Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Nigel A. Jones,^a* Mette Fanefjord,^a Sarah F. Jenkinson,^a George W. J. Fleet^a and David J. Watkin^b

^aDepartment of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and ^bChemical Crystallography Laboratory, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England

Correspondence e-mail: nigel.jones@chem.ox.ac.uk

Key indicators

Single-crystal X-ray study T = 190 KMean $\sigma(\text{C}-\text{C}) = 0.002 \text{ Å}$ R factor = 0.027 wR factor = 0.063 Data-to-parameter ratio = 9.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2006 International Union of Crystallography All rights reserved

1-Deoxy-*a*-D-sorbopyranose

The crystalline form of 1-deoxy-D-sorbose, $C_6H_{12}O_5$, is shown to be 1-deoxy- α -D-sorbopyranose. This is the first reported crystal structure of a 1-deoxyketose. The absolute configuration was determined by the use of D-xylose as the starting material. The crystal structure has a three-dimensional hydrogen-bonded network.

Comment

Although the driving force for the large-scale production of rare sugars by biotechnological (Izumori, 2002; Granström et al., 2004) and chemical (Beadle et al., 1992) methods is driven by the demand for alternative foodstuffs (Skytte, 2002), rare monosaccharides such as D-psicose (Takata et al., 2005; Matsuo et al., 2006) and D-allose (Sui et al., 2005; Hossain et al., 2006) have significant chemotherapeutic properties. As well as being useful for their potential biological properties, the 1deoxyketoses are likely to provide a new set of building blocks for the synthesis of a wide variety of complex biomolecules. However, the properties of 1-deoxyketoses have been little studied to date; there are no reports of the crystal structure of any of the four diastereomers. As part of our work to extend the range of simple monosaccharide derivatives, 1-deoxy-Dsorbose, (4), was synthesized. Although the compound has been prepared previously (James & Angyal, 1972; Dills & Meyer, 1976), a solution of the compound contains a mixture of equilibrating structures (Angyal et al., 1976). 1-Deoxy-Dsorbose was readily crystallized and this paper firmly establishes that it exists in the crystalline state as the α -anomer of the pyranose ring form, (5), in a chair conformation.

In summary, 1-deoxy-D-sorbose, (4), exists in the crystalline state as 1-deoxy- α -D-sorbopyranose, (5). The absolute configuration was determined by the use of D-xylose as the starting material. A D-sugar is defined by the absolute stereochemistry at C-5 (relative to D-glyceraldehyde); see http://www.chem.qmw.ac.uk/iupac/2carb/ for an explanation of carbohydrate nomenclature (IUPAC–IUBMB, 1996). The present X-ray crystal structure determined the stereochemistry at the anomeric position (C1) as being α , with the hydroxyl group in the axial position.

The crystal structure of (5) has a three-dimensional hydrogen-bonded network, with each molecule interacting

Received 25 August 2006 Accepted 19 September 2006

Figure 1

The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii.

Figure 2

The crystal structure of (5), projected along the b axis, showing the threedimensional hydrogen-bonding network (dotted lines). The hydrogenbond chain involving atoms O6, O7, O8, O9 and O10 is highlighted in orange.

with six neighbours (Fig. 2). The hydrogen bonds themselves form a discrete continuous chain: $O10 \cdots O7$, $O7 \cdots O9$, $O9 \cdots O8$ and $O8 \cdots O6$, with O10 at the head of the chain as a donor and O6 at the tail as an acceptor (Fig. 3).

Experimental

For the synthesis of 1-deoxy-D-sorbose, the tribenzylated derivative of D-xylose, (1) (Barker & Fletcher, 1961; Postema *et al.*, 2000), was oxidized to the lactone, (2), with acetic anhydride and dimethyl sulfoxide (Calzada *et al.*, 1995). Addition of methyl lithium to the protected lactone, (2), afforded the lactol, (3). Subsequent hydrogenation yielded 1-deoxy-D-sorbose, (4) (Jones *et al.*, in preparation). The title compound, (5), was recrystallized from a mixture of ethyl acetate and methanol (3:1) to give colourless crystals (m.p. 425–427 K). $[\alpha]_D^{20}$ 50.2 (*c* 1.0 in H₂O).

Figure 3

A projection of the crystal structure along the *c* axis, showing the five molecules linked by the discrete hydrogen-bond chain, in which the $H \cdots O$ hydrogen bonds are shown in orange.

Z = 4

 $D_x = 1.494 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation

Needle, colourless

 $0.60 \times 0.20 \times 0.20$ mm

1613 measured reflections

981 independent reflections

894 reflections with $I > 2\sigma(I)$

 $\mu = 0.13 \text{ mm}^{-1}$

T = 190 K

 $R_{\rm int} = 0.012$

 $\theta_{\rm max} = 27.5$

Crystal data

 $\begin{array}{l} C_{6}H_{12}O_{5} \\ M_{r} = 164.16 \\ \text{Orthorhombic, } P2_{1}2_{1}2_{1} \\ a = 6.3661 \ (3) \ \text{\AA} \\ b = 6.6684 \ (3) \ \text{\AA} \\ c = 17.1873 \ (9) \ \text{\AA} \\ V = 729.63 \ (6) \ \text{\AA}^{3} \end{array}$

Data collection

Nonius KappaCCD area-detector diffractometer ω scans Absorption correction: multi-scan (*DENZO/SCALEPACK*; Otwinowski & Minor, 1997) $T_{min} = 0.88, T_{max} = 0.97$

Refinement

 $\begin{array}{ll} \text{Refinement on } F^2 & w = 1/[\sigma^2(F^2) + (0.02P)^2 \\ R[F^2 > 2\sigma(F^2)] = 0.027 & + 0.17P], \\ wR(F^2) = 0.063 & \text{where } P = [\max(F_o^2, 0) + 2F_c^2]/3 \\ S = 1.01 & (\Delta/\sigma)_{\max} < 0.001 \\ 981 \text{ reflections} & \Delta\rho_{\max} = 0.17 \text{ e } \text{ Å}^{-3} \\ 100 \text{ parameters} & \Delta\rho_{\min} = -0.17 \text{ e } \text{ Å}^{-3} \\ \text{H-atom parameters constrained} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O10-H5\cdots O7^{i}$	0.84	1.95	2.750 (2)	158
$O7-H9\cdots O9^{ii}$	0.85	2.05	2.852 (2)	158
$O9-H12\cdots O8^{iii}$	0.84	1.86	2.694 (2)	174
$O8-H10\cdots O6^{iv}$	0.84	1.95	2.780 (2)	176

Symmetry codes: (i) $x + \frac{1}{2}$, $-y + \frac{1}{2}$, -z + 1; (ii) x, y + 1, z; (iii) $-x + 1, y - \frac{1}{2}$, $-z + \frac{3}{2}$; (iv) x - 1, y, z.

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the known starting materials. The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry [C-H in the range 0.93–0.98 Å and O-H = 0.82 Å and $U_{\rm iso}({\rm H})$ in the range 1.2-1.5 $U_{\rm eq}({\rm C},{\rm O})$], after which they were refined with riding constraints.

Data collection: *COLLECT* (Nonius, 2001); cell refinement: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO/SCALEPACK*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *CRYSTALS*.

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Angyal, S. J., Bethell, G. S., Cowley, D. E. & Pickles, V. A. (1976). Aust. J. Chem. 29, 1239–1247.
- Barker, R. & Fletcher, H. G. (1961). J. Org. Chem. 26, 4605-4609.
- Beadle, J. R., Saunders, J. P. & Wajda, T. J. (1992). US Patent 5078796.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

- Calzada, E., Clarke, C. A., Roussin-Bouchard, C. & Wightman, R. H. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 517–518.
- Dills, W. L. & Meyer, W. L. (1976). Biochemistry, 15, 4506-4512.
- Granström, T. B., Takata, G., Tokuda, M. & Izumori, K. (2004). J. Biosci. Bioeng. 97, 89–94.
- Hossain, M. A., Wakabayashi, H., Izuishi, K., Okano, K., Yachida, S., Tokuda, M., Izumori, K. & Maeta, H. (2006). J. Biosci. Bioeng. 101, 369–371.
- IUPAC-IUBMB Joint Commission on Biochemical Nomenclature (1996). Nomenclature of Carbohydrates (Recommendations 1996). http:// www.chem.qmw.ac.uk/iupac/2carb/
- Izumori, K. (2002). Naturwissenschaften, 89, 120-124.
- James, K. & Angyal, S. J. (1972). Aust. J. Chem. 25, 1967–1977.
- Jones, N. A., Fanefjord, M., Jenkinson, S. F., Sawyer, N. K., Horne, G., Hakansson, A. E., Watkin, D. J. & Fleet, G. W. J. In preparation.
- Matsuo, T., Shirai, Y. & Izumori, K. (2006). FASEB J. 20, A594.
- Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Postema, M. H. D., Calimente, D., Liu, L. & Behrmann, T. L. (2000). J. Org. Chem. 65, 6061–6068.
- Skytte, U. P. (2002). Cereal Foods World, 47, 224-???.
- Sui, L., Dong, Y. Y., Watanabe, Y., Yamaguchi, F., Hatano, N., Tsukamoto, I., Izumori, K. & Tokuda, M. (2005). Int. J. Oncol. 27, 907–912.
- Takata, M. K., Yamaguchi, F., Nakanose, Y., Watanabe, Y., Hatano, N., Tsukamoto, I., Nagata, M., Izumori, K. & Tokuda, M. (2005). J. Biosci. Bioeng. 100, 511–516.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

supporting information

Acta Cryst. (2006). E62, o4663-o4665 [https://doi.org/10.1107/S1600536806038347]

1-Deoxy-*α*-**D**-sorbopyranose

Nigel A. Jones, Mette Fanefjord, Sarah F. Jenkinson, George W. J. Fleet and David J. Watkin

1-Deoxy-*α*-*D*-sorbopyranose

Crystal data C₆H₁₂O₅ $D_{\rm x} = 1.494 {\rm Mg m^{-3}}$ $M_r = 164.16$ Mo *K* α radiation, $\lambda = 0.71073$ Å Orthorhombic, $P2_12_12_1$ Cell parameters from 926 reflections $\theta = 5-27^{\circ}$ a = 6.3661 (3) Åb = 6.6684(3) Å $\mu = 0.13 \text{ mm}^{-1}$ T = 190 Kc = 17.1873 (9) Å V = 729.63 (6) Å³ Plate, colourless Z = 4 $0.60 \times 0.20 \times 0.20 \text{ mm}$ F(000) = 352Data collection Nonius KappaCCD area-detector 1613 measured reflections diffractometer 981 independent reflections Graphite monochromator 894 reflections with $I > 2\sigma(I)$ ω scans $R_{\rm int} = 0.012$ Absorption correction: multi-scan $\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 5.7^{\circ}$ $h = -8 \rightarrow 8$ (DENZO/SCALEPACK; Otwinowski & Minor, $k = -8 \rightarrow 8$ 1997) $l = -22 \rightarrow 22$ $T_{\rm min} = 0.88, T_{\rm max} = 0.97$ Refinement Refinement on F^2 Primary atom site location: structure-invariant Least-squares matrix: full direct methods $R[F^2 > 2\sigma(F^2)] = 0.027$ Hydrogen site location: inferred from $wR(F^2) = 0.063$ neighbouring sites *S* = 1.01 H-atom parameters constrained 981 reflections $w = 1/[\sigma^2(F^2) + (0.02P)^2 + 0.17P],$ 100 parameters where $P = [\max(F_0^2, 0) + 2F_c^2]/3$ 0 restraints $(\Delta/\sigma)_{\rm max} = 0.000444$ $\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.8793 (3)	0.1019 (2)	0.61632 (9)	0.0222	
C2	0.6834 (2)	0.1446 (2)	0.66525 (8)	0.0199	
C3	0.5498 (2)	0.3081 (2)	0.62834 (8)	0.0201	
C4	0.6796 (2)	0.4956 (2)	0.61343 (8)	0.0220	
C5	0.8770 (3)	0.4417 (2)	0.56865 (9)	0.0274	

 $\Delta \rho_{\rm min} = -0.17 \ {\rm e} \ {\rm \AA}^{-3}$

supporting information

O6	0.99453 (17)	0.28675 (16)	0.60708 (7)	0.0270
O7	0.56049 (19)	0.63292 (16)	0.56760 (6)	0.0310
08	0.37853 (18)	0.35613 (19)	0.67922 (6)	0.0297
O9	0.56267 (18)	-0.03378 (17)	0.67154 (6)	0.0262
O10	0.80574 (17)	0.03214 (17)	0.54462 (6)	0.0277
C11	1.0298 (3)	-0.0414 (3)	0.65528 (11)	0.0323
H21	0.7287	0.1902	0.7188	0.0209*
H31	0.4948	0.2574	0.5779	0.0227*
H41	0.7152	0.5578	0.6639	0.0246*
H51	0.9664	0.5617	0.5656	0.0327*
H52	0.8323	0.3907	0.5150	0.0327*
H111	1.1438	-0.0680	0.6173	0.0481*
H112	1.0808	0.0230	0.7024	0.0484*
H113	0.9509	-0.1681	0.6657	0.0470*
Н5	0.9030	-0.0283	0.5210	0.0428*
H9	0.5732	0.7483	0.5874	0.0468*
H10	0.2664	0.3333	0.6556	0.0451*
H12	0.5811	-0.0775	0.7170	0.0406*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0220 (7)	0.0182 (7)	0.0262 (7)	-0.0013 (7)	-0.0013 (6)	-0.0004 (6)
C2	0.0211 (7)	0.0185 (7)	0.0203 (6)	-0.0050 (7)	-0.0012 (6)	-0.0004 (6)
C3	0.0196 (7)	0.0214 (7)	0.0193 (6)	0.0008 (7)	0.0007 (6)	-0.0053 (6)
C4	0.0250 (8)	0.0184 (7)	0.0227 (6)	0.0005 (7)	-0.0049 (6)	-0.0023 (6)
C5	0.0301 (8)	0.0206 (7)	0.0316 (8)	-0.0008 (8)	0.0042 (7)	0.0037 (7)
O6	0.0207 (5)	0.0216 (5)	0.0386 (6)	-0.0027 (5)	-0.0003 (5)	0.0045 (5)
07	0.0413 (7)	0.0167 (5)	0.0350 (6)	0.0028 (6)	-0.0140 (6)	-0.0032 (5)
08	0.0195 (5)	0.0380 (7)	0.0315 (6)	0.0008 (6)	0.0027 (5)	-0.0124 (5)
09	0.0293 (6)	0.0222 (5)	0.0271 (5)	-0.0083 (6)	-0.0001 (5)	0.0026 (5)
O10	0.0266 (6)	0.0308 (6)	0.0257 (5)	0.0039 (6)	0.0016 (5)	-0.0078 (5)
C11	0.0251 (8)	0.0264 (8)	0.0455 (9)	0.0004 (8)	-0.0062 (8)	0.0040 (8)

Geometric parameters (Å, °)

C1—C2	1.531 (2)	C4—H41	0.988
C1—O6	1.4431 (19)	C5—O6	1.4365 (19)
C1—O10	1.3981 (18)	C5—H51	0.983
C1—C11	1.510(2)	С5—Н52	1.024
C2—C3	1.522 (2)	O7—H9	0.845
C2—O9	1.4204 (18)	O8—H10	0.835
C2—H21	1.011	O9—H12	0.843
C3—C4	1.520 (2)	O10—H5	0.843
C3—O8	1.4339 (18)	C11—H111	0.992
C3—H31	0.995	C11—H112	0.972
C4—C5	1.517 (2)	C11—H113	0.999
C4—O7	1.4263 (18)		

C2 C1 C(100.00 (10)	C2 C4 1141	100.0
C2—C1—O6	108.39 (12)	C3—C4—H41	108.8
C2-C1-O10	105.85 (12)	C5—C4—H41	110.8
O6—C1—O10	110.94 (12)	O7—C4—H41	109.7
C2-C1-C11	113.02 (13)	C4—C5—O6	111.62 (12)
O6-C1-C11	105.50 (13)	C4—C5—H51	108.3
O10-C1-C11	113.15 (13)	O6—C5—H51	108.0
C1—C2—C3	111.08 (12)	С4—С5—Н52	107.8
C1—C2—O9	109.08 (12)	O6—C5—H52	108.7
C3—C2—O9	109.23 (11)	H51—C5—H52	112.5
C1—C2—H21	108.9	C1—O6—C5	113.61 (11)
C3—C2—H21	108.9	С4—О7—Н9	108.1
O9—C2—H21	109.7	C3—O8—H10	108.3
C2—C3—C4	110.84 (12)	C2—O9—H12	106.6
C2—C3—O8	109.31 (12)	С1—О10—Н5	109.8
C4—C3—O8	109.42 (12)	C1-C11-H111	106.6
C2—C3—H31	108.5	C1—C11—H112	107.6
C4—C3—H31	108.9	H111—C11—H112	112.4
O8—C3—H31	109.9	C1—C11—H113	107.2
C3—C4—C5	109.95 (12)	H111—C11—H113	109.6
C3—C4—O7	109.41 (11)	H112—C11—H113	113.1
C5—C4—O7	108.19 (12)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O10—H5…O7 ⁱ	0.84	1.95	2.750 (2)	158
O7—H9…O9 ⁱⁱ	0.85	2.05	2.852 (2)	158
O9—H12…O8 ⁱⁱⁱ	0.84	1.86	2.694 (2)	174
O8—H10…O6 ^{iv}	0.84	1.95	2.780 (2)	176

Symmetry codes: (i) *x*+1/2, -*y*+1/2, -*z*+1; (ii) *x*, *y*+1, *z*; (iii) -*x*+1, *y*-1/2, -*z*+3/2; (iv) *x*-1, *y*, *z*.