C9—C13	112.68 (16)	
C1—N2—C8	111.23 (13)	C10—C9—C13	112.04 (15)	
C3—N2—C8	114.20 (13)	C8—C9—H91	105.3	
N2-C3-C4	104.51 (13)	C10—C9—H91	108.0	
N2-C3-H31	110.8	C13—C9—H91	108.7	
C4—C3—H31	110.9	C9—C10—C11	113.00 (14)	
N2—C3—H32	111.8	C9-C10-H101	107.5	
C4—C3—H32	108.6	C11-C10-H101	107.3	
H31—C3—H32	110.1	C9—C10—H102	110.4	
C3—C4—C5	104.67 (13)	C11—C10—H102	108.0	
C3—C4—O7	111.13 (15)	H101—C10—H102	110.7	
C5—C4—O7	109.17 (14)	C10—C11—C1	109.68 (13)	
C3—C4—H41	110.9	C10-C11-O12	110.95 (13)	
C5-C4-H41	111.6	C1-C11-O12	110.92 (13)	
O7—C4—H41	109.3	C10—C11—H111	110.9	
C1—C5—C4	102.73 (13)	C1-C11-H111	108.2	
C1—C5—O6	111.19 (14)	O12—C11—H111	106.1	
C4—C5—O6	110.44 (13)	С11—О12—Н3	108.9	
C1—C5—H51	110.8	C9—C13—H131	109.7	
C4—C5—H51	111.5	C9—C13—H132	111.0	
O6—C5—H51	110.0	H131—C13—H132	109.1	
С5—О6—Н5	104.4	С9—С13—Н133	109.5	
С4—07—Н1	112.8	H131—C13—H133	109.2	

supporting information

<u>N2—C8—C9</u>	110.76 (14)	H132—C13—H133	108.3	
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	H···A	D···A	D—H···A
012—H3…O12 ⁱ	0.85	1.88	2.708 (2)	165
O6—H5…O7	0.82	1.93	2.541 (2)	131
O7—H1…N2 ⁱⁱ	0.87	1.99	2.846 (2)	167

Symmetry codes: (i) -y+1, x-y+1, z+1/3; (ii) -y+1, x-y, z+1/3.