Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

The crystal structure of the title compound, $\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{3^{-}}\right.$ $\left.\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{3} \mathrm{~S}\right)\right]_{n}$, consists of a linear chain in which adjacent trimethyltin groups are bridged by the 4-methyl-4H-1,2,4-triazole-3-thiolate anion through its N and S atoms.

Comment

The synthesis and structural chemistry of organotin compounds is still a fertile area of research because of their extensive biological applications. However, there is relatively little information available on organotin compounds as anticancer agents in vivo. Diorganotins represent the largest group of tin compounds to have been extensively examined for cytotoxicity in vitro; they have been found to be less toxic than platinum complexes (Narayan, 1983). We report here the structure of the title compound, (I), in a continuation of our work on the synthesis and structural characterization of organotin complexes of sulfur donor ligands (Shahzadi, Ali, Bhatti et al., 2006, Shahzadi, Ali \& Fettouhi, 2006).

(I)

In the crystal structure of (I) (Fig. 1), the Sn atom is bonded to three methyl groups in equatorial positions. The axial positions are occupied by N and S atoms of a 4 -methyl- 4 H -1,2,4-triazole-3-thiolate anion, with an almost linear $\mathrm{S}-\mathrm{Sn}-\mathrm{N}$ angle; the Sn atom has a distorted trigonal-bipyramidal coordination geometry. The $\mathrm{Sn}-\mathrm{S}$ bond length is 2.7116 (7) \AA, which is shorter than the $\mathrm{Sn}-\mathrm{S}$ bond distance reported earlier (Shahzadi, Ali, Bhatti et al., 2006, Shahzadi, Ali \& Fettouhi, 2006).

Experimental

3-Mercapto-4-methyl-4H-1,2,4-triazole ($0.15 \mathrm{~g}, \quad 1 \mathrm{mmol})$ and triethylamine ($0.1 \mathrm{~g}, 1 \mathrm{mmol}$) were suspended in dry toluene (150 ml) in a two-necked round-bottomed flask equipped with a water condenser. The mixture was stirred for 25 min at room temperature

[^0]
catena-Poly[[trimethyltin(IV)]- $\mu-4$-methyl-4H-1,2,4-triazole-3-thiolato- $\kappa^{2} S: N^{1}$]

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{N}-\mathrm{C})=0.004 \AA$
R factor $=0.017$
$w R$ factor $=0.041$
Data-to-parameter ratio $=19.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
and then trimethyltin chloride $(0.2 \mathrm{~g}, 1 \mathrm{mmol})$ was added. The reaction mixture was refluxed for $4-5 \mathrm{~h}$. After cooling at room temperature, triethylammonium chloride formed, was filtered off and the solvent was removed on a rotary evaporator under reduced pressure. The solid product was recrystallized from chloroform to obtain crystals suitable for X-ray analysis (yield 80%; m.p. 433 K).

Crystal data

$\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{3}\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{3} \mathrm{~S}\right)\right]$
$M_{r}=277.94$
Orthorhombic, Pna $_{1}$
$a=13.7254$ (11) \AA
$b=11.0183$ (9) \AA
$c=6.6998$ (5) \AA
$V=1013.21(14) \AA^{3}$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.822 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=2.68 \mathrm{~mm}^{-1} \\
& T=100(2) \mathrm{K} \\
& \text { Plate, colourless } \\
& 0.40 \times 0.30 \times 0.05 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker APEX CCD diffractometer φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2001)

$$
T_{\min }=0.414, T_{\max }=0.878
$$

7581 measured reflections
2051 independent reflections 2032 reflections with $I>2 \sigma(I)$

$$
R_{\mathrm{int}}=0.025
$$

$$
\theta_{\max }=26.3^{\circ}
$$

Refinement

```
Refinement on F
R[\mp@subsup{F}{}{2}>2\sigma(\mp@subsup{F}{}{2})]=0.017
wR(F}\mp@subsup{F}{}{2})=0.04
S=1.07
2051 reflections
104 parameters
H-atom parameters constrained
```

H atoms were included in calculated positions using the riding method, with $\mathrm{C}-\mathrm{H}=0.95-0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ (methyl C).

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

Figure 1
The structure of (I), with displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) $-x+\frac{1}{2}, y+\frac{1}{2}, z+\frac{1}{2}$.]

SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

AR is grateful to HEC (Higher Education Commision, Islamabad, Pakistan) for financial support under the PhD Fellowship Scheme Batch-II (PIN code: 042-111621-PS2179).

References

Bruker (2001). SMART (Version 5.625), SADABS (Version 2.03a) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2002). SAINT. Version 6.36a. Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Narayan, V. L. (1983). Organotin Compounds as Antitumour Agents. In Structure-Activity Relationship of Antitumour Agents, edited by D. N. Reinhoudt, T. A. Connors, H. M. Pinedo \& K. W. Van De Poll, pp. 77-106. The Hague: Martinus Nijhoff.
Shahzadi, S., Ali, S., Bhatti, M. H., Fettouhi, M. \& Athar, M. (2006). J. Organomet. Chem. 691, 1797-1802.
Shahzadi, S., Ali, S. \& Fettouhi, M. (2006). Acta Cryst. E62, m1178-m1180.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supporting information

Acta Cryst. (2006). E62, m2328-m2329 [https://doi.org/10.1107/S1600536806033654]

catena-Poly $\left[\left[\right.\right.$ trimethyltin(IV)]- $\mu-4-m e t h y l-4 H-1,2,4-$ triazole-3-thiolato- $\left.\kappa^{2} S^{2} N^{1}\right]$

Aziz-ur-Rehman, Saqib Ali, Saira Shahzadi and Madeleine Helliwell

catena-Poly[trimethyltin(IV)- μ-4-methyl-4H-1,2,4-triazole-3-thiolato- $\left.\kappa^{2} S: N^{1}\right]$

Crystal data

$\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{3}\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{3} \mathrm{~S}\right)\right]$
$M_{r}=277.94$
Orthorhombic, Pna $_{1}$
$a=13.7254$ (11) \AA
$b=11.0183$ (9) \AA
$c=6.6998$ (5) \AA
$V=1013.21(14) \AA^{3}$
$Z=4$
$F(000)=544$

Data collection

Bruker APEX CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.414, T_{\text {max }}=0.878$
$D_{\mathrm{x}}=1.822 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 6370 reflections
$\theta=2.4-26.4^{\circ}$
$\mu=2.68 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Plate, colourless
$0.40 \times 0.30 \times 0.05 \mathrm{~mm}$

7581 measured reflections
2051 independent reflections
2032 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=26.3^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=-17 \rightarrow 17$
$k=-13 \rightarrow 13$
$l=-8 \rightarrow 8$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.017$
$w R\left(F^{2}\right)=0.042$
$S=1.07$
2051 reflections
104 parameters
1 restraint
Primary atom site location: structure-invariant
direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0189 P)^{2}+0.5609 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.003$
$\Delta \rho_{\text {max }}=0.65 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.25$ e \AA^{-3}
Absolute structure: Flack (1983), 928 Friedel pairs
Absolute structure parameter: 0.06 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} / U_{\mathrm{eq}}$
Sn1	$0.307904(10)$	$0.849930(13)$	$0.50000(4)$	$0.01597(6)$
S1	$0.45004(5)$	$0.68083(6)$	$0.45904(9)$	$0.01853(14)$
N1	$0.43802(16)$	$0.6160(2)$	$0.0649(3)$	$0.0171(4)$
N3	$0.31104(16)$	$0.4998(2)$	$0.0555(4)$	$0.0202(5)$
N4	$0.32403(17)$	$0.5347(2)$	$0.2536(4)$	$0.0182(5)$
C1	$0.40084(19)$	$0.6056(2)$	$0.2553(4)$	$0.0155(5)$
C2	$0.3798(2)$	$0.5489(2)$	$-0.0520(4)$	$0.0197(6)$
H2	0.3875	0.5388	-0.1919	0.024^{*}
C3	$0.52432(17)$	$0.6837(2)$	$0.0019(6)$	$0.0242(5)$
H3A	0.5830	0.6379	0.0373	0.036^{*}
H3B	0.5255	0.7627	0.0692	0.036^{*}
H3C	0.5223	0.6959	-0.1429	0.036^{*}
C4	$0.4086(2)$	$0.9616(3)$	$0.6575(5)$	$0.0250(6)$
H4A	0.3730	1.0240	0.7318	0.037^{*}
H4B	0.4529	1.0005	0.5623	0.037^{*}
H4C	0.4462	0.9116	0.7507	0.037^{*}
C5	$0.2120(2)$	$0.7243(3)$	$0.6375(5)$	$0.0219(6)$
H5A	0.1450	0.7407	0.5943	0.033^{*}
H5B	0.2163	0.7326	0.7829	0.033^{*}
H5C	0.2302	0.6416	0.5989	0.033^{*}
C6	$0.2961(2)$	$0.8696(3)$	$0.1844(5)$	$0.0261(7)$
H6A	0.2774	0.7916	0.039^{*}	
H6B	0.3589	0.8955	0.1291	0.039^{*}
H6C	0.2464	0.9306	0.1534	0.039^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	$0.01775(9)$	$0.01547(9)$	$0.01468(9)$	$0.00015(5)$	$-0.00075(9)$	$-0.00140(9)$
S1	$0.0168(3)$	$0.0211(3)$	$0.0177(4)$	$0.0030(2)$	$-0.0027(2)$	$-0.0036(2)$
N1	$0.0174(11)$	$0.0145(9)$	$0.0194(11)$	$-0.0007(9)$	$0.0019(8)$	$0.0001(8)$
N3	$0.0257(13)$	$0.0171(11)$	$0.0179(14)$	$0.0021(8)$	$0.0004(8)$	$-0.0016(9)$
N4	$0.0212(11)$	$0.0174(11)$	$0.0159(12)$	$-0.0007(9)$	$-0.0002(9)$	$-0.0004(9)$
C1	$0.0172(12)$	$0.0133(12)$	$0.0160(12)$	$0.0032(10)$	$-0.0016(10)$	$-0.0012(9)$
C2	$0.0223(13)$	$0.0161(12)$	$0.0205(16)$	$0.0006(10)$	$-0.0005(9)$	$-0.0005(10)$
C3	$0.0216(11)$	$0.0267(12)$	$0.0242(13)$	$-0.0071(9)$	$0.0043(15)$	$-0.0060(19)$
C4	$0.0235(14)$	$0.0236(14)$	$0.0278(16)$	$-0.0035(12)$	$-0.0016(12)$	$-0.0064(12)$
C5	$0.0195(14)$	$0.0204(15)$	$0.0258(16)$	$-0.0002(11)$	$0.0010(11)$	$0.0015(12)$
C6	$0.0320(17)$	$0.0289(17)$	$0.0173(16)$	$0.0078(12)$	$-0.0013(12)$	$-0.0020(12)$

Geometric parameters ($\AA,{ }^{\circ}$)

Sn1-C5	2.121 (3)	C2-H2	0.9500
Sn1-C4	2.130 (3)	C3-H3A	0.9800
Sn1-C6	2.131 (3)	C3-H3B	0.9800
$\mathrm{Sn} 1-\mathrm{N} 3^{\text {i }}$	2.351 (2)	C3-H3C	0.9800
Sn1-S1	2.7116 (7)	C4-H4A	0.9800
S1-C1	1.734 (3)	C4-H4B	0.9800
N1-C2	1.341 (3)	C4-H4C	0.9800
N1-C1	1.378 (3)	C5-H5A	0.9800
N1-C3	1.462 (3)	C5-H5B	0.9800
N3-C2	1.306 (3)	C5-H5C	0.9800
N3-N4	1.393 (3)	C6-H6A	0.9800
N3-Sn1 ${ }^{\text {ii }}$	2.351 (2)	C6-H6B	0.9800
N4-C1	1.312 (4)	C6-H6C	0.9800
C5-Sn1-C4	124.37 (12)	N1-C3-H3A	109.5
C5-Sn1-C6	116.73 (13)	N1-C3-H3B	109.5
C4-Sn1-C6	118.82 (12)	H3A-C3-H3B	109.5
C5-Sn1-N3 ${ }^{\text {i }}$	87.61 (10)	N1-C3-H3C	109.5
C4-Sn1- $3^{\text {i }}$	88.09 (10)	H3A-C3-H3C	109.5
C6-Sn1-N3 ${ }^{\text {i }}$	91.88 (11)	H3B-C3-H3C	109.5
C5-Sn1-S1	92.42 (8)	Sn1-C4-H4A	109.5
C4-Sn1-S1	88.86 (8)	Sn1-C4-H4B	109.5
C6-Sn1-S1	91.38 (9)	H4A-C4-H4B	109.5
N3i-Sn1-S1	176.33 (6)	Sn1-C4-H4C	109.5
C1-S1-Sn1	97.35 (9)	H4A-C4-H4C	109.5
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1$	105.9 (2)	H4B-C4-H4C	109.5
C2-N1-C3	126.5 (2)	Sn1-C5-H5A	109.5
C1-N1-C3	127.5 (2)	Sn1-C5-H5B	109.5
C2-N3-N4	108.6 (2)	H5A-C5-H5B	109.5
C2-N3-Sn1 ${ }^{\text {ii }}$	134.93 (19)	Sn1-C5-H5C	109.5
N4-N3-Sn1 ${ }^{\text {ii }}$	115.70 (17)	H5A-C5-H5C	109.5
C1-N4-N3	106.0 (2)	H5B-C5-H5C	109.5
N4-C1-N1	109.8 (2)	Sn1-C6-H6A	109.5
N4-C1-S1	127.2 (2)	Sn1-C6-H6B	109.5
N1-C1-S1	123.0 (2)	H6A-C6-H6B	109.5
N3-C2-N1	109.7 (2)	Sn1-C6-H6C	109.5
N3-C2-H2	125.2	H6A-C6-H6C	109.5
N1-C2-H2	125.2	H6B-C6-H6C	109.5
C5-Sn1-S1-C1	77.35 (13)	C3-N1-C1-N4	-178.4 (2)
C4-Sn1-S1-C1	-158.29 (12)	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	-178.03 (19)
C6-Sn1-S1-C1	-39.48 (13)	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	3.1 (4)
N3i-Sn1-S1-C1	167.8 (9)	Sn1-S1-C1-N4	-71.9 (2)
C2-N3-N4-C1	0.7 (3)	Sn1-S1-C1-N1	106.3 (2)
Sn1 ${ }^{\text {ii- }}$ N3-N4-C1	171.96 (17)	N4-N3-C2-N1	-0.4 (3)
N3-N4-C1-N1	-0.7 (3)	Sn1 ${ }^{\text {ii- }}$ N3-C2-N1	-169.27 (18)

supporting information

$\mathrm{N} 3-\mathrm{N} 4-\mathrm{C} 1-\mathrm{S} 1$	$177.73(19)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 3$	$0.0(3)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 4$	$0.5(3)$	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 3$	$178.8(2)$

Symmetry codes: (i) $-x+1 / 2, y+1 / 2, z+1 / 2$; (ii) $-x+1 / 2, y-1 / 2, z-1 / 2$.

[^0]: (C) 2006 International Union of Crystallography

 All rights reserved

