organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

José M. de la Torre,^a Justo Cobo,^a Manuel Nogueras^a and John Nicolson Low^b*

^aDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, and ^bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, AB24 3UE, Scotland.

Correspondence e-mail: che562@abdn.ac.uk

Key indicators

Single-crystal X-ray study T = 120 KMean σ (C–C) = 0.003 Å R factor = 0.040 wR factor = 0.106 Data-to-parameter ratio = 18.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

6-Chloro-4-(dimethylaminomethyleneamino)-2-(methylsulfanyl)pyrimidine

The molecules in the title compound, $C_8H_{11}ClN_4S$, are linked in pairs by a π - π stacking interaction. There are, however, no other direction-specific interactions.

Comment

In our search for good candidates for intermediates in the synthesis of new pyrimidine fused ring systems, we have prepared the title compound, (I), (Fig. 1), a formyl derivative of 4-amino-6-chloro-2-(methylsulfanyl)pyrimidine, using the Vilsmeier formylation reaction (Vilsmeier & Haack, 1927).

The bond lengths and angles show no unusual features. The essentially planar group consisting of atoms N4, C41, N42, C43 and C44 forms a dihedral angle of 31.49 (8)° with that of the planar pyrimidine ring. The leading torsion angles are given in Table 1. The molecules are linked into pairs by a π - π stacking

© 2006 International Union of Crystallography All rights reserved

A view of (I) with our numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Received 24 July 2006

Accepted 14 August 2006

interaction (Fig. 2). The molecules at (x, y, z) and (1 - x, 1 - y, 1 - z) are parallel, with an interplanar spacing of 3.4661 (2) Å. The ring-centroid separation is 3.359 (2) Å corresponding to a ring offset of 0.857 Å.

Experimental

The Vilsmeier reagent was prepared in an ice-bath by adding phosphorus oxychloride (1.8 mmol) to *N*,*N*-dimethylformamide (38 mmol) and stirring for 15 min. 4-Amino-6-chloro-2-(methyl-sulfanyl)pyrimidine (0.2 g, 1.14 mmol) was then added and the reaction temperature raised to 323–333 K, and the mixture stirred for 2 h. The reaction mixture was then poured on to crushed ice and neutralized with NaOH (10% in water) until the pH was raised to 8–9. The resulting white solid was filtered off and recrystallized from DMSO- d_6 producing white crystalline blocks suitable for single-crystal X-ray diffraction (yield 60%; m.p. 374–376 K). MS (70 eV): 232/230 (38:100, $M+2/M^+$), 217/215 (17/18, $[(M+2/M) - \text{CH}_3]^+$), 186/ 184 (17/18, $[(M+2/M) - \text{SCH}_2]^+$), 149 (31, $[M - \text{SCH}_3 - \text{Cl}]^+$), 71 (4, $[\text{N=CH}-\text{N}(\text{CH}_3)_2]^+$).

Crystal data

C ₈ H ₁₁ ClN ₄ S	$V = 518.31 (15) \text{ Å}^3$
$M_r = 230.72$	Z = 2
Triclinic, $P\overline{1}$	$D_x = 1.478 \text{ Mg m}^{-3}$
a = 7.4817 (2) Å	Mo $K\alpha$ radiation
$b = 8.5739 (2) \text{\AA}$	$\mu = 0.54 \text{ mm}^{-1}$
c = 9.818 (3) Å	T = 120 (2) K
$\alpha = 111.973 \ (2)^{\circ}$	Block, colourless
$\beta = 91.661 \ (2)^{\circ}$	$0.30 \times 0.30 \times 0.20 \text{ mm}$
$\gamma = 114.566 \ (2)^{\circ}$	

12192 measured reflections

 $R_{\rm int} = 0.032$

 $\theta_{\rm max} = 27.5^{\circ}$

2378 independent reflections

2015 reflections with $I > 2\sigma(I)$

Data collection

Nonius KappaCCD diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2003) $T_{\min} = 0.856, T_{\max} = 0.901$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0456P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.040$	+ 0.5109P]
$wR(F^2) = 0.106$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.13	$(\Delta/\sigma)_{\rm max} < 0.001$
2378 reflections	$\Delta \rho_{\rm max} = 0.43 \text{ e} \text{ \AA}^{-3}$
130 parameters	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table	1
-------	---

Selected torsion angles (°).

N3-C2-S2-C21	0.17 (18)	N4-C41-N41-C43	-3.4(3)
N1-C2-S2-C21	-179.75 (14)	N4-C41-N41-C44	175.22 (18)
N3-C4-N4-C41	-25.4 (3)	C2-N1-C6-Cl6	-177.26 (13)
C5-C4-N4-C41	156.38 (18)	C4-C5-C6-Cl6	175.75 (14)
C4-N4-C41-N41	174.23 (17)		

H atoms were treated as riding atoms, with aromatic C-H = 0.95 Å and $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$, and C-H = 0.98 Å and $U_{\rm iso}({\rm H}) = 1.5U_{\rm eq}({\rm C})$. The positions of all methyl H atoms were checked in a difference map.

Data collection: COLLECT (Bruker-Nonius, 2004); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction:

Figure 2

A view of the π - π stacking viewed perpendicular to the plane of the pyrimidine ring. Atoms labelled with an asterisk (*) are in the molecule at (1 - x, 1 - y, 1 - z). For the sake of clarity, all H atoms have been omitted.

EVALCCD (Duisenberg *et al.*, 2003); program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *OSCAIL* (McArdle, 2003) and *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97* and *WORDPERFECT* macro *PRPKAPPA* (Ferguson, 1999).

JT, MN and JC thank the Consejería de Innovacíon, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén, Spain, for financial support. JT thanks also the Universidad de Jaén for a research scholarship.

References

- Bruker-Nonius (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Duisenberg, A. J. M, Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.
- Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.
- Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
- McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Vilsmeier, A. & Haack, A. (1927). Chem. Ber. 60, 119-122.

supporting information

Acta Cryst. (2006). E62, o3910–o3911 [https://doi.org/10.1107/S1600536806032004]

6-Chloro-4-(dimethylaminomethyleneamino)-2-(methylsulfanyl)pyrimidine

Z = 2

F(000) = 240 $D_x = 1.478 \text{ Mg m}^{-3}$

 $\theta = 4.2 - 27.5^{\circ}$

 $\mu = 0.54 \text{ mm}^{-1}$

Block, colourless

 $0.30 \times 0.30 \times 0.20$ mm

 $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 4.2^{\circ}$

2378 independent reflections

2015 reflections with $I > 2\sigma(I)$

T = 120 K

 $R_{\rm int} = 0.032$

 $h = -9 \rightarrow 9$

 $k = -11 \rightarrow 11$

 $l = -12 \rightarrow 12$

Mo *K* α radiation, $\lambda = 0.71069$ Å

Cell parameters from 2378 reflections

José M. de la Torre, Justo Cobo, Manuel Nogueras and John Nicolson Low

6-Chloro-4-(dimethylaminomethyleneamino)-2-(methylsulfanyl)pyrimidine

Crystal data C₈H₁₁ClN₄S $M_r = 230.72$ Triclinic, $P\overline{1}$ a = 7.4817 (2) Å b = 8.5739 (2) Å c = 9.818 (3) Å a = 111.973 (2)° $\beta = 91.661$ (2)° $\gamma = 114.566$ (2)° V = 518.31 (15) Å³

Data collection

Nonius KappaCCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{\min} = 0.856, T_{\max} = 0.901$ 12192 measured reflections

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.040$ Hydrogen site location: inferred from $wR(F^2) = 0.106$ neighbouring sites S = 1.13H-atom parameters constrained 2378 reflections $w = 1/[\sigma^2(F_o^2) + (0.0456P)^2 + 0.5109P]$ where $P = (F_o^2 + 2F_c^2)/3$ 130 parameters 0 restraints $(\Delta/\sigma)_{\rm max} < 0.001$ Primary atom site location: structure-invariant $\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^{-3}$ direct methods $\Delta \rho_{\rm min} = -0.36 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Experimental. The scale factors in the experimental table are calculated from the 'size' command in the *SHELXL97* input file.

supporting information

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.7202 (2)	0.4345 (2)	0.35311 (18)	0.0187 (3)	
C2	0.7336 (3)	0.4427 (3)	0.4933 (2)	0.0171 (4)	
S2	0.71334 (8)	0.23243 (7)	0.49580 (5)	0.02132 (15)	
C21	0.7347 (3)	0.2824 (3)	0.6919 (2)	0.0255 (4)	
N3	0.7589 (2)	0.5869 (2)	0.62132 (18)	0.0176 (3)	
C4	0.7747 (3)	0.7458 (3)	0.6112 (2)	0.0172 (4)	
N4	0.8032 (2)	0.9024 (2)	0.73831 (18)	0.0192 (3)	
C41	0.7393 (3)	0.8703 (3)	0.8511 (2)	0.0183 (4)	
N41	0.7704 (2)	1.0073 (2)	0.98542 (18)	0.0195 (3)	
C43	0.8898 (3)	1.2062 (3)	1.0181 (2)	0.0241 (4)	
C44	0.6831 (3)	0.9661 (3)	1.1064 (2)	0.0234 (4)	
C5	0.7678 (3)	0.7549 (3)	0.4712 (2)	0.0191 (4)	
C6	0.7360 (3)	0.5939 (3)	0.3494 (2)	0.0185 (4)	
C16	0.70810 (8)	0.58526 (7)	0.16889 (5)	0.02420 (15)	
H21A	0.7244	0.1718	0.7059	0.038*	
H21B	0.6262	0.3111	0.7275	0.038*	
H21C	0.8652	0.3914	0.7495	0.038*	
H41	0.6665	0.7426	0.8370	0.022*	
H43A	0.9684	1.2170	0.9409	0.036*	
H43B	0.9814	1.2724	1.1170	0.036*	
H43C	0.8002	1.2632	1.0183	0.036*	
H44A	0.5920	0.8302	1.0680	0.035*	
H44B	0.6078	1.0377	1.1441	0.035*	
H44C	0.7910	1.0027	1.1885	0.035*	
Н5	0.7842	0.8662	0.4618	0.023*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0197 (8)	0.0177 (8)	0.0186 (8)	0.0086 (7)	0.0043 (6)	0.0077 (6)
C2	0.0159 (9)	0.0168 (9)	0.0173 (9)	0.0072 (7)	0.0030 (7)	0.0064 (7)
S2	0.0301 (3)	0.0171 (2)	0.0182 (3)	0.0133 (2)	0.00435 (19)	0.00624 (19)
C21	0.0362 (12)	0.0228 (10)	0.0195 (10)	0.0149 (9)	0.0050 (8)	0.0094 (8)
N3	0.0191 (8)	0.0167 (8)	0.0170 (8)	0.0088 (6)	0.0024 (6)	0.0065 (6)
C4	0.0153 (8)	0.0160 (9)	0.0185 (9)	0.0069 (7)	0.0023 (7)	0.0062 (7)
N4	0.0217 (8)	0.0176 (8)	0.0172 (8)	0.0098 (7)	0.0023 (6)	0.0055 (6)
C41	0.0179 (9)	0.0154 (9)	0.0188 (9)	0.0087 (7)	0.0017 (7)	0.0036 (7)
N41	0.0220 (8)	0.0178 (8)	0.0184 (8)	0.0100 (7)	0.0032 (6)	0.0064 (7)
C43	0.0299 (11)	0.0174 (9)	0.0222 (10)	0.0112 (8)	0.0031 (8)	0.0054 (8)
C44	0.0266 (10)	0.0270 (10)	0.0187 (9)	0.0146 (9)	0.0064 (8)	0.0091 (8)
C5	0.0203 (9)	0.0163 (9)	0.0210 (9)	0.0084 (8)	0.0040 (7)	0.0084 (8)
C6	0.0174 (9)	0.0222 (9)	0.0174 (9)	0.0097 (8)	0.0040 (7)	0.0093 (8)
Cl6	0.0333 (3)	0.0244 (3)	0.0183 (2)	0.0146 (2)	0.00694 (19)	0.0109 (2)

Geometric parameters (Å, °)

N1—C6	1.337 (2)	C41—H41	0.95
N1—C2	1.350 (2)	N41—C43	1.455 (3)
C2—N3	1.331 (2)	N41—C44	1.460 (3)
C2—S2	1.7553 (19)	C43—H43A	0.98
S2—C21	1.796 (2)	C43—H43B	0.98
C21—H21A	0.98	C43—H43C	0.98
C21—H21B	0.98	C44—H44A	0.98
C21—H21C	0.98	C44—H44B	0.98
N3—C4	1.360 (2)	C44—H44C	0.98
C4—N4	1.378 (2)	C5—C6	1.367 (3)
C4—C5	1.406 (3)	С5—Н5	0.95
N4—C41	1.296 (3)	C6—C16	1.748 (2)
C41—N41	1.330 (2)		11, 10 (2)
C6—N1—C2	113.18 (16)	C41—N41—C44	121.80 (17)
N3—C2—N1	127.66 (17)	C43—N41—C44	116.60 (16)
N3—C2—S2	119.89 (14)	N41—C43—H43A	109.5
N1—C2—S2	112.44 (14)	N41—C43—H43B	109.5
C2—S2—C21	102.86 (9)	H43A—C43—H43B	109.5
S2—C21—H21A	109.5	N41—C43—H43C	109.5
S2—C21—H21B	109.5	H43A—C43—H43C	109.5
H21A—C21—H21B	109.5	H43B—C43—H43C	109.5
S2—C21—H21C	109.5	N41—C44—H44A	109.5
H21A—C21—H21C	109.5	N41—C44—H44B	109.5
H21B—C21—H21C	109.5	H44A—C44—H44B	109.5
C2—N3—C4	116.74 (16)	N41—C44—H44C	109.5
N3—C4—N4	120.58 (17)	H44A—C44—H44C	109.5
N3—C4—C5	120.53 (17)	H44B—C44—H44C	109.5
N4—C4—C5	118.87 (17)	C6—C5—C4	115.92 (17)
C41—N4—C4	116.07 (17)	С6—С5—Н5	122.0
N4—C41—N41	123.31 (18)	C4—C5—H5	122.0
N4—C41—H41	118.3	N1—C6—C5	125.91 (18)
N41—C41—H41	118.3	N1—C6—C16	114.60 (14)
C41—N41—C43	121.59 (17)	C5—C6—C16	119.48 (15)
C6—N1—C2—N3	0.3 (3)	C4—N4—C41—N41	174.23 (17)
C6—N1—C2—S2	-179.79 (13)	N4—C41—N41—C43	-3.4 (3)
N3-C2-S2-C21	0.17 (18)	N4—C41—N41—C44	175.22 (18)
N1-C2-S2-C21	-179.75 (14)	N3—C4—C5—C6	2.7 (3)
N1—C2—N3—C4	-0.5 (3)	N4—C4—C5—C6	-179.04 (17)
S2-C2-N3-C4	179.60 (13)	C2—N1—C6—C5	1.6 (3)
C2—N3—C4—N4	-179.32 (17)	C2—N1—C6—Cl6	-177.26 (13)
C2—N3—C4—C5	-1.1 (3)	C4—C5—C6—N1	-3.1 (3)
N3—C4—N4—C41	-25.4 (3)	C4—C5—C6—Cl6	175.75 (14)
C5—C4—N4—C41	156.38 (18)		