Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Francisco Jara,^a Moisés Domínguez,^a Marcos C. Rezende,^a Edward R. T. Tiekink,^b* James L. Wardell^c and Solange M. S. V. Wardell^d‡

^aFacultad de Quimica y Biologia, Universidad de Santiago, Casilla 40, Correo 33, Santiago, Chile, ^bDepartment of Chemistry, The University of Texas at San Antonio, 6900 North Loop 1604 West, San Antonio, Texas 78249-0698, USA, ^cDepartment of Chemistry, University of Aberdeen, Old Aberdeen AB24 3UE, Scotland, and, Instituto de Química, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil, and ^dComplexo Tecnológico de Medicamentos Farmanguinhos, Av. Comandante Guaranys 447, Jacarepaguá – Rio de Janeiro, RJ, Brazil

‡ Additional correspondence e-mail: solangewardell@yahoo.co.uk

Correspondence e-mail: edward.tiekink@utsa.edu

Key indicators

Single-crystal X-ray study T = 120 KMean σ (C–C) = 0.003 Å R factor = 0.055 wR factor = 0.142 Data-to-parameter ratio = 12.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2006 International Union of Crystallography All rights reserved The central OC_5 ring in the cation of the title compound, $C_{30}H_{23}O^+ \cdot BF_4^-$, has considerable aromatic character but the pendant aromatic rings are not coplanar. The crystal structure comprises undulating layers of cations separated by BF_4^- anions with significant intermolecular interactions between them.

Comment

The structure of the title compound, (I) (Fig. 1 and Table 1), shows significant twisting of the pendant aromatic rings out of the central plane. The dihedral angles between the O1/C1–C5 ring and the C6–C11, C12–C17 and C25–C30 rings are 28.14 (10), 56.70 (11) and 83.44 (10)°, respectively. Within the central ring, which formally carries a positive charge, the two O–C distances are equal within experimental error and the C–C distances lie in the relatively narrow range 1.361 (3)–1.414 (3) Å. These observations strongly suggest substantial delocalization of π -electron density over this ring.

In the crystal structure there are a number of intermolecular interactions linking the ions. The primary interactions operating in the crystal structure are illustrated in Fig. 2. Here, B-F···H contacts are highlighted as golden dashed lines. The first contact occurs between the two components of the asymmetric unit so that $C20-H20\cdots F4$ is 2.49 Å, C20···F4 is 3.355 (3) Å and the angle at H20 is 152° . The second $F \cdot \cdot \cdot H$ contact involves the C8ⁱ and F3 atoms so that $C8^{i} - H8^{i} \cdots F3$ is 2.55 Å, $C8^{i} \cdots F3$ is 3.321 (3) Å and the angle at H8 is 139 Å [symmetry code: (i) 1 - x, 1 - y, -z]. The remaining two F atoms serve to link two central O1/C1-C5 rings. The parameters associated with these interactions are $B1-F1\cdots$ ring centroid(O1/C1-C5) = 3.091 (2) Å and angle at $F1 = 114.52 (15)^{\circ}$, and $B1 - F2 \cdot \cdot \cdot ring centroid (O1/C1-C5)^{ii} =$ 3.080 (2) Å and angle at F2 = $118.59 (17)^{\circ}$ [symmetry code: (ii) $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$]. Formally, these might be considered as $F \cdots$ ring centroid(O1/C1-C5) interactions, but as seen in the B-F...ring centroid(O1/C1-C5) angles there is significant bending in the angles so that F1 approaches atoms O1 and C1 at 2.9508 (24) and 2.9766 (28) Å, respectively, with the other $F1 \cdot \cdot \cdot C$ distances being greater than 3.3 Å. A similar situation pertains for the interactions involving atom F2. Thus, the

organic papers

Received 12 July 2006

Accepted 20 July 2006

3-Benzyl-2,4,6-triphenylpyrylium tetrafluoroborate

Figure 1

The asymmetric unit of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

Environment about the BF_4^- anion in (I) (Crystal Impact, 2006). Color code: O (red), C (grey), B (brown) and H (green).

F2...O1ⁱⁱ, F2...C1ⁱⁱ and F2...C5ⁱⁱ distances are 2.9270 (22), 3.1280 (28) and 3.1845 (26) Å, respectively, the remaining F2...Cⁱⁱ distances being greater than 3.5 Å. The only other significant intermolecular contact in the structure of (I) is also illustrated in Fig. 2, *i.e.* a C18ⁱⁱⁱ—H18Aⁱⁱⁱ…ring centroid(C6– C11) contact with an H18Aⁱⁱⁱ…ring centroid distance of 2.98 Å and an angle of 152° at the H18Aⁱⁱⁱ atom. The global crystal structure may be described as comprising undulating layers of cations interspersed with anions (see Fig. 3).

Experimental

The title compound was isolated as a by-product in the preparation of 2-(4-hyroxyphenyl)-4,6-diphenylpyrylium tetrafluoroborate from 1,3diphenylpropenone and 4-hydroxyphenylethanone in the presence of boron trifluoride etherate (Aliaga *et al.*, 1997). The two products were separated by fractional crystallization from acetic acid. The title compound, recrystallized from AcOH, had melting point and spec-

Figure 3

Packing diagram for (I), viewed approximately down the a axis (Crystal Impact, 2006). Color code as for Fig. 2.

troscopic properties in agreement with literature values (Marton et al., 1999).

Z = 4

 $D_x = 1.374 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation

Block, pale yellow

 $0.24 \times 0.10 \times 0.08 \text{ mm}$

25644 measured reflections 4136 independent reflections

3347 reflections with $I > 2\sigma(I)$

 $\mu = 0.10 \text{ mm}^{-1}$

T = 120 (2) K

 $R_{\rm int}=0.042$

 $\theta_{\rm max} = 25.0^{\circ}$

Crystal data

 $C_{30}H_{23}O^+ \cdot BF^{4-}$ $M_r = 486.29$ Monoclinic, $P2_1/c$ a = 10.6170 (3) Å b = 13.2065 (3) Å c = 17.1985 (5) Å $\beta = 102.784$ (1)° V = 2351.68 (11) Å³

Data collection

Bruker–Nonius KappaCCD diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2003) $T_{\min} = 0.834, T_{\max} = 1$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0667P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.055$	+ 2.1496P]
$wR(F^2) = 0.142$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
4136 reflections	$\Delta \rho_{\rm max} = 0.80 \ {\rm e} \ {\rm \AA}^{-3}$
325 parameters	$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

D1-C1	1.341 (3)	C2-C3	1.397 (3)
D1-C5	1.350 (3)	C3-C4	1.414 (3)
C1-C2	1.361 (3)	C4-C5	1.381 (3)
C1 - O1 - C5	122.38 (17)		

All H atoms were allowed to ride on their parent atoms in the riding-model approximation at C–H distances of 0.95–0.99 Å, and with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$. Evidence of some disorder in the position of the BF₄⁻ anion can be noted from Fig. 1. However, multiple positions could not be resolved.

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduc-

tion: *DENZO* and *COLLECT*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976) and *DIAMOND* (Crystal Impact, 2006); software used to prepare material for publication: *SHELXL97*.

The authors thank the EPSRC X-ray Crystallographic Service, University of Southampton, for the data collection.

References

Aliaga, C., Galdames, J. S. & Rezende, M. C. (1997). J. Chem. Soc. Perkin Trans 2, pp. 1055–1058.

- Altomare, A., Cascarano, M., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Crystal Impact (2006). *DIAMOND*. Version 3.1. Crystal Impact GbR, Bonn, Germany.
- Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Marton, A. L., Marton, G. I., Feaghici, C. & Balaban, A. T. (1999). Rev. Roum. Chim. 44, 677–682.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Acta Cryst. (2006). E62, o3495-o3497 [https://doi.org/10.1107/S1600536806028285]

3-Benzyl-2,4,6-triphenylpyrylium tetrafluoroborate

Francisco Jara, Moisés Domínguez, Marcos C. Rezende, Edward R. T. Tiekink, James L. Wardell and Solange M. S. V. Wardell

3-Benzyl-2,4,6-triphenylpyrylium tetrafluoroborate

Crystal data

 $C_{30}H_{23}O^+ \cdot BF_4^ M_r = 486.29$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 10.6170 (3) Å b = 13.2065 (3) Å c = 17.1985 (5) Å $\beta = 102.784$ (1)° V = 2351.68 (11) Å³ Z = 4

Data collection

Bruker-Nonius 95mm CCD camera on κ goniostat diffractometer Radiation source: Bruker-Nonius FR591 rotating anode Graphite monochromator Detector resolution: 9.091 pixels mm⁻¹ φ and ω scans Absorption correction: multi scan (SADABS; Sheldrick, 2003)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.142$ S = 1.054136 reflections 325 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 1008 $D_x = 1.374 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71069 \text{ Å}$ Cell parameters from 5538 reflections $\theta = 2.9-27.5^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 120 KBlock, pale yellow $0.24 \times 0.10 \times 0.08 \text{ mm}$

 $T_{\min} = 0.834, T_{\max} = 1$ 25644 measured reflections
4136 independent reflections
3347 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$ $\theta_{\max} = 25.0^{\circ}, \theta_{\min} = 3.0^{\circ}$ $h = -12 \rightarrow 12$ $k = -15 \rightarrow 15$ $I = -20 \rightarrow 20$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0667P)^2 + 2.1496P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.80$ e Å⁻³ $\Delta\rho_{min} = -0.40$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso} * / U_{\rm ea}$ х v Ζ F1 0.0707(7) 0.57576(17) 0.50732 (15) 0.27361 (13) F2 0.0559(5)0.71621 (18) 0.63183 (12) 0.25861 (12) F3 0.70332 (18) 0.48944(15)0.18351 (10) 0.0588(5)F4 0.78734 (18) 0.48523 (15) 0.31391 (11) 0.0636(5) 0.33118 (11) 01 0.40466 (14) 0.27331 (9) 0.0202(3)C1 0.4465(2)0.31678 (16) 0.20605 (13) 0.0190(5)C2 0.5580(2) 0.26442 (16) 0.20922 (13) 0.0201 (5) H2 0.5889 0.2550 0.024* 0.1620 C3 0.6273(2)0.22436 (16) 0.28119(13) 0.0200(5)C4 0.5820(2)0.24083 (16) 0.35153 (13) 0.0193(5)C5 0.4691 (2) 0.29537 (16) 0.34461 (13) 0.0195 (5) C6 0.3624(2)0.36022 (16) 0.13507 (13) 0.0187(5)C7 0.38924 (16) 0.4156(2)0.07108 (13) 0.0216(5)H7 0.5057 0.3818 0.0744 0.026* 0.0245 (5) C8 0.3370(2)0.00296 (13) 0.42882 (17) 0.029* H8 0.3727 0.4482 -0.0408C9 -0.00133(14)0.0260 (5) 0.2061 (2) 0.44013 (17) 0.031* H9 0.1523 0.4681 -0.0479C10 0.1527(2)0.41098 (18) 0.06188 (15) 0.0281 (6) 0.034* H10 0.0627 0.4188 0.0584 C11 0.2304(2)0.37063 (17) 0.12982 (14) 0.0242(5)0.1938 0.029* H11 0.3500 0.1729 C12 0.7417(2)0.16057 (17) 0.27859(13) 0.0207(5)C13 0.7277(2)0.07825 (18) 0.22708 (15) 0.0268 (5) H13 0.6450 0.0621 0.1954 0.032* C14 0.8336(2)0.01974 (19) 0.22177 (16) 0.0324(6)0.8229 0.039* H14 -0.03660.1866 C15 0.9547(2)0.04247 (18) 0.26704 (15) 0.0305 (6) H15 1.0270 0.0019 0.2633 0.037* C16 0.9694(2)0.12461 (19) 0.31768 (15) 0.0298 (6) 0.036* H16 1.0528 0.1412 0.3483 C17 0.8643(2)0.18334(19)0.32446 (14) 0.0271(5)H17 0.8755 0.2391 0.3603 0.033* C18 0.6405(2)0.18787 (17) 0.42883 (13) 0.0213 (5) 0.026* H18A 0.6771 0.1228 0.4156

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H18B	0.5698	0.1715	0.4558	0.026*
C19	0.7452 (2)	0.24305 (17)	0.48847 (13)	0.0213 (5)
C20	0.7977 (2)	0.33477 (18)	0.47235 (15)	0.0278 (5)
H20	0.7641	0.3688	0.4235	0.033*
C21	0.8997 (2)	0.3768 (2)	0.52801 (17)	0.0366 (6)
H21	0.9354	0.4395	0.5166	0.044*
C22	0.9499 (2)	0.3289 (2)	0.59937 (16)	0.0376 (7)
H22	1.0217	0.3571	0.6359	0.045*
C23	0.8946 (2)	0.2396 (2)	0.61708 (15)	0.0344 (6)
H23	0.9263	0.2073	0.6669	0.041*
C24	0.7929 (2)	0.19681 (18)	0.56234 (13)	0.0249 (5)
H24	0.7552	0.1355	0.5751	0.030*
C25	0.3994 (2)	0.31854 (16)	0.40788 (13)	0.0207 (5)
C26	0.4613 (2)	0.36439 (17)	0.47898 (14)	0.0247 (5)
H26	0.5509	0.3796	0.4884	0.030*
C27	0.3916 (2)	0.38770 (18)	0.53592 (14)	0.0284 (5)
H27	0.4333	0.4201	0.5841	0.034*
C28	0.2617 (2)	0.36415 (18)	0.52307 (14)	0.0277 (6)
H28	0.2147	0.3797	0.5626	0.033*
C29	0.2000 (2)	0.31797 (18)	0.45261 (15)	0.0278 (5)
H29	0.1109	0.3017	0.4440	0.033*
C30	0.2680 (2)	0.29533 (17)	0.39466 (14)	0.0239 (5)
H30	0.2253	0.2642	0.3462	0.029*
B1	0.6920 (3)	0.5292 (2)	0.25495 (17)	0.0271 (6)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.0457 (10)	0.0742 (13)	0.1045 (17)	-0.0265 (9)	0.0432 (11)	-0.0448 (12)
F2	0.0666 (12)	0.0319 (9)	0.0727 (13)	-0.0064 (8)	0.0231 (10)	-0.0016 (8)
F3	0.0723 (12)	0.0718 (13)	0.0360 (10)	-0.0067 (10)	0.0199 (9)	-0.0175 (9)
F4	0.0644 (12)	0.0754 (13)	0.0489 (11)	0.0126 (10)	0.0083 (9)	0.0235 (10)
01	0.0210 (8)	0.0222 (8)	0.0177 (8)	0.0011 (6)	0.0051 (6)	0.0023 (6)
C1	0.0221 (11)	0.0188 (11)	0.0171 (11)	-0.0036 (9)	0.0061 (9)	-0.0006 (9)
C2	0.0204 (11)	0.0231 (11)	0.0180 (11)	0.0003 (9)	0.0065 (9)	0.0015 (9)
C3	0.0183 (11)	0.0196 (11)	0.0224 (12)	-0.0035 (9)	0.0048 (9)	0.0017 (9)
C4	0.0196 (11)	0.0191 (11)	0.0186 (11)	-0.0028 (9)	0.0030 (9)	0.0028 (9)
C5	0.0229 (11)	0.0174 (11)	0.0178 (11)	-0.0026 (9)	0.0035 (9)	0.0038 (9)
C6	0.0210 (11)	0.0173 (11)	0.0168 (11)	0.0012 (9)	0.0021 (9)	-0.0022 (9)
C7	0.0223 (11)	0.0205 (11)	0.0217 (12)	0.0008 (9)	0.0042 (10)	-0.0008 (9)
C8	0.0332 (13)	0.0218 (12)	0.0180 (12)	-0.0020 (10)	0.0046 (10)	-0.0011 (9)
C9	0.0310 (13)	0.0194 (11)	0.0217 (12)	0.0014 (10)	-0.0071 (10)	-0.0012 (9)
C10	0.0199 (11)	0.0271 (13)	0.0349 (14)	0.0039 (10)	0.0012 (11)	-0.0013 (11)
C11	0.0217 (11)	0.0269 (12)	0.0242 (13)	0.0025 (10)	0.0055 (10)	-0.0008 (10)
C12	0.0207 (11)	0.0239 (12)	0.0186 (11)	-0.0003 (9)	0.0066 (9)	0.0058 (9)
C13	0.0216 (11)	0.0277 (13)	0.0314 (13)	-0.0040 (10)	0.0064 (10)	-0.0005 (10)
C14	0.0325 (14)	0.0236 (12)	0.0440 (16)	0.0005 (10)	0.0150 (12)	-0.0025 (11)
C15	0.0262 (13)	0.0280 (13)	0.0415 (15)	0.0067 (10)	0.0167 (11)	0.0132 (11)

C16	0.0207 (12)	0.0403 (15)	0.0281 (13)	0.0013 (11)	0.0046 (10)	0.0096 (11)	
C17	0.0250 (12)	0.0340 (13)	0.0220 (12)	0.0013 (10)	0.0044 (10)	0.0009 (10)	
C18	0.0211 (11)	0.0238 (11)	0.0195 (12)	-0.0002 (9)	0.0055 (9)	0.0038 (9)	
C19	0.0197 (11)	0.0253 (12)	0.0200 (12)	0.0033 (9)	0.0066 (9)	-0.0013 (9)	
C20	0.0268 (12)	0.0302 (13)	0.0285 (13)	-0.0028 (10)	0.0104 (11)	-0.0017 (11)	
C21	0.0319 (14)	0.0358 (15)	0.0476 (17)	-0.0100 (11)	0.0205 (13)	-0.0147 (13)	
C22	0.0247 (13)	0.0554 (18)	0.0333 (15)	-0.0026 (12)	0.0080 (11)	-0.0216 (13)	
C23	0.0291 (13)	0.0493 (16)	0.0233 (13)	0.0099 (12)	0.0024 (11)	-0.0080 (12)	
C24	0.0264 (12)	0.0281 (12)	0.0207 (12)	0.0063 (10)	0.0065 (10)	-0.0008 (10)	
C25	0.0241 (11)	0.0189 (11)	0.0204 (12)	0.0032 (9)	0.0077 (9)	0.0043 (9)	
C26	0.0250 (12)	0.0252 (12)	0.0239 (13)	0.0013 (10)	0.0052 (10)	0.0016 (10)	
C27	0.0354 (14)	0.0281 (13)	0.0214 (12)	0.0036 (11)	0.0055 (11)	-0.0022 (10)	
C28	0.0337 (13)	0.0281 (13)	0.0257 (13)	0.0072 (10)	0.0158 (11)	0.0035 (10)	
C29	0.0248 (12)	0.0268 (13)	0.0342 (14)	0.0019 (10)	0.0115 (11)	0.0035 (11)	
C30	0.0253 (12)	0.0234 (12)	0.0234 (12)	0.0012 (9)	0.0061 (10)	0.0009 (10)	
B1	0.0270 (14)	0.0263 (14)	0.0298 (15)	0.0001 (11)	0.0099 (12)	-0.0016 (12)	

Geometric parameters (Å, °)

F1—B1	1.373 (3)	C14—H14	0.9500
F2—B1	1.378 (3)	C15—C16	1.378 (4)
F3—B1	1.366 (3)	C15—H15	0.9500
F4—B1	1.392 (3)	C16—C17	1.385 (3)
01—C1	1.341 (3)	C16—H16	0.9500
O1—C5	1.350 (3)	C17—H17	0.9500
C1—C2	1.361 (3)	C18—C19	1.521 (3)
C1—C6	1.461 (3)	C18—H18A	0.9900
C2—C3	1.397 (3)	C18—H18B	0.9900
C2—H2	0.9500	C19—C24	1.400 (3)
C3—C4	1.414 (3)	C19—C20	1.386 (3)
C3—C12	1.488 (3)	C20—C21	1.392 (4)
C4—C5	1.381 (3)	C20—H20	0.9500
C4—C18	1.509 (3)	C21—C22	1.378 (4)
C5—C25	1.476 (3)	C21—H21	0.9500
C6—C11	1.391 (3)	C22—C23	1.382 (4)
С6—С7	1.397 (3)	C22—H22	0.9500
С7—С8	1.382 (3)	C23—C24	1.386 (3)
С7—Н7	0.9500	C23—H23	0.9500
С8—С9	1.384 (3)	C24—H24	0.9500
С8—Н8	0.9500	C25—C30	1.398 (3)
C9—C10	1.387 (3)	C25—C26	1.392 (3)
С9—Н9	0.9500	C26—C27	1.387 (3)
C10-C11	1.380(3)	C26—H26	0.9500
C10—H10	0.9500	C27—C28	1.383 (3)
C11—H11	0.9500	C27—H27	0.9500
C12—C13	1.389(3)	C28—C29	1.385 (3)
C12—C17	1.397 (3)	C28—H28	0.9500
C13—C14	1.384 (3)	C29—C30	1.386 (3)

C13—H13	0.9500	С29—Н29	0.9500
C14—C15	1.381 (4)	С30—Н30	0.9500
C1—O1—C5	122.38 (17)	С16—С17—Н17	120.0
O1—C1—C2	119.2 (2)	С12—С17—Н17	120.0
O1—C1—C6	114.02 (18)	C4C18C19	117.97 (18)
C2—C1—C6	126.7 (2)	C4—C18—H18A	107.8
C1—C2—C3	120.7 (2)	C19—C18—H18A	107.8
C1—C2—H2	119.6	C4—C18—H18B	107.8
C3—C2—H2	119.6	C19—C18—H18B	107.8
C2—C3—C4	119.20 (19)	H18A—C18—H18B	107.2
C2—C3—C12	117.49 (19)	C24—C19—C20	118.8 (2)
C4—C3—C12	123.20 (19)	C24—C19—C18	117.8 (2)
C5—C4—C3	117.36 (19)	C20—C19—C18	123.3 (2)
C5—C4—C18	119.88 (19)	C19—C20—C21	119.8 (2)
C3—C4—C18	122.05 (19)	C19—C20—H20	120.1
O1—C5—C4	121.08 (19)	С21—С20—Н20	120.1
O1—C5—C25	111.18 (18)	C22—C21—C20	121.2 (2)
C4—C5—C25	127.68 (19)	C22—C21—H21	119.4
C11—C6—C7	119.9 (2)	C20—C21—H21	119.4
C11—C6—C1	120.9 (2)	C21—C22—C23	119.2 (2)
C7—C6—C1	119.14 (19)	С21—С22—Н22	120.4
C8—C7—C6	119.8 (2)	С23—С22—Н22	120.4
С8—С7—Н7	120.1	C22—C23—C24	120.2 (2)
С6—С7—Н7	120.1	С22—С23—Н23	119.9
C9—C8—C7	119.8 (2)	С24—С23—Н23	119.9
С9—С8—Н8	120.1	C19—C24—C23	120.6 (2)
С7—С8—Н8	120.1	C19—C24—H24	119.7
C8—C9—C10	120.6 (2)	C23—C24—H24	119.7
С8—С9—Н9	119.7	C30—C25—C26	119.9 (2)
С10—С9—Н9	119.7	C30—C25—C5	118.7 (2)
C11—C10—C9	120.0 (2)	C26—C25—C5	121.4 (2)
C11—C10—H10	120.0	C27—C26—C25	119.7 (2)
С9—С10—Н10	120.0	С27—С26—Н26	120.2
C6-C11-C10	119.9 (2)	C25—C26—H26	120.2
C6—C11—H11	120.1	C26—C27—C28	120.4 (2)
C10-C11-H11	120.1	С26—С27—Н27	119.8
C13—C12—C17	118.9 (2)	C28—C27—H27	119.8
C13—C12—C3	119.3 (2)	C29—C28—C27	120.0 (2)
C17—C12—C3	121.7 (2)	C29—C28—H28	120.0
C12—C13—C14	120.3 (2)	C27—C28—H28	120.0
C12—C13—H13	119.8	C28—C29—C30	120.3 (2)
C14—C13—H13	119.8	С28—С29—Н29	119.9
C15—C14—C13	120.7 (2)	С30—С29—Н29	119.9
C15—C14—H14	119.7	C25—C30—C29	119.7 (2)
C13—C14—H14	119.7	С25—С30—Н30	120.1
C14—C15—C16	119.3 (2)	С29—С30—Н30	120.1
C14—C15—H15	120.4	F1—B1—F3	113.1 (2)

C16—C15—H15	120.4	F1—B1—F2 F3 B1 F2	111.4 (2) 111 5 (2)
C17—C16—H16	120.9 (2) 119.6	F3-B1-F2 F1-B1-F4	106.8 (2)
C15—C16—H16 C16—C17—C12	119.6 119.9 (2)	F3—B1—F4 F2—B1—F4	107.5 (2) 106.2 (2)