Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Nagarajan Vembu,^a* Elinor C. Spencer,^b Jean Lee,^c John G. Kelly,^d Kevin B. Nolan^c and Marc Devocelle^c

^aDepartment of Chemistry, Urumu Dhanalakshmi College, Tiruchirappalli 620 019, India, ^bDepartment of Chemistry, Durham University, Durham DH1 3LE, England, ^cCentre for Synthesis and Chemical Biology, Department of Pharmaceutical and Medicinal Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland, and ^dSchool of Pharmacy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland

Correspondence e-mail: vembu57@yahoo.com

Key indicators

Single-crystal X-ray study T = 120 K Mean σ (C–C) = 0.003 Å R factor = 0.038 wR factor = 0.107 Data-to-parameter ratio = 11.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. organic papers

5-Chloro-3-hydroxy-2,2-dimethyl-2,3-dihydroquinazolin-4(1*H*)-one: supramolecular aggregation through a two-dimensional network of $N-H\cdots O$ and $O-H\cdots O$ interactions

In the crystal structure of the title compound, $C_{10}H_{11}ClN_2O_2$, the 1,3-diaza ring exists in the skew-boat conformation. Supramolecular aggregation is effected by the formation of an infinite two-dimensional network of $O-H\cdots O$ and $N-H\cdots O$ interactions. Received 2 October 2006 Accepted 3 October 2006

Comment

Quinazolin-4(1H)-ones, commonly known as benzopyrimidinones, are an important class of heterocyclic compounds (Jain et al., 2000). Some of them occur either as quinazoline alkaloids (Mohrle & Gundlack, 1970; Baker & McEvoy, 1995) or as their precursors (Brown, 1984). In addition, numerous synthetic quinazoline derivatives are known which exhibit diverse antihistaminic (Graham, 1960), diuretic (Cohen et al., 1960), hypnotic (Chappel & von Seeman, 1963) and anti-inflammatory (Saravanan et al., 1998) properties. In particular, 2,3-dihydro-1H-quinazolin-4-one derivatives are established as biologically and pharmaceutically important compounds (Bonala et al., 1968; Levin et al., 1994; Okumura et al., 1968; Yoo et al., 2005). The present investigation is aimed at the study of the molecular and supramolecular architecture of the title compound, (I), and may serve as a forerunner to a study of the correlation of these features with its biological activity.

The molecular structure of (I) is shown in Fig. 1 and selected geometric parameters are given in Table 1. The 1,3diaza ring exists in a skew-boat conformation, with puckering parameters (Cremer & Pople, 1975) $Q_{\rm T} = 0.396$ Å, $\theta = 64.6^{\circ}$ and $\varphi = 295.08^{\circ}$. This is also evident from the torsion angles involving the 1,3-diaza ring (Table 1). The axial orientation of the C10 methyl group, the equatorial orientation of the C8 methyl group, the equatorial orientation of the N–OH group, and the relative synclinal orientation of the carbonyl O atom and the O atom of the N–OH group are evident from the corresponding torsion angles (Table 1).

The crystal structure of (I) is stabilized by the interplay of $O-H\cdots O$ and $N-H\cdots O$ interactions (Table 2), and van der

© 2006 International Union of Crystallography

All rights reserved

Figure 1

The molecular structure of the title compound, showing 50% probability displacement ellipsoids

Figure 2

A view inclined to the c axis, showing the binary hydrogen-bonded motifs as dashed lines. (Symmetry codes as given in Table 2).

Waals interactions. The hydrogen-bond distances found in (I) agree with those reported in the literature (Desiraju & Steiner, 1999; Desiraju, 1989). The O2-H2O···O1 interaction generates a motif of graph set S(5) (Bernstein *et al.*, 1995; Etter, 1990). Two such S(5) motifs from symmetryrelated molecules combine to form a binary motif of graph set $R_2^2(4)$. Another $R_2^2(4)$ binary motif is formed by the N2- $H2N \cdots O2^{i}$ and $N2 - H2N \cdots O1^{ii}$ interactions (symmetry codes in Table 2), which is repeated between symmetryrelated molecules. These repetitive S(5) and $R_2^2(4)$ motifs combine to form a higher-order motif of graph set $R_2^2(10)$ (Fig. 2). These $N-H\cdots O$ and $O-H\cdots O$ interactions generate an infinite two-dimensional network along [001] (Fig. 3). There is also a significant intramolecular van der Waals interaction between atoms Cl1 and O1 of 2.938 (2) Å.

Figure 3

A view along [001], showing the two-dimensional network of $N-H\cdots O$ and O-H...O interactions, drawn as dotted lines.

Experimental

6-Chloroanthranilic hydroxamic acid was prepared according to reported methods (Devocelle et al., 2003; Lee et al., 2005). During our attempts to recrystallize the above product from acetone-ethanol (1:1), crystals of the title compound were produced after standing for 30 d. These may have been formed by a condensation reaction of 6chloroanthranilic hydroxamic acid with acetone. Such a reaction mechanism has already been reported for the formation of 2,3dihydro-1H-quinazolin-4-one derivatives (Yoo et al. 2005).

Z = 8

 $D_x = 1.486 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation

Block, colourless

 $0.14 \times 0.12 \times 0.10 \text{ mm}$

12430 measured reflections

1996 independent reflections 1507 reflections with $I > 2\sigma(I)$

-3

 $\mu = 0.36 \text{ mm}^{-1}$

T = 120 (2) K

 $R_{\rm int} = 0.052$

 $\theta_{\rm max} = 26.0^\circ$

+ 0.6859P] where $P = (F_0^2 + 2F_c^2)/3$

Crystal data

C10H11CIN2O2 $M_r = 226.66$ Orthorhombic, Pbca a = 9.7070 (5) Å b = 12.7121 (7) Å c = 16.4203 (8) Å V = 2026.21 (18) Å³

Data collection

Bruker SMART 6K CCD areadetector diffractometer w scans Absorption correction: multi-scan (SADABS; Sheldrick, 1998) $T_{\rm min}=0.926,\ T_{\rm max}=0.965$

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_0^2) + (0.0571P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.038$ wR(F²) = 0.107 $(\Delta/\sigma)_{\rm max} < 0.001$ S = 1.051996 reflections $\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^2$ $\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$ 180 parameters All H-atom parameters refined

Table 1

Selected torsion angles (°).

N2-C5-C6-C7	-6.9(3)	C10-C9-N1-C7	77.1 (3)
C1-C6-C7-N1	-176.11(19)	N2-C9-N1-O2	162.41 (16)
O1-C7-N1-O2	-11.8(3)	C6-C5-N2-C9	-24.0(3)
C6-C7-N1-O2	172.09 (16)	N1-C9-N2-C5	44.8 (2)
C6-C7-N1-C9	19.0 (3)	C8-C9-N2-C5	162.40 (18)
N2-C9-N1-C7	-43.6(3)	C10-C9-N2-C5	-73.9 (2)
C8-C9-N1-C7	-159.8(2)		

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N2-H2N\cdots O2^{i}$	0.83 (3)	2.52 (3)	3.174 (2)	136 (2)
N2-H2N···O1 ⁱⁱ	0.83 (3)	2.41 (3)	3.200 (2)	158 (2)
O2−H2O···O1	0.85 (3)	2.08 (3)	2.595 (2)	119 (2)
O2−H2O···O1 ⁱⁱⁱ	0.85 (3)	2.00 (3)	2.677 (2)	136 (2)

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1;$ (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, z;$ (iii) -x + 1, -y, -z + 1.

All H atoms were located in a difference map, and their positions and isotropic displacement parameters were refined.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *MERCURY* (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXL97*.

NV and ECS thank Professor Judith A. K. Howard, Department of Chemistry, Durham University, UK, for discussions. JL, JGK, KBN and MD thank the Irish Government under its 'Programme for Research in Third Level Institutions' and the Research Committee of the Royal College of Surgeons in Ireland for financial support.

References

Baker, B. R. & McEvoy, F. J. (1995). J. Org. Chem. 60, 136-142.

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bonala, G., Da Re, P., Magistretti, M. J., Massarani, E. & Setnikar, I. (1968). J. Med. Chem. 11, 1136–1139.
- Brown, D. J. (1984). *Comprehensive Heterocyclic Chemistry*, edited by A. R. Katritzky & C. W. Rees, Vol III, pp. 57–155. Oxford: Pergamon Press.
- Bruker (1998). SMART-NT and SAINT-NT. Versions 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chappel, C. I. & von Seeman, C. (1963). Prog. Med. Chem. 3, 89-145.
- Cohen, E., Klarber, B. & Vaughan, J. R. (1960). J. Am. Chem. Soc. 82, 2731–2735.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.
- Desiraju, G. R. & Steiner, T. (1999). *The Weak Hydrogen Bond in Structural Chemistry and Biology*. New York: Oxford University Press Inc.
- Devocelle, M., Mc Loughlin, B. M., Sharkey, C. T., Fitzgerald, D. J. & Nolan, K. B. (2003). Org. Biomol. Chem. 1, 850–853.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Graham, J. D. P. (1960). Arch. Int. Pharmacodyn. Ther. 123, 419-420.
- Jain, S. C., Bharadvaja, A., Kumar, R., Agarwal, D. & Errington, W. (2000). Acta Cryst. C56, 592–593.
- Lee, J., Chubb, A. J., Moman, E., Mc Loughlin, B. M., Sharkey, C. T., Kelly, J. G., Nolan, K. B., Devocelle, M. & Fitzgerald, D. J. (2005). Org. Biomol. Chem. 3, 3678–3685.
- Levin, J. I., Chan, P. S., Bailey, T., Katocs, A. S. Jr & Venkatesan, A. M. (1994). Bioorg. Med. Chem. Lett. 4, 1141–1146.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Mohrle, H. & Gundlack, P. (1970). Tetrahedron Lett. pp. 3249-3250.
- Okumura, K., Oine, T., Yamada, Y., Hayashi, G. & Nakama, M. (1968). J. Med. Chem. 11, 348–352.
- Saravanan, J., Mohan, S. & Majunatha, K. S. (1998). Indian J. Heterocycl. Chem. 8, 55–58.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.
- Yoo, C. L., Fettinger, J. C. & Kurth, M. J. (2005). J. Org. Chem. 70, 6941–6943.

supporting information

Acta Cryst. (2006). E**62**, o5003–o5005 [https://doi.org/10.1107/S1600536806040852]

5-Chloro-3-hydroxy-2,2-dimethyl-2,3-dihydroquinazolin-4(1*H*)-one: supramolecular aggregation through a two-dimensional network of N—H…O and O—H…O interactions

Nagarajan Vembu, Elinor C. Spencer, Jean Lee, John G. Kelly, Kevin B. Nolan and Marc Devocelle

5-Chloro-3-hydroxy-2,2-dimethylquinazolin-4(1H)-one

Crystal data

 $C_{10}H_{11}ClN_2O_2$ $M_r = 226.66$ Orthorhombic, *Pbca* Hall symbol: -P 2ac 2ab a = 9.7070 (5) Å b = 12.7121 (7) Å c = 16.4203 (8) Å V = 2026.21 (18) Å³ Z = 8

Data collection

Bruker SMART 6K CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 0 pixels mm⁻¹ ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1998) $T_{min} = 0.926, T_{max} = 0.965$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.107$ S = 1.051996 reflections 180 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 944 $D_x = 1.486 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 2345 reflections $\theta = 2.5-25.3^{\circ}$ $\mu = 0.36 \text{ mm}^{-1}$ T = 120 KBlock, colourless $0.14 \times 0.12 \times 0.10 \text{ mm}$

12430 measured reflections 1996 independent reflections 1507 reflections with $I > 2\sigma(I)$ $R_{int} = 0.052$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 2.5^{\circ}$ $h = -11 \rightarrow 11$ $k = -15 \rightarrow 15$ $l = -15 \rightarrow 20$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites All H-atom parameters refined $w = 1/[\sigma^2(F_o^2) + (0.0571P)^2 + 0.6859P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.32$ e Å⁻³ $\Delta\rho_{min} = -0.22$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
0.1625 (2)	0.01410 (16)	0.30349 (13)	0.0232 (5)
0.0732 (2)	0.04246 (18)	0.24247 (14)	0.0272 (5)
0.061 (2)	-0.0020 (19)	0.1994 (14)	0.030 (6)*
0.0072 (2)	0.13934 (17)	0.24633 (14)	0.0265 (5)
-0.054 (2)	0.1577 (18)	0.2025 (14)	0.028 (6)*
0.0253 (2)	0.20484 (17)	0.31133 (13)	0.0259 (5)
-0.022 (2)	0.2718 (19)	0.3145 (14)	0.032 (6)*
0.11145 (19)	0.17453 (16)	0.37553 (12)	0.0231 (4)
0.18594 (19)	0.07904 (15)	0.37162 (12)	0.0210 (4)
0.2901 (2)	0.05918 (15)	0.43529 (12)	0.0219 (4)
0.2240 (2)	0.28916 (18)	0.57100 (15)	0.0288 (5)
0.146 (2)	0.3452 (17)	0.5774 (14)	0.030 (6)*
0.244 (2)	0.2654 (18)	0.6266 (16)	0.030 (6)*
0.303 (3)	0.320 (2)	0.5486 (15)	0.039 (7)*
0.1737 (2)	0.19813 (16)	0.51952 (12)	0.0245 (5)
0.0626 (2)	0.13579 (19)	0.56367 (15)	0.0313 (5)
-0.015 (3)	0.183 (2)	0.5808 (16)	0.047 (7)*
0.102 (3)	0.101 (2)	0.6148 (18)	0.048 (8)*
0.022 (3)	0.081 (2)	0.5298 (17)	0.050 (8)*
0.426 (3)	0.057 (2)	0.5458 (17)	0.048 (8)*
0.102 (3)	0.301 (2)	0.4410 (16)	0.047 (8)*
0.24305 (5)	-0.10747 (4)	0.29303 (3)	0.02900 (19)
0.28885 (18)	0.12826 (14)	0.49761 (11)	0.0260 (4)
0.12798 (19)	0.23850 (15)	0.44190 (11)	0.0275 (4)
0.38023 (14)	-0.01006 (11)	0.43358 (9)	0.0277 (4)
0.37357 (16)	0.10485 (13)	0.56416 (9)	0.0312 (4)
	x $0.1625 (2)$ $0.0732 (2)$ $0.061 (2)$ $0.0072 (2)$ $-0.054 (2)$ $0.0253 (2)$ $-0.022 (2)$ $0.11145 (19)$ $0.18594 (19)$ $0.2901 (2)$ $0.146 (2)$ $0.244 (2)$ $0.303 (3)$ $0.1737 (2)$ $0.0626 (2)$ $-0.015 (3)$ $0.102 (3)$ $0.426 (3)$ $0.102 (3)$ $0.24305 (5)$ $0.28885 (18)$ $0.12798 (19)$ $0.38023 (14)$ $0.37357 (16)$	x y $0.1625(2)$ $0.01410(16)$ $0.0732(2)$ $0.04246(18)$ $0.061(2)$ $-0.0020(19)$ $0.0072(2)$ $0.13934(17)$ $-0.054(2)$ $0.1577(18)$ $0.0253(2)$ $0.20484(17)$ $-0.022(2)$ $0.2718(19)$ $0.11145(19)$ $0.17453(16)$ $0.18594(19)$ $0.07904(15)$ $0.2901(2)$ $0.28916(18)$ $0.146(2)$ $0.28916(18)$ $0.146(2)$ $0.2654(18)$ $0.303(3)$ $0.320(2)$ $0.1737(2)$ $0.19813(16)$ $0.0626(2)$ $0.13579(19)$ $-0.015(3)$ $0.183(2)$ $0.102(3)$ $0.057(2)$ $0.102(3)$ $0.301(2)$ $0.24305(5)$ $-0.10747(4)$ $0.28885(18)$ $0.12826(14)$ $0.12798(19)$ $0.23850(15)$ $0.38023(14)$ $-0.01006(11)$ $0.37357(16)$ $0.10485(13)$	xyz $0.1625 (2)$ $0.01410 (16)$ $0.30349 (13)$ $0.0732 (2)$ $0.04246 (18)$ $0.24247 (14)$ $0.061 (2)$ $-0.0020 (19)$ $0.1994 (14)$ $0.0072 (2)$ $0.13934 (17)$ $0.24633 (14)$ $-0.054 (2)$ $0.1577 (18)$ $0.2025 (14)$ $0.0253 (2)$ $0.20484 (17)$ $0.31133 (13)$ $-0.022 (2)$ $0.2718 (19)$ $0.3145 (14)$ $0.11145 (19)$ $0.17453 (16)$ $0.37553 (12)$ $0.18594 (19)$ $0.07904 (15)$ $0.37162 (12)$ $0.2901 (2)$ $0.05918 (15)$ $0.43529 (12)$ $0.2240 (2)$ $0.28916 (18)$ $0.57100 (15)$ $0.146 (2)$ $0.2654 (18)$ $0.6266 (16)$ $0.303 (3)$ $0.320 (2)$ $0.5486 (15)$ $0.1737 (2)$ $0.19813 (16)$ $0.51952 (12)$ $0.0262 (2)$ $0.13579 (19)$ $0.56367 (15)$ $-0.015 (3)$ $0.183 (2)$ $0.5808 (16)$ $0.102 (3)$ $0.081 (2)$ $0.5458 (17)$ $0.426 (3)$ $0.057 (2)$ $0.5458 (17)$ $0.102 (3)$ $0.301 (2)$ $0.4410 (16)$ $0.24305 (5)$ $-0.10747 (4)$ $0.29303 (3)$ $0.28885 (18)$ $0.12826 (14)$ $0.44190 (11)$ $0.38023 (14)$ $-0.01006 (11)$ $0.43358 (9)$ $0.37357 (16)$ $0.10485 (13)$ $0.56416 (9)$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0207 (10)	0.0231 (10)	0.0258 (11)	-0.0006 (8)	0.0044 (8)	-0.0004 (8)
C2	0.0283 (12)	0.0323 (12)	0.0211 (11)	-0.0029 (9)	-0.0006 (9)	-0.0013 (9)
C3	0.0230 (11)	0.0338 (12)	0.0226 (12)	0.0012 (9)	-0.0041 (9)	0.0043 (9)
C4	0.0236 (10)	0.0284 (11)	0.0258 (12)	0.0029 (9)	0.0014 (9)	0.0022 (9)
C5	0.0206 (10)	0.0247 (10)	0.0240 (11)	-0.0012 (8)	0.0027 (8)	0.0012 (8)
C6	0.0167 (9)	0.0249 (10)	0.0215 (10)	-0.0011 (8)	0.0015 (8)	0.0024 (8)

Acta Cryst. (2006). E62, o5003-o5005

supporting information

C7	0.0216 (10)	0.0215 (10)	0.0227 (11)	-0.0017 (8)	0.0024 (8)	0.0021 (8)	
C8	0.0296 (12)	0.0292 (12)	0.0275 (13)	0.0005 (9)	0.0007 (10)	-0.0055 (10)	
C9	0.0251 (10)	0.0258 (11)	0.0227 (11)	0.0038 (9)	-0.0003 (9)	-0.0012 (8)	
C10	0.0312 (12)	0.0351 (13)	0.0275 (13)	-0.0041 (10)	0.0032 (10)	-0.0007 (10)	
Cl1	0.0342 (3)	0.0250 (3)	0.0277 (3)	0.0047 (2)	-0.0037 (2)	-0.0053 (2)	
N1	0.0248 (9)	0.0313 (10)	0.0220 (9)	0.0056 (7)	-0.0056 (7)	-0.0033 (7)	
N2	0.0351 (10)	0.0227 (10)	0.0246 (10)	0.0055 (8)	-0.0027 (8)	-0.0015 (8)	
O1	0.0257 (8)	0.0292 (8)	0.0281 (8)	0.0068 (6)	-0.0046 (6)	-0.0028 (6)	
O2	0.0302 (8)	0.0393 (9)	0.0243 (9)	0.0121 (7)	-0.0089 (7)	-0.0075 (7)	

Geometric parameters (Å, °)

C1—C2	1.373 (3)	C8—C9	1.514 (3)
C1—C6	1.409 (3)	C8—H8A	1.05 (2)
C1—C11	1.740 (2)	C8—H8B	0.98 (3)
C2—C3	1.390 (3)	C8—H8C	0.93 (3)
C2—H2	0.91 (2)	C9—N2	1.444 (3)
C3—C4	1.365 (3)	C9—N1	1.473 (3)
С3—Н3	0.96 (2)	C9—C10	1.522 (3)
C4—C5	1.399 (3)	C10—H10C	1.00 (3)
C4—H4	0.97 (2)	C10—H10B	1.02 (3)
C5—N2	1.369 (3)	C10—H10A	0.98 (3)
C5—C6	1.414 (3)	N1—O2	1.400 (2)
C6—C7	1.476 (3)	N2—H2N	0.83 (3)
C7—O1	1.242 (2)	O2—H2O	0.85 (3)
C7—N1	1.349 (3)		
C2—C1—C6	121.83 (19)	H8A—C8—H8B	105.0 (19)
C2—C1—Cl1	116.40 (16)	С9—С8—Н8С	111.2 (16)
C6—C1—Cl1	121.76 (16)	H8A—C8—H8C	111 (2)
C1—C2—C3	119.4 (2)	H8B—C8—H8C	109 (2)
C1—C2—H2	119.0 (15)	N2—C9—N1	103.41 (16)
C3—C2—H2	121.6 (15)	N2—C9—C8	108.69 (17)
C4—C3—C2	121.1 (2)	N1—C9—C8	110.62 (17)
С4—С3—Н3	121.1 (14)	N2	112.83 (18)
С2—С3—Н3	117.8 (14)	N1-C9-C10	109.90 (17)
C3—C4—C5	119.9 (2)	C8—C9—C10	111.14 (18)
C3—C4—H4	121.0 (14)	C9—C10—H10C	110.6 (15)
С5—С4—Н4	119.1 (14)	C9—C10—H10B	110.7 (16)
N2C5C4	120.40 (19)	H10C-C10-H10B	108 (2)
N2—C5—C6	119.08 (18)	C9—C10—H10A	112.7 (16)
C4—C5—C6	120.49 (19)	H10C-C10-H10A	107 (2)
C1—C6—C5	117.16 (18)	H10B-C10-H10A	108 (2)
C1—C6—C7	124.94 (18)	C7—N1—O2	116.67 (16)
C5—C6—C7	117.69 (18)	C7—N1—C9	125.78 (17)
O1—C7—N1	119.01 (18)	O2—N1—C9	112.57 (16)
O1—C7—C6	126.01 (19)	C5—N2—C9	121.84 (17)
N1—C7—C6	114.85 (17)	C5—N2—H2N	121.1 (19)

C9—C8—H8A C9—C8—H8B	110.0 (13) 110.4 (14)	C9—N2—H2N N1—O2—H2O	116.5 (19) 103.1 (19)
C6-C1-C2-C3 $C11-C1-C2-C3$ $C1-C2-C3-C4$ $C2-C3-C4-C5$ $C3-C4-C5-N2$ $C3-C4-C5-C6$ $C2-C1-C6-C5$ $C11-C1-C6-C5$ $C2-C1-C6-C7$ $N2-C5-C6-C1$ $C4-C5-C6-C1$ $N2-C5-C6-C1$ $N2-C5-C6-C1$ $N2-C5-C6-C7$ $C1-C6-C7$ $C1-C7$ $C1-C6-C7$ $C1-C6-C7$ $C1-C6-C7$ $C1-C6-C7$ $C1-C6-C7$ $C1-C6-C7$ $C1-C7$ $C1-C6-C7$ $C1-C6-C7$ $C1-C7$ $C1-C6-C7$ $C1-C6-C7$ $C1-C7$ $C1-C$	2.1 (3) -178.94 (16) -2.7 (3) -0.1 (3) -178.50 (19) 3.5 (3) 1.1 (3) -177.76 (14) -173.57 (19) 7.6 (3) 178.05 (18) -3.9 (3) -6.9 (3) 171.16 (18) 8.1 (3) -166.55 (19) 176.11 (10)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.2 (3) -11.8 (3) 172.09 (16) -164.85 (19) 19.0 (3) -43.6 (3) -159.8 (2) 77.1 (3) 162.41 (16) 46.2 (2) -76.9 (2) 157.99 (19) -24.0 (3) 44.8 (2) 162.40 (18) -73.9 (2)
	1/0.11 (12)		

Hydrogen-bond geometry (Å, °)

 Д—Н…А	<i>D</i> —Н	H…A	D····A	D—H…A
N2 H2NO2i	0.82 (2)	2 52 (2)	2 174 (2)	126 (2)
$N_2 = H_2 N_1 = O_1^{\text{H}}$	0.83(3)	2.32(3)	3.174 (2)	150 (2)
$N2 - H2N \cdots O1^{n}$	0.83(3)	2.41 (3)	3.200 (2)	158 (2)
02—H2 <i>O</i> …01	0.85 (3)	2.08 (3)	2.595 (2)	119 (2)
O2—H2 <i>O</i> …O1 ⁱⁱⁱ	0.85 (3)	2.00 (3)	2.677 (2)	136 (2)

Symmetry codes: (i) *x*-1/2, -*y*+1/2, -*z*+1; (ii) -*x*+1/2, *y*+1/2, *z*; (iii) -*x*+1, -*y*, -*z*+1.