Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Benjamin J. Coe,* Emma C. Fitzgerald and James Raftery

School of Chemistry, University of Manchester, Manchester M13 9PL, England

Correspondence e-mail: b.coe@manchester.ac.uk

Key indicators

Single-crystal X-ray study T = 100 KMean σ (C–C) = 0.003 Å R factor = 0.047 wR factor = 0.131 Data-to-parameter ratio = 16.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Received 23 August 2006 Accepted 1 September 2006

1,2,7,8-Tetramethyl-4,5-dihydro-3a,5adiazapyrene ditriflate

The title structure, $C_{18}H_{20}N_2^{2+}\cdot 2CF_3O_3S^-$, is the first to be reported for a diquaternized derivative of 3,4,7,8-tetramethyl-1,10-phenanthroline.

Comment

Relevant background information on this work and comments on the title structure, (II), together with that of the closely related salt 3,6-dimethyl-4,5-dihydro-3a,5a-diazapyrene ditriflate, (I), can be found in the preceding paper (Coe, Fitzgerald & Raftery, 2006). The molecular structure of (II) is shown in Fig. 1 and selected geometric parameters are given in Table 1.

Experimental

Salt (II) was synthesized as reported previously (Coe, Curati & Fitzgerald, 2006). Crystals suitable for single-crystal X-ray diffraction were obtained by slow diffusion of diethyl ether vapour into an acetone solution of (II) at 295 K.

Crystal data

 $C_{18}H_{20}N_2^{2+} \cdot 2CF_3O_3S^{-}$ $M_r = 562.50$ Monoclinic, $P2_1/c$ a = 12.882 (1) Å b = 8.152 (1) Å c = 22.585 (1) Å $\beta = 104.284$ (1)° V = 2298.4 (2) Å³

Z = 4 $D_x = 1.626 \text{ Mg m}^{-3}$ Mo K α radiation $\mu = 0.32 \text{ mm}^{-1}$ T = 100 (2) K Block, white 0.45 × 0.30 × 0.20 mm

Data collection

Bruker SMART APEX CCD diffractometer φ and ω scans Absorption correction: none 19382 measured reflections 5467 independent reflections 4426 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.058$ $\theta_{\text{max}} = 28.3^{\circ}$

© 2006 International Union of Crystallography All rights reserved

organic papers

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0667P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.047$	+ 1.2422P]
$wR(F^2) = 0.131$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.08	$(\Delta/\sigma)_{\rm max} < 0.001$
5467 reflections	$\Delta \rho_{\rm max} = 0.81 \ {\rm e} \ {\rm \AA}^{-3}$
329 parameters	$\Delta \rho_{\rm min} = -0.67 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

C1-N1	1.364 (2)	C7-C8	1.355 (3)
C1-C9	1.404 (3)	C8-C9	1.434 (3)
C1-C2	1.433 (3)	C9-C10	1.427 (3)
C2-N2	1.369 (2)	C10-C11	1.388 (3)
C2-C6	1.399 (3)	C10-C17	1.501 (3)
C3-N2	1.330 (2)	C11-C12	1.395 (3)
C3-C4	1.393 (3)	C11-C18	1.503 (3)
C4-C5	1.385 (3)	C12-N1	1.329 (2)
C4-C15	1.505 (3)	C13-N1	1.483 (2)
C5-C6	1.430 (3)	C13-C14	1.504 (3)
C5-C16	1.501 (3)	C14-N2	1.479 (2)
C6-C7	1.435 (3)		
N1-C1-C2	119.87 (17)	N2-C14-C13	108.35 (15)
N2-C2-C1	119.65 (17)	C1-N1-C13	118.55 (15)
N1-C13-C14	108.40 (15)	C2-N2-C14	117.71 (15)
N1-C13-C14-N2	-58.83 (19)		

All H atoms were included in calculated positions, with C–H = 0.95 (CH), 0.99 (CH₂) and 0.98 Å (CH₃); U_{iso} (H) values were fixed at $1.2U_{eq}$ (C) or $1.5U_{eq}$ (methyl C).

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics:

Figure 1

The asymmetric unit of (II), showing 50% probability displacement ellipsoids.

SHELXTL (Bruker, 2000); software used to prepare material for publication: *SHELXTL*.

The authors thank the EPSRC for funding (grant GR/ R81459 and a PhD studentship).

References

Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2001). SMART. Version 5.625. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2003). SAINT. Version 6.45. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.

Coe, B. J., Curati, N. R. M. & Fitzgerald, E. C. (2006). *Synthesis*, pp. 146–150. Coe, B. J., Fitzgerald, E. C. & Raftery, J. (2006). *Acta Cryst.* E62, 04333–04334. Sheldrick, G. M. (1997). *SHELXL97*. University of Göttingen, Germany.

supporting information

Acta Cryst. (2006). E62, o4335-o4336 [https://doi.org/10.1107/S1600536806035379]

1,2,7,8-Tetramethyl-4,5-dihydro-3a,5a-diazapyrene ditriflate

Benjamin J. Coe, Emma C. Fitzgerald and James Raftery

1,2,7,8-Tetramethyl-4,5-dihydro-3a,5a-diazapyrene ditriflate

Crystal data $C_{18}H_{20}N_2^{2+}\cdot 2CF_3O_3S^{-}$ F(000) = 1152 $M_r = 562.50$ $D_{\rm x} = 1.626 {\rm Mg} {\rm m}^{-3}$ Monoclinic, $P2_1/c$ Mo *K* α radiation, $\lambda = 0.71073$ Å Hall symbol: -P 2ybc Cell parameters from 7763 reflections a = 12.8820 (7) Å $\theta = 2.8 - 28.2^{\circ}$ $\mu = 0.32 \text{ mm}^{-1}$ b = 8.1520 (4) Åc = 22.5850 (12) ÅT = 100 K $\beta = 104.284 (1)^{\circ}$ Plate, white V = 2298.4 (2) Å³ $0.45 \times 0.30 \times 0.20 \text{ mm}$ Z = 4Data collection Bruker SMART APEX CCD 4426 reflections with $I > 2\sigma(I)$ diffractometer $R_{\rm int} = 0.058$ Radiation source: fine-focus sealed tube $\theta_{\rm max} = 28.3^{\circ}, \ \theta_{\rm min} = 1.6^{\circ}$ Graphite monochromator $h = -17 \rightarrow 17$ $k = -10 \rightarrow 10$ φ and ω scans $l = -29 \rightarrow 28$ 19382 measured reflections 5467 independent reflections Refinement Secondary atom site location: difference Fourier Refinement on F^2 Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.047$ Hydrogen site location: inferred from $wR(F^2) = 0.131$ neighbouring sites S = 1.08H-atom parameters constrained 5467 reflections $w = 1/[\sigma^2(F_o^2) + (0.0667P)^2 + 1.2422P]$ 329 parameters where $P = (F_0^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{\rm max} < 0.001$ Primary atom site location: structure-invariant $\Delta \rho_{\rm max} = 0.81 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.67 \ {\rm e} \ {\rm \AA}^{-3}$ direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

supporting information

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.08483 (15)	0.0957 (2)	0.11781 (9)	0.0156 (4)	
C2	-0.02962(15)	0.1074 (2)	0.09903 (9)	0.0156 (4)	
C3	-0.19641 (15)	0.0541 (2)	0.12015 (9)	0.0176 (4)	
H3	-0.2360	0.0051	0.1458	0.021*	
C4	-0.25087(15)	0.1421 (2)	0.06899 (9)	0.0177 (4)	
C5	-0.19378 (16)	0.2071 (2)	0.03000 (9)	0.0196 (4)	
C6	-0.07995 (15)	0.1883 (2)	0.04492 (9)	0.0175 (4)	
C7	-0.01382 (16)	0.2462 (3)	0.00665 (9)	0.0214 (4)	
H7	-0.0461	0.3025	-0.0301	0.026*	
C8	0.09358 (16)	0.2223 (3)	0.02173 (9)	0.0211 (4)	
H8	0.1342	0.2561	-0.0060	0.025*	
C9	0.14745 (15)	0.1474 (2)	0.07845 (9)	0.0172 (4)	
C10	0.26105 (15)	0.1317 (2)	0.09824 (9)	0.0190 (4)	
C11	0.30618 (15)	0.0739 (2)	0.15676 (9)	0.0195 (4)	
C12	0.23917 (15)	0.0322 (2)	0.19440 (9)	0.0184 (4)	
H12	0.2701	-0.0045	0.2348	0.022*	
C13	0.06579 (15)	0.0115 (2)	0.21866 (9)	0.0168 (4)	
H13A	0.0487	0.1164	0.2362	0.020*	
H13B	0.1047	-0.0594	0.2525	0.020*	
C14	-0.03566 (15)	-0.0715 (2)	0.18461 (9)	0.0165 (4)	
H14A	-0.0187	-0.1781	0.1682	0.020*	
H14B	-0.0827	-0.0921	0.2125	0.020*	
C15	-0.37036 (15)	0.1594 (3)	0.05822 (10)	0.0217 (4)	
H15A	-0.3905	0.2748	0.0504	0.032*	
H15B	-0.3926	0.1216	0.0944	0.032*	
H15C	-0.4059	0.0930	0.0228	0.032*	
C16	-0.25076 (18)	0.2982 (3)	-0.02644 (10)	0.0299 (5)	
H16A	-0.3246	0.2584	-0.0399	0.045*	
H16B	-0.2137	0.2798	-0.0589	0.045*	
H16C	-0.2511	0.4157	-0.0174	0.045*	
C17	0.33141 (17)	0.1812 (3)	0.05728 (10)	0.0259 (5)	
H17A	0.3547	0.2951	0.0659	0.039*	
H17B	0.2912	0.1716	0.0145	0.039*	
H17C	0.3943	0.1093	0.0647	0.039*	
C18	0.42501 (16)	0.0582 (3)	0.18268 (10)	0.0256 (5)	
H18A	0.4543	-0.0210	0.1584	0.038*	
H18B	0.4391	0.0201	0.2251	0.038*	
H18C	0.4591	0.1652	0.1814	0.038*	
C19	0.29745 (17)	0.5445 (3)	0.19959 (11)	0.0245 (4)	
C20	0.41878 (19)	0.1440 (3)	0.39136 (12)	0.0326 (5)	
F1	0.33941 (11)	0.45210 (19)	0.24792 (8)	0.0426 (4)	
F2	0.32142 (11)	0.47396 (18)	0.15109 (7)	0.0379 (4)	
F3	0.34766 (11)	0.68971 (17)	0.20785 (7)	0.0354 (3)	
F4	0.46066 (15)	0.1354 (3)	0.34373 (11)	0.0848 (8)	
F5	0.43790 (12)	0.29605 (19)	0.41287 (8)	0.0491 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

0.47371 (16)	0.0461 (2)	0.43370 (12)	0.0923 (9)
0.13323 (13)	0.0425 (2)	0.17525 (7)	0.0153 (3)
-0.09044 (12)	0.0369 (2)	0.13402 (7)	0.0152 (3)
0.14522 (12)	0.65279 (18)	0.24348 (6)	0.0224 (3)
0.11371 (12)	0.40314 (18)	0.18258 (7)	0.0243 (3)
0.12341 (12)	0.6681 (2)	0.13390 (7)	0.0257 (3)
0.2466 (2)	0.1162 (5)	0.42530 (11)	0.1106 (14)
0.27358 (16)	-0.0663 (2)	0.34630 (9)	0.0495 (6)
0.23670 (15)	0.2165 (2)	0.32313 (9)	0.0448 (5)
0.15330 (4)	0.56891 (6)	0.18837 (2)	0.01698 (13)
0.27643 (4)	0.09789 (8)	0.36958 (2)	0.02868 (16)
	$\begin{array}{c} 0.47371 \ (16) \\ 0.13323 \ (13) \\ -0.09044 \ (12) \\ 0.14522 \ (12) \\ 0.11371 \ (12) \\ 0.12341 \ (12) \\ 0.2466 \ (2) \\ 0.27358 \ (16) \\ 0.23670 \ (15) \\ 0.15330 \ (4) \\ 0.27643 \ (4) \end{array}$	$\begin{array}{ccccccc} 0.47371(16) & 0.0461(2) \\ 0.13323(13) & 0.0425(2) \\ -0.09044(12) & 0.0369(2) \\ 0.14522(12) & 0.65279(18) \\ 0.11371(12) & 0.40314(18) \\ 0.12341(12) & 0.6681(2) \\ 0.2466(2) & 0.1162(5) \\ 0.27358(16) & -0.0663(2) \\ 0.23670(15) & 0.2165(2) \\ 0.15330(4) & 0.56891(6) \\ 0.27643(4) & 0.09789(8) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0166 (9)	0.0146 (9)	0.0145 (9)	0.0008 (7)	0.0016 (7)	-0.0027 (7)
C2	0.0157 (9)	0.0156 (9)	0.0151 (9)	-0.0002 (7)	0.0034 (7)	-0.0022 (7)
C3	0.0153 (9)	0.0189 (9)	0.0186 (9)	-0.0006 (7)	0.0040 (7)	-0.0029 (7)
C4	0.0158 (9)	0.0171 (9)	0.0191 (9)	0.0015 (7)	0.0018 (7)	-0.0040 (7)
C5	0.0179 (9)	0.0213 (10)	0.0175 (9)	0.0030 (7)	0.0006 (7)	0.0000 (8)
C6	0.0171 (9)	0.0184 (9)	0.0164 (9)	0.0011 (7)	0.0028 (7)	-0.0008 (7)
C7	0.0223 (10)	0.0258 (11)	0.0151 (9)	0.0011 (8)	0.0030 (8)	0.0028 (8)
C8	0.0201 (10)	0.0266 (11)	0.0170 (9)	-0.0018 (8)	0.0055 (7)	-0.0002 (8)
C9	0.0157 (9)	0.0186 (9)	0.0168 (9)	-0.0004 (7)	0.0028 (7)	-0.0028 (7)
C10	0.0163 (9)	0.0196 (10)	0.0212 (10)	-0.0006 (7)	0.0049 (7)	-0.0051 (8)
C11	0.0152 (9)	0.0198 (10)	0.0222 (10)	0.0004 (7)	0.0020 (7)	-0.0048 (8)
C12	0.0166 (9)	0.0171 (9)	0.0191 (9)	0.0016 (7)	-0.0002 (7)	-0.0021 (7)
C13	0.0176 (9)	0.0193 (9)	0.0135 (9)	0.0005 (7)	0.0034 (7)	0.0000 (7)
C14	0.0164 (9)	0.0165 (9)	0.0154 (9)	0.0010 (7)	0.0019 (7)	0.0023 (7)
C15	0.0156 (9)	0.0247 (10)	0.0239 (10)	0.0016 (8)	0.0036 (8)	-0.0004 (8)
C16	0.0217 (11)	0.0397 (14)	0.0264 (11)	0.0060 (9)	0.0023 (9)	0.0119 (10)
C17	0.0186 (10)	0.0363 (13)	0.0240 (11)	-0.0016 (9)	0.0073 (8)	-0.0023 (9)
C18	0.0151 (10)	0.0341 (12)	0.0260 (11)	0.0015 (8)	0.0018 (8)	-0.0005 (9)
C19	0.0192 (10)	0.0205 (10)	0.0339 (12)	0.0005 (8)	0.0070 (9)	0.0026 (9)
C20	0.0246 (11)	0.0269 (12)	0.0411 (14)	-0.0015 (9)	-0.0016 (10)	0.0042 (10)
F1	0.0236 (7)	0.0438 (9)	0.0533 (10)	0.0043 (6)	-0.0037 (6)	0.0211 (7)
F2	0.0319 (7)	0.0327 (8)	0.0566 (10)	0.0036 (6)	0.0251 (7)	-0.0068 (7)
F3	0.0248 (7)	0.0250 (7)	0.0571 (9)	-0.0071 (5)	0.0116 (6)	-0.0029 (6)
F4	0.0396 (10)	0.127 (2)	0.0984 (17)	-0.0115 (12)	0.0374 (11)	-0.0415 (16)
F5	0.0384 (9)	0.0333 (8)	0.0651 (11)	-0.0111 (7)	-0.0075 (8)	-0.0052 (8)
F6	0.0620 (12)	0.0471 (11)	0.1228 (19)	-0.0214 (9)	-0.0630 (13)	0.0411 (12)
N1	0.0152 (8)	0.0154 (8)	0.0144 (8)	0.0002 (6)	0.0020 (6)	-0.0013 (6)
N2	0.0150 (8)	0.0155 (8)	0.0145 (8)	0.0006 (6)	0.0024 (6)	-0.0006 (6)
O1	0.0299 (8)	0.0199 (7)	0.0184 (7)	-0.0013 (6)	0.0078 (6)	-0.0024 (6)
O2	0.0233 (8)	0.0209 (8)	0.0288 (8)	-0.0034 (6)	0.0065 (6)	-0.0061 (6)
O3	0.0264 (8)	0.0315 (8)	0.0190 (7)	0.0069 (6)	0.0051 (6)	0.0044 (6)
O4	0.0672 (17)	0.236 (4)	0.0405 (13)	-0.080(2)	0.0354 (12)	-0.0597 (19)
05	0.0530 (12)	0.0271 (9)	0.0497 (12)	-0.0114 (8)	-0.0231 (9)	0.0104 (8)

supporting information

O6	0.0371 (10)	0.0260 (9)	0.0555 (12)	0.0093 (7)	-0.0188 (9)	-0.0055 (8)
S 1	0.0166 (2)	0.0177 (2)	0.0162 (2)	0.00113 (17)	0.00335 (17)	-0.00091 (18)
S2	0.0228 (3)	0.0432 (4)	0.0186 (3)	-0.0093 (2)	0.0025 (2)	-0.0046 (2)

Geometric parameters (Å, °)

C1—N1	1.364 (2)	C14—H14A	0.9900	
C1—C9	1.404 (3)	C14—H14B	0.9900	
C1—C2	1.433 (3)	C15—H15A	0.9800	
C2—N2	1.369 (2)	C15—H15B	0.9800	
C2—C6	1.399 (3)	C15—H15C	0.9800	
C3—N2	1.330 (2)	C16—H16A	0.9800	
C3—C4	1.393 (3)	C16—H16B	0.9800	
С3—Н3	0.9500	C16—H16C	0.9800	
C4—C5	1.385 (3)	C17—H17A	0.9800	
C4—C15	1.505 (3)	C17—H17B	0.9800	
С5—С6	1.430 (3)	C17—H17C	0.9800	
C5—C16	1.501 (3)	C18—H18A	0.9800	
C6—C7	1.435 (3)	C18—H18B	0.9800	
С7—С8	1.355 (3)	C18—H18C	0.9800	
С7—Н7	0.9500	C19—F1	1.326 (3)	
С8—С9	1.434 (3)	C19—F2	1.339 (3)	
С8—Н8	0.9500	C19—F3	1.340 (2)	
C9—C10	1.427 (3)	C19—S1	1.822 (2)	
C10-C11	1.388 (3)	C20—F6	1.311 (3)	
C10—C17	1.501 (3)	C20—F4	1.319 (3)	
C11—C12	1.395 (3)	C20—F5	1.332 (3)	
C11—C18	1.503 (3)	C20—S2	1.817 (2)	
C12—N1	1.329 (2)	O1—S1	1.4461 (15)	
C12—H12	0.9500	O2—S1	1.4389 (15)	
C13—N1	1.483 (2)	O3—S1	1.4430 (15)	
C13—C14	1.504 (3)	O4—S2	1.411 (2)	
C13—H13A	0.9900	O5—S2	1.435 (2)	
C13—H13B	0.9900	O6—S2	1.4257 (19)	
C14—N2	1.479 (2)			
N1—C1—C9	119.88 (17)	C4—C15—H15C	109.5	
N1-C1-C2	119.87 (17)	H15A—C15—H15C	109.5	
C9—C1—C2	120.15 (17)	H15B—C15—H15C	109.5	
N2-C2-C6	119.61 (17)	C5-C16-H16A	109.5	
N2-C2-C1	119.65 (17)	C5—C16—H16B	109.5	
C6—C2—C1	120.73 (17)	H16A—C16—H16B	109.5	
N2—C3—C4	121.80 (18)	C5—C16—H16C	109.5	
N2—C3—H3	119.1	H16A—C16—H16C	109.5	
С4—С3—Н3	119.1	H16B—C16—H16C	109.5	
C5—C4—C3	119.13 (17)	C10—C17—H17A	109.5	
C5—C4—C15	122.96 (18)	C10—C17—H17B	109.5	
C3—C4—C15	117.90 (18)	H17A—C17—H17B	109.5	

C4—C5—C6	118.93 (17)	C10—C17—H17C	109.5
C4—C5—C16	120.29 (18)	H17A—C17—H17C	109.5
C6—C5—C16	120.77 (18)	H17B—C17—H17C	109.5
C2—C6—C5	118.95 (18)	C11—C18—H18A	109.5
C2—C6—C7	117.71 (17)	C11—C18—H18B	109.5
$C_{5} - C_{6} - C_{7}$	123.34(18)	H18A—C18—H18B	109.5
C8 - C7 - C6	123.57 (10)	C11-C18-H18C	109.5
C8—C7—H7	119.2	H18A - C18 - H18C	109.5
C6-C7-H7	119.2	H18B - C18 - H18C	109.5
$C_{1}^{2} = C_{1}^{2} = C_{1}^{2}$	117.2	F1 C10 F2	107.46 (18)
$C_7 = C_8 = C_9$	121.04 (10)	F1 = C10 = F2	107.40 (18)
$C = C = H \delta$	119.2	F1 - C19 - F3	107.00(10) 107.00(17)
C_{2}	119.2	F2 - C19 - F3	107.00(17)
CI = C9 = C10	118.68 (17)	F1 = C19 = S1	111.//(15)
01-09-08	11/./9(1/)	F2-C19-S1	111.47 (15)
C10—C9—C8	123.43 (18)	F3—C19—S1	111.30 (14)
C11—C10—C9	119.01 (18)	F6—C20—F4	107.9 (3)
C11—C10—C17	120.21 (18)	F6—C20—F5	106.4 (2)
C9—C10—C17	120.76 (18)	F4—C20—F5	105.7 (2)
C10-C11-C12	119.09 (18)	F6—C20—S2	113.50 (18)
C10-C11-C18	123.14 (19)	F4—C20—S2	110.91 (18)
C12—C11—C18	117.75 (18)	F5—C20—S2	112.01 (17)
N1-C12-C11	121.79 (18)	C12—N1—C1	121.42 (17)
N1-C12-H12	119.1	C12—N1—C13	119.76 (16)
C11—C12—H12	119.1	C1—N1—C13	118.55 (15)
N1—C13—C14	108.40 (15)	C3—N2—C2	121.33 (16)
N1—C13—H13A	110.0	C3—N2—C14	120.74 (16)
C14—C13—H13A	110.0	C2—N2—C14	117.71 (15)
N1—C13—H13B	110.0	02-51-03	115.78 (9)
C14—C13—H13B	110.0	02 - 81 - 01	115 03 (9)
H_{13A} $-C_{13}$ $-H_{13B}$	108.4	03 - 81 - 01	114.08(9)
N_2 —C14—C13	108.35(15)	02 - 51 - C19	103 66 (9)
N2 $C14$ $H14A$	110.0	O_2 S1 C19	103.00(9)
$C_{12} = C_{14} = H_{14A}$	110.0	03 - 51 - C19	103.20(10) 102.66(10)
$N_2 C_1 4 H_1 4 P$	110.0	04 \$2 06	102.00(10)
$N_2 - C_1 4 - H_1 4B$	110.0	04 - 52 - 00	117.2(2)
	110.0	04-52-05	113.9 (2)
H14A - C14 - H14B	108.4	06 - 52 - 05	113.02 (11)
C4—CI5—HI5A	109.5	04 - 52 - 020	102.44 (13)
С4—С15—Н15В	109.5	06-82-020	102.36 (12)
Н15А—С15—Н15В	109.5	05—S2—C20	103.00 (12)
N1 - C1 - C2 - N2	-12.2(3)	C18—C11—C12—N1	179.98 (18)
C9-C1-C2-N2	171.28(17)	N1-C13-C14-N2	-58.83(19)
N1 - C1 - C2 - C6	168.58 (17)	C11— $C12$ — $N1$ — $C1$	-0.5(3)
C9-C1-C2-C6	-79(3)	C11-C12-N1-C13	$-174\ 41\ (17)$
$N_{2} C_{3} C_{4} C_{5}$	29(3)	C9-C1-N1-C12	-26(3)
$N_2 = C_3 = C_4 = C_{15}$	-178.04(18)	C_{2} C_{1} N_{1} C_{12}	-179 12 (17)
C_{3} C_{4} C_{5} C_{6}	-27(3)	$C_{2} = C_{1} = N_{1} = C_{12}$	171.34(17)
$C_{15} = C_{1} = C_{2} = C_{2} = C_{3}$	2.7(3) 178 30(18)	$C_2 = C_1 = 101 = C_{13}$	-52(2)
	1/0.30(10)	02 - 01 - 101 - 013	J.2(3)

C3—C4—C5—C16	178.20 (19)	C14—C13—N1—C12	-145.00 (17)
C15—C4—C5—C16	-0.8 (3)	C14—C13—N1—C1	40.9 (2)
N2—C2—C6—C5	5.1 (3)	C4—C3—N2—C2	1.1 (3)
C1—C2—C6—C5	-175.67 (17)	C4—C3—N2—C14	-173.38 (17)
N2-C2-C6-C7	-173.98 (18)	C6—C2—N2—C3	-5.1 (3)
C1—C2—C6—C7	5.2 (3)	C1—C2—N2—C3	175.66 (17)
C4—C5—C6—C2	-1.2 (3)	C6-C2-N2-C14	169.46 (17)
C16—C5—C6—C2	177.84 (19)	C1-C2-N2-C14	-9.7 (2)
C4—C5—C6—C7	177.84 (19)	C13—C14—N2—C3	-139.88 (18)
C16—C5—C6—C7	-3.1 (3)	C13—C14—N2—C2	45.5 (2)
C2—C6—C7—C8	0.7 (3)	F1-C19-S1-O2	-57.66 (18)
C5—C6—C7—C8	-178.4 (2)	F2-C19-S1-O2	62.62 (17)
C6—C7—C8—C9	-4.0 (3)	F3—C19—S1—O2	-178.00 (15)
N1-C1-C9-C10	4.4 (3)	F1-C19-S1-O3	-178.78 (16)
C2-C1-C9-C10	-179.06 (17)	F2-C19-S1-O3	-58.49 (17)
N1—C1—C9—C8	-171.96 (17)	F3—C19—S1—O3	60.88 (18)
C2-C1-C9-C8	4.5 (3)	F1-C19-S1-O1	62.40 (17)
C7—C8—C9—C1	1.3 (3)	F2-C19-S1-O1	-177.32 (14)
C7—C8—C9—C10	-174.9 (2)	F3—C19—S1—O1	-57.94 (18)
C1-C9-C10-C11	-3.3 (3)	F6-C20-S2-O4	59.4 (3)
C8—C9—C10—C11	172.95 (19)	F4—C20—S2—O4	-178.9 (3)
C1—C9—C10—C17	178.44 (18)	F5-C20-S2-O4	-61.1 (3)
C8—C9—C10—C17	-5.4 (3)	F6-C20-S2-O6	-178.7 (2)
C9—C10—C11—C12	0.3 (3)	F4—C20—S2—O6	-57.1 (2)
C17—C10—C11—C12	178.57 (19)	F5-C20-S2-O6	60.7 (2)
C9—C10—C11—C18	-177.92 (19)	F6-C20-S2-O5	-61.2 (2)
C17—C10—C11—C18	0.4 (3)	F4—C20—S2—O5	60.4 (2)
C10-C11-C12-N1	1.7 (3)	F5—C20—S2—O5	178.22 (18)