organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Debora Cobo,^a Jairo Quiroga,^a Justo Cobo,^b John N. Low^c and Christopher Glidewell^d*

^aGrupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad de Valle, AA 25360 Cali, Colombia, ^bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, ^cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and ^dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland

Correspondence e-mail: cg@st-andrews.ac.uk

Key indicators

Single-crystal X-ray study T = 120 KMean σ (C–C) = 0.002 Å R factor = 0.040 wR factor = 0.110 Data-to-parameter ratio = 15.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. 4-(4-Fluorophenyl)-3-methyl-1-phenylindeno-[1,2-*b*]pyrazolo[4,3-e]pyridin-5(1*H*)-one: sheets built from C—H···N, C—H···O and C—H··· π (arene) hydrogen bonds

The molecules of the title compound, $C_{26}H_{16}FN_3O$, are linked into chains of edge-fused rings by a combination of $C-H\cdots N$ and $C-H\cdots O$ hydrogen bonds, and these chains are linked into sheets by a single $C-H\cdots \pi$ (arene) hydrogen bond.

Comment

We have recently reported several different methodologies for the synthesis of biologically active compounds containing pyrazolo[3,4-*b*]pyridine skeletons using 5-aminopyrazoles as starting materials (Quiroga *et al.*, 1998; Quiroga, Cruz *et al.*, 2001; Quiroga, Mejía *et al.*, 2001). We now report the molecular structure of (I) (Fig. 1) which was prepared by a threecomponent reaction between 5-amino-3-methyl-1-phenylpyrazole, 4-fluorobenzaldehyde and 1,3-indandione. To the best of our knowledge, this is the first reported structure of an indeno[1,2-*b*]pyrazolo[4,3-*e*]pyridine system.

The bond distances within the fused tetracyclic core of the molecule (Table 1) provide strong evidence for aromatic-type delocalization in both the aryl ring and the pyridine ring, with strong bond fixation in the pyrazole ring. The bonds C4A-C5, C5-C5A and C9A-C9B are all quite long for their types, while C5-O5 is quite short, indicating the lack of any π -delocalization or charge separation within the five-membered carbocyclic ring.

The molecules are linked into chains of edge-fused rings by two hydrogen bonds, one each of C-H···N and C-H···O types (Table 2). The aryl atom C46 in the molecule at (x, y, z)acts as hydrogen-bond donor to the pyridine atom N10 in the molecule at (1 - x, 1 - y, 1 - z), so generating by inversion an $R_2^2(14)$ (Bernstein *et al.*, 1995) motif centred at $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$. This

© 2006 International Union of Crystallography All rights reserved

Received 5 October 2006

Accepted 11 October 2006

Figure 1

The molecular structure of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

A stereoview of part of the crystal structure of compound (I), showing the formation of a chain of edge-fused rings along [101]. Hydrogen bonds are shown as dashed lines and, for the sake of clarity, the H atoms not involved in the motifs shown have been omitted.

dimeric motif in reinforced by a π - π stacking interaction involving the two pyridyl rings: these are strictly parallel with an interplanar spacing of 3.463 (2) Å, and a ring-centroid separation of 3.647 (2) Å, corresponding to a ring-centroid offset of 1.144 (2) Å. In addition, aryl atom C14 at (x, y, z) acts as hydrogen-bond donor to atom O5 in the molecule at (-1 + x, -1)

y, 1 + z), so generating by translation a C(12) chain running parallel to the $[10\overline{1}]$ direction. The propagation by translation and inversion of these two hydrogen bonds then generates a chain of edge-fused centrosymmetric rings parallel to $[10\overline{1}]$ with $R_2^2(14)$ rings centred at $(\frac{1}{2} + n, \frac{1}{2}, \frac{1}{2} - n)$ (n = zero or an)integer) and $R_4^4(30)$ rings centred at $(n, \frac{1}{2}, 1-n)$ (n = zero or an)integer) (Fig. 2). These chains are in turn linked by a C-H. $\cdot \cdot \pi$ (arene) hydrogen bond (Table 2) to form sheets parallel to (101).

Experimental

A solution of 5-amino-3-methyl-1-phenylpyrazole (1 mmol), 4fluorobenzaldehyde (1 mmol) and 1,3-indandione (1 mmol) in dimethylformamide (10 ml) containing a catalytic amount of triethylamine was heated under reflux for 7 h. The resulting solid product (I) was collected by filtration, washed with ethanol, dried and finally recrystallized from dimethylformamide to afford yellow crystals which were suitable for single-crystal X-ray diffraction [yield 54%, m.p. 528–530 K]. MS m/z (%): 406 (36), 405 (100, M⁺), 404 (41), 390 [15, $(M - CH_3)^+$].

Crystal data

γ

C ₂₆ H ₁₆ FN ₃ O	$V = 971.88 (5) \text{ Å}^3$
$M_r = 405.42$	Z = 2
Triclinic, $P\overline{1}$	$D_x = 1.385 \text{ Mg m}^{-3}$
a = 8.7566 (3) Å	Mo $K\alpha$ radiation
b = 9.9924 (2) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 11.9100 (4) Å	T = 120 (2) K
$\alpha = 73.359 \ (2)^{\circ}$	Block, yellow
$\beta = 78.009 \ (2)^{\circ}$	$0.66 \times 0.26 \times 0.24$ mm
$\gamma = 81.238 \ (2)^{\circ}$	

Data collection

Bruker-Nonius KappaCCD diffractometer ω and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{\min} = 0.922, \ T_{\max} = 0.978$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.059P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.040$	+ 0.2111P]
$wR(F^2) = 0.110$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
4446 reflections	$\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^{-3}$
281 parameters	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected bond lengths (Å).

N1-N2	1.3800 (15)	C8-C9	1.3968 (18)
N2-C3	1.3213 (16)	C9-C9A	1.3856 (18)
C3-C3A	1.4342 (17)	C9A-C9B	1.4812 (17)
C3A - C4	1.4147 (16)	C9B-N10	1.3266 (15)
C4-C4A	1.3910 (17)	N10-C10A	1.3506 (16)
C4A - C5	1.4998 (17)	C10A-N1	1.3686 (15)
C5-C5A	1.4914 (18)	C3A - C10A	1.4127 (18)
C5A - C6	1.3868 (17)	C4A - C9B	1.4209 (17)
C6-C7	1.3917 (19)	C5A - C9A	1.3989 (17)
C7-C8	1.3905 (19)	C5-O5	1.2162 (15)

19619 measured reflections

 $R_{\rm int} = 0.032$

 $\theta_{\rm max} = 27.6^\circ$

4446 independent reflections 3446 reflections with $I > 2\sigma(I)$

Table 2Hydrogen-bond	geometry (Å, °	²).		
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	

$C14-H14\cdots O5^i$	0.95	2.48	3.4065 (19)	164	
$C46-H46\cdots N10^{ii}$	0.95	2.60	3.4657 (17)	152	
C43-H43···C g^{iii}	0.95	2.65	3.5060 (16)	150	
					-

Symmetry codes: (i) x - 1, y, z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) -x + 1, -y + 2, -z + 1.

All H atoms were located in difference maps and then treated as riding atoms, with C-H = 0.95 (aromatic) or 0.98 Å (methyl) and with $U_{iso}(H) = kU_{eq}(C)$, where k = 1.5 for methyl H atoms and 1.2 for all other H atoms.

Data collection: *COLLECT* (Hooft, 1999); cell refinement: *DENZO* (Otwinowski & Minor, 1997) and *COLLECT*; data reduction: *DENZO* and *COLLECT*; program(s) used to solve structure: *OSCAIL* (McArdle, 2003) and *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *OSCAIL* and *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97* and *PRPKAPPA* (Ferguson, 1999).

X-ray data were collected at the EPSRC National X-ray Crystallography Service, University of Southampton, England. JC thanks the Consejería de Innovación, Ciencia *y* Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. DC and JQ thank COLCIENCIAS, UNIVALLE (Universidad del Valle, Colombia) for financial support.

References

 $D - H \cdot \cdot \cdot A$

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
- Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.
- McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Quiroga, J., Cruz, S., Insuasty, B., Abonía, R., Cobo, J., Sánchez, A., Nogueras, M. & Low, J. N. (2001). J. Heterocycl. Chem. 38, 53–60.
- Quiroga, J., Hormaza, A., Insuasty, B. & Márquez, M. (1998). J. Heterocycl. Chem. 35, 409–412.
- Quiroga, J., Mejía, D., Insuasty, B., Abonía, R., Nogueras, M., Sánchez, A. & Cobo, J. (2001). *Tetrahedron*, 57, 6947–6953.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2003). SADABS, Version 2.10. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Acta Cryst. (2006). E62, o5176–o5178 [https://doi.org/10.1107/S160053680604205X]
4-(4-Fluorophenyl)-3-methyl-1-phenylindeno[1,2-b]pyrazolo[4,3-e]pyridin-5(1*H*)-one: sheets built from C—H···N, C—H···O and C—H···π(arene) hydrogen bonds

Debora Cobo, Jairo Quiroga, Justo Cobo, John N. Low and Christopher Glidewell

4-(4-fluorophenyl)-3-methyl-1- phenylindeno[1,2-b]pyrazolo[4,3-e]pyridin-5(1H)-one

Crystal data

C₂₆H₁₆FN₃O $M_r = 405.42$ Triclinic, *P*1 Hall symbol: -P 1 a = 8.7566 (3) Å b = 9.9924 (2) Å c = 11.9100 (4) Å a = 73.359 (2)° $\beta = 78.009$ (2)° $\gamma = 81.238$ (2)° V = 971.88 (5) Å³

Data collection

Bruker–Nonius KappaCCD
diffractometer
Radiation source: Bruker-Nonius FR591
rotating anode
Graphite monochromator
Detector resolution: 9.091 pixels mm ⁻¹
φ and ω scans
Absorption correction: multi-scan
(SADABS: Sheldrick, 2003)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.110$ S = 1.064446 reflections 281 parameters 0 restraints Primary atom site location: structure-invariant direct methods Z = 2 F(000) = 420 $D_x = 1.385 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4446 reflections $\theta = 3.2-27.6^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 120 K Block, yellow $0.66 \times 0.26 \times 0.24 \text{ mm}$

 $T_{\min} = 0.922, T_{\max} = 0.978$ 19619 measured reflections
4446 independent reflections
3446 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{\max} = 27.6^\circ, \theta_{\min} = 3.2^\circ$ $h = -11 \rightarrow 11$ $k = -12 \rightarrow 12$ $l = -15 \rightarrow 15$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.059P)^2 + 0.2111P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.32$ e Å⁻³ $\Delta\rho_{min} = -0.23$ e Å⁻³

					_
	<i>x</i>	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.36566 (12)	0.75883 (11)	0.65474 (9)	0.0169 (2)	
C11	0.29292 (15)	0.71861 (13)	0.77628 (11)	0.0180 (3)	
C12	0.38176 (16)	0.65357 (14)	0.86418 (12)	0.0236 (3)	
C13	0.30792 (19)	0.61248 (15)	0.98194 (13)	0.0300 (3)	
C14	0.14663 (19)	0.63630 (15)	1.01238 (14)	0.0320 (4)	
C15	0.05945 (18)	0.70400 (17)	0.92378 (14)	0.0338 (4)	
C16	0.13120 (16)	0.74590 (15)	0.80567 (13)	0.0270 (3)	
N2	0.30324 (12)	0.87608 (11)	0.57809 (9)	0.0179 (2)	
C3	0.38539 (14)	0.88295 (13)	0.47050 (11)	0.0167 (3)	
C31	0.34501 (16)	1.00099 (13)	0.36834 (12)	0.0212 (3)	
C3A	0.50539 (14)	0.76762 (12)	0.47334 (11)	0.0154 (3)	
C4	0.61854 (14)	0.71496 (12)	0.38884 (11)	0.0153 (3)	
C41	0.64260 (14)	0.78615 (13)	0.25961 (11)	0.0167 (3)	
C42	0.68933 (15)	0.92146 (13)	0.21801 (12)	0.0207 (3)	
C43	0.71361 (16)	0.98765 (14)	0.09729 (12)	0.0235 (3)	
C44	0.68743 (16)	0.91716 (14)	0.02086 (12)	0.0227 (3)	
F44	0.71087 (11)	0.98124 (9)	-0.09786 (7)	0.0363 (2)	
C45	0.63971 (16)	0.78401 (14)	0.05820 (12)	0.0235 (3)	
C46	0.61907 (15)	0.71766 (13)	0.17850 (11)	0.0199 (3)	
C4A	0.70336 (14)	0.58952 (12)	0.43718 (11)	0.0154 (3)	
C5	0.83913 (14)	0.50600 (13)	0.38070 (11)	0.0173 (3)	
O5	0.90225 (11)	0.53006 (10)	0.27685 (8)	0.0248 (2)	
C5A	0.88441 (14)	0.38623 (13)	0.47984 (11)	0.0171 (3)	
C6	1.00240 (15)	0.27703 (13)	0.47665 (12)	0.0206 (3)	
C7	1.02158 (15)	0.17763 (14)	0.58304 (13)	0.0226 (3)	
C8	0.92587 (15)	0.18869 (13)	0.68953 (13)	0.0224 (3)	
C9	0.80669 (15)	0.29830 (13)	0.69327 (12)	0.0196 (3)	
C9A	0.78745 (14)	0.39640 (12)	0.58696 (11)	0.0164 (3)	
C9B	0.67604 (14)	0.52408 (12)	0.56136 (11)	0.0152 (3)	
N10	0.57050 (12)	0.56973 (10)	0.64300 (9)	0.0165 (2)	
C10A	0.48785 (14)	0.69040 (12)	0.59408 (11)	0.0155 (3)	
H12	0.4925	0.6372	0.8440	0.028*	
H13	0.3687	0.5675	1.0423	0.036*	
H14	0.0964	0.6067	1.0929	0.038*	
H15	-0.0511	0.7220	0.9443	0.041*	
H16	0.0706	0.7927	0.7456	0.032*	
H31A	0.2392	1.0449	0.3903	0.032*	
H31B	0.3487	0.9648	0.2994	0.032*	
H31C	0.4206	1.0707	0.3482	0.032*	
H42	0.7047	0.9688	0.2729	0.025*	
H43	0.7474	1.0792	0.0683	0.028*	
H45	0.6214	0.7389	0.0027	0.028*	
H46	0.5887	0.6249	0.2062	0.024*	
H6	1.0683	0.2703	0.4039	0.025*	
H7	1.1010	0.1014	0.5829	0.027*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H8	0.9419	0.1203	0.7612	0.027*
H9	0.7412	0.3053	0.7661	0.024*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
N1	0.0184 (5)	0.0156 (5)	0.0149 (6)	0.0015 (4)	-0.0015 (4)	-0.0039 (4)
C11	0.0223 (6)	0.0154 (6)	0.0153 (7)	-0.0032 (5)	0.0021 (5)	-0.0059 (5)
C12	0.0264 (7)	0.0212 (7)	0.0190 (7)	0.0031 (5)	0.0002 (6)	-0.0045 (5)
C13	0.0422 (9)	0.0226 (7)	0.0183 (8)	0.0030 (6)	0.0015 (6)	-0.0024 (6)
C14	0.0424 (9)	0.0283 (8)	0.0209 (8)	-0.0105 (6)	0.0109 (6)	-0.0076 (6)
C15	0.0240 (7)	0.0453 (9)	0.0342 (9)	-0.0110 (7)	0.0087 (6)	-0.0195 (7)
C16	0.0213 (7)	0.0356 (8)	0.0264 (8)	-0.0032 (6)	-0.0004 (6)	-0.0144 (6)
N2	0.0202 (5)	0.0157 (5)	0.0171 (6)	0.0007 (4)	-0.0048 (4)	-0.0034 (4)
C3	0.0181 (6)	0.0155 (6)	0.0176 (7)	-0.0012 (5)	-0.0044 (5)	-0.0055 (5)
C31	0.0246 (7)	0.0184 (6)	0.0193 (7)	0.0031 (5)	-0.0066 (5)	-0.0033 (5)
C3A	0.0168 (6)	0.0139 (6)	0.0158 (6)	-0.0023 (5)	-0.0031 (5)	-0.0039 (5)
C4	0.0171 (6)	0.0138 (6)	0.0156 (6)	-0.0039 (5)	-0.0027 (5)	-0.0039 (5)
C41	0.0155 (6)	0.0166 (6)	0.0164 (7)	0.0003 (4)	-0.0017 (5)	-0.0038 (5)
C42	0.0256 (7)	0.0174 (6)	0.0185 (7)	-0.0013 (5)	-0.0041 (5)	-0.0042 (5)
C43	0.0291 (7)	0.0180 (6)	0.0198 (7)	-0.0044 (5)	-0.0020 (6)	0.0002 (5)
C44	0.0244 (7)	0.0282 (7)	0.0102 (7)	-0.0016 (5)	-0.0011 (5)	0.0015 (5)
F44	0.0490 (6)	0.0413 (5)	0.0142 (4)	-0.0116 (4)	-0.0043 (4)	0.0028 (4)
C45	0.0256 (7)	0.0295 (7)	0.0175 (7)	-0.0041 (6)	-0.0029 (5)	-0.0090 (6)
C46	0.0216 (7)	0.0194 (6)	0.0182 (7)	-0.0034 (5)	-0.0016 (5)	-0.0047 (5)
C4A	0.0164 (6)	0.0146 (6)	0.0149 (6)	-0.0030 (5)	-0.0008 (5)	-0.0041 (5)
C5	0.0174 (6)	0.0164 (6)	0.0188 (7)	-0.0033 (5)	-0.0014 (5)	-0.0060 (5)
05	0.0260 (5)	0.0261 (5)	0.0182 (5)	0.0007 (4)	0.0026 (4)	-0.0057 (4)
C5A	0.0163 (6)	0.0159 (6)	0.0197 (7)	-0.0026 (5)	-0.0024 (5)	-0.0057 (5)
C6	0.0177 (6)	0.0209 (6)	0.0236 (7)	-0.0009 (5)	-0.0014 (5)	-0.0086 (5)
C7	0.0197 (6)	0.0186 (6)	0.0292 (8)	0.0025 (5)	-0.0067 (6)	-0.0064 (6)
C8	0.0220 (7)	0.0183 (6)	0.0248 (8)	-0.0005 (5)	-0.0073 (6)	-0.0006 (5)
C9	0.0194 (6)	0.0192 (6)	0.0186 (7)	-0.0018 (5)	-0.0028 (5)	-0.0028 (5)
C9A	0.0153 (6)	0.0152 (6)	0.0188 (7)	-0.0029 (5)	-0.0028 (5)	-0.0043 (5)
C9B	0.0155 (6)	0.0142 (6)	0.0168 (7)	-0.0028 (5)	-0.0027 (5)	-0.0047 (5)
N10	0.0175 (5)	0.0144 (5)	0.0169 (6)	-0.0012 (4)	-0.0021 (4)	-0.0039 (4)
C10A	0.0162 (6)	0.0151 (6)	0.0159 (6)	-0.0022 (5)	-0.0019 (5)	-0.0053 (5)

Geometric parameters (Å, °)

N1—N2	1.3800 (15)	C11—C16	1.3904 (19)
N2—C3	1.3213 (16)	C12—C13	1.3885 (19)
C3—C3A	1.4342 (17)	C12—H12	0.95
C3A—C4	1.4147 (16)	C13—C14	1.385 (2)
C4—C4A	1.3910 (17)	С13—Н13	0.95
C4A—C5	1.4998 (17)	C14—C15	1.387 (2)
C5—C5A	1.4914 (18)	C14—H14	0.95
C5A—C6	1.3868 (17)	C15—C16	1.387 (2)

C6—C7	1.3917 (19)	С15—Н15	0.95
C7—C8	1.3905 (19)	C16—H16	0.95
C8—C9	1.3968 (18)	C3—C31	1.4921 (18)
С9—С9А	1.3856 (18)	С31—Н31А	0.98
С9А—С9В	1.4812 (17)	C31—H31B	0.98
C9B—N10	1.3266 (15)	C31—H31C	0.98
N10—C10A	1.3506 (16)	C4—C41	1.4842 (17)
C10A—N1	1.3686 (15)	C41—C42	1.3934 (17)
C3A-C10A	1 4127 (18)	C41 - C46	1 3959 (17)
C4A - C9B	1 4209 (17)	C_{42} C_{43}	1.3860(19)
C5A - C9A	1.1209(17) 1.3989(17)	C_{42} H_{42}	0.95
C5	1.3969(17) 1.2162(15)	$C_{42} = 1142$	1 3713 (19)
C6 H6	0.05	$C_{43} = C_{44}$	0.05
C7 H7	0.95	C44 = E44	0.95
$C = H^2$	0.95	C44 $C44$ $C45$	1.3010(13)
	0.95	C44—C45	1.3769 (19)
C9—H9	0.95	C45—C46	1.3820 (18)
NI—CII	1.4228 (16)	С45—Н45	0.95
C11—C12	1.3850 (19)	C46—H46	0.95
C104_N1_N2	110 56 (10)	C44 - C43 - C42	118.06 (12)
C10A = N1 = C11	129 34 (11)	C44 - C43 - H43	121.0
N2_N1_C11	119.85 (10)	C_{42} C_{43} H_{43}	121.0
C_{12} C_{11} C_{16}	119.03(10) 120.41(12)	$F_{44} = C_{43} = H_{43}$	121.0 118 53 (12)
$C_{12} = C_{11} = C_{10}$	120.41(12) 120.56(11)	$F_{44} = C_{44} = C_{45}$	118.35(12)
C12— $C11$ — $N1$	120.30(11) 110.02(12)	$C_{44} = C_{44} = C_{45}$	110.23(12)
C10 - C11 - N1	119.05(12) 110.58(12)	C43 - C44 - C43	123.22(12)
CII = CI2 = CI3	119.38 (15)	C44 - C45 - C40	118.30 (12)
CII—CI2—HI2	120.2	C44—C45—H45	120.8
C13—C12—H12	120.2	C46—C45—H45	120.8
C14—C13—C12	120.70 (15)	C45—C46—C41	120.39 (12)
С14—С13—Н13	119.6	С45—С46—Н46	119.8
C12—C13—H13	119.6	C41—C46—H46	119.8
C13—C14—C15	119.10 (14)	C4—C4A—C9B	121.28 (11)
C13—C14—H14	120.4	C4—C4A—C5	130.78 (12)
C15—C14—H14	120.4	C9B—C4A—C5	107.77 (11)
C14—C15—C16	120.99 (14)	O5—C5—C5A	126.40 (12)
C14—C15—H15	119.5	O5—C5—C4A	128.21 (12)
C16—C15—H15	119.5	C5A—C5—C4A	105.38 (10)
C15—C16—C11	119.19 (14)	C6—C5A—C9A	120.98 (12)
C15—C16—H16	120.4	C6—C5A—C5	129.33 (12)
C11—C16—H16	120.4	C9A—C5A—C5	109.69 (11)
C3—N2—N1	107.25 (10)	C5A—C6—C7	118.15 (12)
N2—C3—C3A	110.61 (11)	С5А—С6—Н6	120.9
N2—C3—C31	119.36 (11)	С7—С6—Н6	120.9
C3A—C3—C31	130.02 (11)	C8—C7—C6	120.73 (12)
C3—C31—H31A	109.5	С8—С7—Н7	119.6
C3—C31—H31B	109.5	С6—С7—Н7	119.6
H31A—C31—H31B	109.5	С7—С8—С9	121.38 (13)
C3—C31—H31C	109.5	С7—С8—Н8	119.3

H31A—C31—H31C	109.5	С9—С8—Н8	119.3
H31B-C31-H31C	109.5	C9A—C9—C8	117.63 (12)
C10A - C3A - C4	118.83 (11)	С9А—С9—Н9	121.2
C10A - C3A - C3	104.60 (10)	С8—С9—Н9	121.2
C4-C3A-C3	136.41 (12)	C9—C9A—C5A	121.13(12)
C4A - C4 - C3A	114 14 (11)	C9—C9A—C9B	130.83(12)
C4A - C4 - C41	122.97 (11)	C5A - C9A - C9B	108.03(12)
C_{3A} C_{4} C_{41}	122.88 (11)	N10-C9B-C4A	126.02(11)
C42-C41-C46	119 37 (12)	N10-C9B-C9A	120.27(11) 124.63(11)
C_{42} C_{41} C_{4}	120.48 (11)	C4A - C9B - C9A	121.09(11) 109.09(10)
$C_{42} = C_{41} = C_{4}$	120.46 (11)	$C9B_N10_C10A$	109.09(10) 111.53(11)
C_{43} C_{42} C_{41}	120.13(11) 120.63(12)	N10-C10A-N1	125.08(12)
C_{43} C_{42} C_{41} C_{43} C_{42} H_{42}	110 7	N10-C10A-C3A	123.00(12) 127.92(11)
C41 - C42 - H42	119.7	N1 - C10A - C3A	127.92(11) 106.98(11)
C+1-C+2-11+2	119.7		100.98 (11)
C10A—N1—C11—C12	38.33 (18)	C41—C4—C4A—C5	5.9 (2)
N2—N1—C11—C12	-148.03 (12)	C4—C4A—C5—O5	-2.1 (2)
C10A—N1—C11—C16	-141.84 (13)	C9B—C4A—C5—O5	-177.21 (12)
N2—N1—C11—C16	31.80 (16)	C4—C4A—C5—C5A	176.82 (12)
C16—C11—C12—C13	1.57 (19)	C9B—C4A—C5—C5A	1.72 (12)
N1—C11—C12—C13	-178.61 (11)	O5—C5—C5A—C6	-1.4(2)
C11—C12—C13—C14	-0.2 (2)	C4A—C5—C5A—C6	179.67 (12)
C12—C13—C14—C15	-1.0(2)	O5—C5—C5A—C9A	178.16 (12)
C13—C14—C15—C16	1.0 (2)	C4A—C5—C5A—C9A	-0.80 (13)
C14—C15—C16—C11	0.3 (2)	C9A—C5A—C6—C7	0.08 (18)
C12—C11—C16—C15	-1.62(19)	C5—C5A—C6—C7	179.57 (12)
N1—C11—C16—C15	178.56 (11)	C5A—C6—C7—C8	-0.63 (19)
C10A—N1—N2—C3	-0.59(13)	C6—C7—C8—C9	0.7 (2)
C11—N1—N2—C3	-175.34(10)	C7—C8—C9—C9A	-0.29(19)
N1—N2—C3—C3A	0.51 (13)	C8—C9—C9A—C5A	-0.26(18)
N1—N2—C3—C31	-179.51 (10)	C8—C9—C9A—C9B	-178.77(12)
N2-C3-C3A-C10A	-0.26(13)	C6—C5A—C9A—C9	0.37 (18)
C31—C3—C3A—C10A	179.77 (12)	C5—C5A—C9A—C9	-179.21(11)
N2-C3-C3A-C4	174.82 (13)	C6-C5A-C9A-C9B	179.18 (11)
C31—C3—C3A—C4	-5.1 (2)	C5—C5A—C9A—C9B	-0.40(13)
C10A - C3A - C4 - C4A	-0.80(16)	C4-C4A-C9B-N10	1.11 (18)
C3-C3A-C4-C4A	-175.37(13)	C5-C4A-C9B-N10	176.77 (11)
C10A - C3A - C4 - C41	178.18 (10)	C4—C4A—C9B—C9A	-177.66(10)
C_3 — C_3 — C_4 — C_4 1	3.6 (2)	C5-C4A-C9B-C9A	-2.01(13)
C4A - C4 - C41 - C42	-119.63(13)	C9—C9A—C9B—N10	1.4 (2)
$C_{3A} - C_{4} - C_{41} - C_{42}$	61 48 (16)	C5A - C9A - C9B - N10	-177 27 (11)
C4A - C4 - C41 - C46	60.13 (16)	C9-C9A-C9B-C4A	-179.81(12)
C3A - C4 - C41 - C46	-11876(13)	C5A - C9A - C9B - C4A	1 53 (13)
C46-C41-C42-C43	-0.49(19)	C4A - C9B - N10 - C10A	-0.10(17)
C4-C41-C42-C43	179 28 (12)	C9A - C9B - N10 - C10A	178 50 (10)
C41 - C42 - C43 - C44	1.2 (2)	C9B-N10-C10A-N1	176.48 (11)
C42 - C43 - C44 - F44	179 98 (12)	C9B—N10—C10A—C3A	-1.49(17)
$C_{12} = C_{13} = C_{14} = C_{14}$	-0.6(2)	$N_2 N_1 C_{10A} N_{10}$	-177 00 (11)
$\cup \tau 2 = \cup \tau J = \cup \tau T = \cup \tau J$	0.0 (2)	$112 111 \bigcirc 1011 \square 1110$	1/1.20(11)

178.65 (11)	C11—N1—C10A—N10	-3.8(2)
-0.8(2)	N2—N1—C10A—C3A	0.42 (13)
1.54 (19)	C11—N1—C10A—C3A	174.53 (11)
-0.91 (19)	C4—C3A—C10A—N10	2.02 (18)
179.32 (11)	C3—C3A—C10A—N10	178.15 (11)
-0.56 (16)	C4—C3A—C10A—N1	-176.24 (10)
-179.54 (10)	C3—C3A—C10A—N1	-0.11 (12)
-175.09 (11)		
	178.65 (11) -0.8 (2) 1.54 (19) -0.91 (19) 179.32 (11) -0.56 (16) -179.54 (10) -175.09 (11)	178.65 (11) C11—N1—C10A—N10 -0.8 (2) N2—N1—C10A—C3A 1.54 (19) C11—N1—C10A—C3A -0.91 (19) C4—C3A—C10A—N10 179.32 (11) C3—C3A—C10A—N10 -0.56 (16) C4—C3A—C10A—N1 -179.54 (10) C3—C3A—C10A—N1 -175.09 (11) C3—C3A—C10A—N1

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A
C14—H14…O5 ⁱ	0.95	2.48	3.4065 (19)	164
C46—H46…N10 ⁱⁱ	0.95	2.60	3.4657 (17)	152
C43—H43····Cg ⁱⁱⁱ	0.95	2.65	3.5060 (16)	150

Symmetry codes: (i) x-1, y, z+1; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+2, -z+1.