Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

William T. A. Harrison,^a* H. S. Yathirajan,^b B. Narayana,^c T. V. Sreevidya^c and K. Sunil^c

^aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, ^bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^cDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, India

Correspondence e-mail: w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study T = 120 KMean σ (C–C) = 0.004 Å R factor = 0.027 wR factor = 0.058 Data-to-parameter ratio = 15.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. (2E)-1-(4-Bromophenyl)-3-(4-nitrophenyl)-

In the approximately planar molecule of the title compound, $C_{15}H_{10}BrNO_3$, the dihedral angle between the two benzene rings is 4.97 (18)°. Intermolecular $C-H \cdots O$ interactions help to form chains of molecules in the crystal structure.

Received 18 September 2006 Accepted 28 September 2006

organic papers

Comment

prop-2-en-1-one

Chalcone derivatives show considerable promise as organic non-linear optical materials (Uchida *et al.*, 1998). As part of our ongoing studies of these compounds (Harrison *et al.*, 2006), the synthesis and structure of the title compound, (I) (Fig. 1), is presented here. Compound (I) is an isomer of the recently reported 3-(4-bromophenyl)-1-(4-nitrophenyl)prop-2-en-1-one [(II); Rosli *et al.*, 2006], in which the bromo and nitro substituents are exchanged on the benzene rings.

The geometrical parameters for (I) fall within their expected ranges (Allen *et al.*, 1987). The degree of twisting about the C6–C7 and C9–C10 bonds in (I) (Table 1) is almost the same, but in opposite senses. This results in the C1–C6 and C10–C15 benzene-ring mean planes in (I) being close to parallel [dihedral angle = $4.97 (18)^{\circ}$]. By comparison, in compound (II), the dihedral angles between the mean planes of the corresponding benzene rings in the two molecules of the asymmetric unit are 12.83 (7) and 41.15 (7)°. The well ordered nitro group in (I) is slightly twisted away from the C10–C15 benzene ring mean plane [dihedral angle = $3.4 (4)^{\circ}$].

A *PLATON* (Spek, 2003) analysis of (I) indicated two possible intermolecular $C-H \cdots O$ interactions (Table 2) that result in chains of molecules (Fig. 2) propagating in either

Figure 1

View of the molecular structure of (I) showing 50% probability displacement ellipsoids.

All rights reserved

© 2006 International Union of Crystallography

Figure 2

Detail of (I), showing the $C-H \cdots O$ interactions (dashed lines) that link the molecules into [011] and $[01\overline{1}]$ chains. Atoms with the suffixes * and % are generated by the symmetry operations (x, y - 1, z + 1) and (x, y + 1, z + 1)z - 1), respectively.

[011] or $[01\overline{1}]$. The graph-theory (Bernstein *et al.*, 1995) notation for the closed loop that results is $R_2^2(12)$. Overall, the packing (Fig. 3) results in zigzag (100) sheets of (I). The packing in (II) is completely different: all molecules are aligned in approximately the same orientation, resulting in a layered structure in the centrosymmetric space group $P\overline{1}$.

Experimental

A solution of potassium hydroxide (5%, 5 ml) was added slowly with stirring to a mixture of 4-nitrobenzaldehyde (1.51 g, 0.01 mol) and 4bromoacetophenone (1.99 g, 0.01 mol) in ethanol (30 ml). The mixture was stirred at room temperature for 24 h. The precipitated solid was filtered, washed with water, dried and crystals of (I) were recrystallized from acetone by slow evaporation (yield: 68%; m.p. 439-441 K). Analysis found (calculated) for C₁₅H₁₀BrNO₃ (%): C 54.11 (54.24), H 3.04 (3.03), N 4.10 (4.22).

Crystal data

$C_{15}H_{10}BrNO_3$	Z = 4
$M_r = 332.15$	$D_x = 1.679 \text{ Mg m}^2$
Orthorhombic, <i>Pna2</i> ₁	Mo $K\alpha$ radiation
a = 43.007 (3) Å	$\mu = 3.13 \text{ mm}^{-1}$
b = 5.9744 (4) Å	T = 120 (2) K
c = 5.1137 (3) Å	Slab, light yellow
$V = 1313.92 (15) \text{ Å}^3$	$0.48 \times 0.34 \times 0.1$
Data collection	
Nonius KappaCCD diffractometer	9881 measured re

 ω and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2003) $T_{\min} = 0.315, T_{\max} = 0.634$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.058$ S = 1.022833 reflections 181 parameters H-atom parameters constrained

_3 6 mm

eflections 2833 independent reflections 2452 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.034$ $\theta_{\rm max} = 27.6^{\circ}$

 $w = 1/[\sigma^2(F_0^2) + (0.0103P)^2]$ + 0.5147P] where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ -3 $\Delta \rho_{\rm max} = 0.42 \text{ e} \text{ Å}^3$ $\Delta \rho_{\rm min} = -0.37 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), 1143 Friedel pairs Flack parameter: 0.039 (9)

The unit cell contents of (I), viewed down [010]. H atoms have been omitted.

Table 1

Figure 3

Selected torsion angles (°).

C1-C6-C7-O1	9.1 (4)	C8-C9-C10-C11	-9.3 (5)

Table 2

D

Hydrogen-bond	geometry	(A, '	°).
---------------	----------	-------	-----

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} \hline C12-H12\cdots O1^{i} \\ C15-H15\cdots O3^{ii} \end{array}$	0.95	2.51	3.218 (3)	131
	0.95	2.46	3.296 (3)	146

Symmetry codes: (i) x, y - 1, z + 1; (ii) x, y + 1, z - 1.

The H atoms were positioned geometrically $(C-H = 0.95 \text{ \AA})$ and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(carrier)$.

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997), and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

We thank the EPSRC National Crystallography Service (University of Southampton) for the data collection. BKS thanks AICTE, Government of India, New Delhi, for financial assistance under the 'Career Award for Young Teachers' scheme.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Blessing, R. H. (1995). Acta Cryst. A**51**, 33–38.
- Bruker (2003). SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Vijaya Raj, K. K. (2006). Acta Cryst. E62, 01578–01579.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Rosli, M. M., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, 01466–01468.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135-140.

supporting information

Acta Cryst. (2006). E62, o4829-o4831 [https://doi.org/10.1107/S1600536806039900]

(2E)-1-(4-Bromophenyl)-3-(4-nitrophenyl)prop-2-en-1-one

William T. A. Harrison, H. S. Yathirajan, B. Narayana, T. V. Sreevidya and K. Sunil

(2E)-1-(4-Bromophenyl)-3-(4-nitrophenyl)prop-2-en-1-one

Crystal data

C₁₅H₁₀BrNO₃ $M_r = 332.15$ Orthorhombic, Pna2₁ a = 43.007 (3) Å b = 5.9744 (4) Å c = 5.1137 (3) Å V = 1313.92 (15) Å³ Z = 4F(000) = 664

Data collection

Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scans Absorption correction: multi-scan (SADABS; Bruker, 2003) $T_{\min} = 0.315, T_{\max} = 0.634$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.058$ S = 1.032833 reflections 181 parameters 1 restraint Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map $D_x = 1.679 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1807 reflections $\theta = 2.9-27.5^{\circ}$ $\mu = 3.13 \text{ mm}^{-1}$ T = 120 KSlab, light yellow $0.48 \times 0.34 \times 0.16 \text{ mm}$

9881 measured reflections 2833 independent reflections 2452 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$ $\theta_{max} = 27.6^\circ, \theta_{min} = 3.4^\circ$ $h = -55 \rightarrow 51$ $k = -7 \rightarrow 7$ $l = -6 \rightarrow 6$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0103P)^2 + 0.5147P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.42$ e Å⁻³ $\Delta\rho_{min} = -0.37$ e Å⁻³ Absolute structure: Flack (1983), 1143 Friedel pairs Absolute structure parameter: 0.039 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.32687 (6)	0.5698 (5)	-0.0869 (5)	0.0226 (6)
H1	0.3347	0.7145	-0.1261	0.027*
C2	0.30283 (6)	0.4845 (4)	-0.2341 (5)	0.0231 (6)
H2	0.2941	0.5690	-0.3731	0.028*
C3	0.29161 (6)	0.2713 (5)	-0.1749 (5)	0.0231 (6)
C4	0.30431 (6)	0.1460 (5)	0.0239 (5)	0.0242 (6)
H4	0.2965	0.0007	0.0607	0.029*
C5	0.32863 (6)	0.2330 (4)	0.1705 (6)	0.0241 (7)
Н5	0.3376	0.1459	0.3063	0.029*
C6	0.33999 (5)	0.4475 (4)	0.1197 (8)	0.0192 (4)
C7	0.36493 (6)	0.5567 (5)	0.2803 (5)	0.0224 (6)
C8	0.38183 (6)	0.4199 (5)	0.4754 (5)	0.0223 (6)
H8	0.3763	0.2671	0.4973	0.027*
C9	0.40457 (5)	0.5046 (4)	0.6208 (8)	0.0205 (5)
Н9	0.4102	0.6560	0.5890	0.025*
C10	0.42189 (6)	0.3854 (4)	0.8269 (5)	0.0180 (5)
C11	0.41295 (6)	0.1732 (4)	0.9179 (5)	0.0207 (6)
H11	0.3953	0.1017	0.8434	0.025*
C12	0.42930 (5)	0.0672 (4)	1.1133 (8)	0.0200 (5)
H12	0.4233	-0.0769	1.1733	0.024*
C13	0.45468 (5)	0.1749 (4)	1.2203 (5)	0.0164 (5)
C14	0.46438 (5)	0.3842 (4)	1.1389 (8)	0.0195 (5)
H14	0.4819	0.4547	1.2162	0.023*
C15	0.44770 (6)	0.4884 (4)	0.9408 (5)	0.0202 (6)
H15	0.4540	0.6323	0.8817	0.024*
N1	0.47161 (5)	0.0649 (4)	1.4359 (4)	0.0193 (5)
01	0.37058 (4)	0.7549 (3)	0.2512 (4)	0.0333 (5)
O2	0.49310 (4)	0.1664 (3)	1.5394 (4)	0.0244 (4)
O3	0.46321 (4)	-0.1244 (3)	1.5005 (4)	0.0251 (4)
Br1	0.258082 (5)	0.14848 (4)	-0.36943 (8)	0.02868 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0198 (12)	0.0203 (13)	0.0277 (15)	0.0006 (11)	0.0010 (12)	0.0023 (12)
C2	0.0216 (12)	0.0257 (14)	0.0220 (13)	0.0017 (11)	-0.0006 (11)	0.0021 (12)
C3	0.0197 (13)	0.0262 (14)	0.0233 (14)	0.0016 (11)	-0.0001 (11)	-0.0051 (12)
C4	0.0222 (13)	0.0224 (13)	0.0280 (13)	0.0008 (11)	0.0011 (11)	-0.0004 (12)
C5	0.0246 (11)	0.0209 (12)	0.027 (2)	0.0044 (10)	-0.0038 (12)	0.0011 (13)
C6	0.0152 (9)	0.0211 (11)	0.0213 (11)	0.0035 (9)	0.0018 (15)	0.0013 (17)
C7	0.0155 (12)	0.0252 (14)	0.0264 (14)	0.0031 (11)	0.0002 (11)	0.0019 (13)
C8	0.0193 (12)	0.0201 (14)	0.0276 (14)	0.0000 (11)	0.0008 (11)	0.0029 (12)
C9	0.0181 (10)	0.0194 (11)	0.0238 (12)	0.0001 (8)	0.0027 (16)	0.0028 (18)
C10	0.0165 (12)	0.0172 (13)	0.0202 (13)	0.0025 (10)	0.0040 (10)	0.0003 (11)
C11	0.0171 (12)	0.0209 (14)	0.0243 (14)	-0.0027 (10)	0.0002 (11)	-0.0002 (12)

supporting information

Geometric parameters (Å, °)

1.377 (4)	C9—C10	1.474 (4)
1.403 (4)	С9—Н9	0.9500
0.9500	C10—C15	1.396 (3)
1.395 (4)	C10—C11	1.404 (3)
0.9500	C11—C12	1.377 (4)
1.375 (4)	C11—H11	0.9500
1.899 (3)	C12—C13	1.380 (4)
1.388 (4)	С12—Н12	0.9500
0.9500	C13—C14	1.382 (3)
1.396 (3)	C13—N1	1.476 (3)
0.9500	C14—C15	1.389 (4)
1.500 (4)	C14—H14	0.9500
1.218 (3)	C15—H15	0.9500
1.481 (4)	N1—O2	1.226 (3)
1.329 (4)	N1—O3	1.232 (3)
0.9500		
121.4 (2)	C8—C9—C10	126.0 (2)
119.3	С8—С9—Н9	117.0
119.3	С10—С9—Н9	117.0
118.6 (3)	C15-C10-C11	118.5 (2)
120.7	C15—C10—C9	119.2 (2)
120.7	C11—C10—C9	122.3 (2)
121.3 (2)	C12-C11-C10	121.1 (2)
118.6 (2)	C12—C11—H11	119.5
120.1 (2)	C10-C11-H11	119.5
119.6 (3)	C11—C12—C13	118.5 (2)
120.2	C11—C12—H12	120.8
120.2	C13—C12—H12	120.8
120.5 (3)	C12—C13—C14	122.8 (3)
119.8	C12—C13—N1	118.6 (2)
119.8	C14—C13—N1	118.6 (2)
118.5 (3)	C13—C14—C15	118.0 (2)
123.2 (3)	C13—C14—H14	121.0
118.3 (2)	C15—C14—H14	121.0
121.4 (2)	C14—C15—C10	121.2 (2)
	$\begin{array}{c} 1.377 \ (4) \\ 1.403 \ (4) \\ 0.9500 \\ 1.395 \ (4) \\ 0.9500 \\ 1.395 \ (4) \\ 0.9500 \\ 1.375 \ (4) \\ 1.899 \ (3) \\ 1.388 \ (4) \\ 0.9500 \\ 1.396 \ (3) \\ 0.9500 \\ 1.500 \ (4) \\ 1.218 \ (3) \\ 1.481 \ (4) \\ 1.329 \ (4) \\ 0.9500 \\ 121.4 \ (2) \\ 119.3 \\ 119.3 \\ 118.6 \ (3) \\ 120.7 \\ 120.7 \\ 120.7 \\ 120.7 \\ 120.7 \\ 120.7 \\ 120.7 \\ 120.7 \\ 120.7 \\ 120.7 \\ 120.7 \\ 120.7 \\ 120.7 \\ 120.5 \ (3) \\ 119.8 \\ 119.8 \\ 119.8 \\ 119.8 \\ 119.8 \\ 119.8 \\ 119.8 \\ 119.8 \\ 119.8 \\ 119.8 \\ 118.5 \ (3) \\ 123.2 \ (3) \\ 118.3 \ (2) \\ 121.4 \ (2) \end{array}$	1.377(4) $C9-C10$ $1.403(4)$ $C9-H9$ 0.9500 $C10-C15$ $1.395(4)$ $C10-C11$ 0.9500 $C11-C12$ $1.375(4)$ $C11-H11$ $1.899(3)$ $C12-C13$ $1.375(4)$ $C11-H11$ $1.899(3)$ $C12-C13$ $1.388(4)$ $C12-H12$ 0.9500 $C13-C14$ $1.396(3)$ $C13-N1$ 0.9500 $C14-C15$ $1.500(4)$ $C14-H14$ $1.218(3)$ $C15-H15$ $1.481(4)$ $N1-O2$ $1.329(4)$ $N1-O3$ 0.9500 $C13-C10$ 119.3 $C8-C9-H9$ 119.3 $C10-C9-H9$ $118.6(3)$ $C15-C10-C11$ 120.7 $C15-C10-C9$ $121.3(2)$ $C12-C11-H11$ 120.7 $C10-C11-H11$ $120.6(3)$ $C11-C12-C13$ 120.7 $C10-C11-H11$ 120.2 $C13-C12-H12$ 120.2 $C13-C12-H12$ 120.2 $C13-C12-H12$ <tr< td=""></tr<>

O1—C7—C6	119.9 (2)	C14—C15—H15	119.4
C8—C7—C6	118.7 (2)	C10—C15—H15	119.4
C9—C8—C7	121.9 (2)	O2—N1—O3	124.0 (2)
С9—С8—Н8	119.1	O2—N1—C13	118.3 (2)
С7—С8—Н8	119.1	O3—N1—C13	117.7 (2)
C6—C1—C2—C3	-0.3 (4)	C8—C9—C10—C15	172.2 (3)
C1—C2—C3—C4	-0.7 (4)	C8—C9—C10—C11	-9.3 (5)
C1-C2-C3-Br1	179.1 (2)	C15-C10-C11-C12	-0.6 (4)
C2—C3—C4—C5	0.5 (4)	C9-C10-C11-C12	-179.0 (3)
Br1-C3-C4-C5	-179.4 (2)	C10-C11-C12-C13	0.5 (4)
C3—C4—C5—C6	0.8 (4)	C11—C12—C13—C14	-0.2 (4)
C4—C5—C6—C1	-1.8 (4)	C11—C12—C13—N1	178.0 (2)
C4—C5—C6—C7	176.3 (2)	C12-C13-C14-C15	-0.1 (4)
C2-C1-C6-C5	1.5 (4)	N1-C13-C14-C15	-178.2 (2)
C2-C1-C6-C7	-176.7 (2)	C13-C14-C15-C10	0.0 (4)
C5—C6—C7—O1	-169.1 (3)	C11—C10—C15—C14	0.3 (4)
C1—C6—C7—O1	9.1 (4)	C9-C10-C15-C14	178.8 (3)
C5—C6—C7—C8	9.9 (4)	C12-C13-N1-O2	-176.2 (2)
C1—C6—C7—C8	-172.0 (2)	C14—C13—N1—O2	2.0 (3)
O1—C7—C8—C9	-2.4 (4)	C12-C13-N1-O3	3.9 (3)
C6—C7—C8—C9	178.7 (3)	C14—C13—N1—O3	-177.9 (2)
C7—C8—C9—C10	177.4 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
C12—H12…O1 ⁱ	0.95	2.51	3.218 (3)	131
C15—H15…O3 ⁱⁱ	0.95	2.46	3.296 (3)	146

Symmetry codes: (i) *x*, *y*-1, *z*+1; (ii) *x*, *y*+1, *z*-1.