organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Gaël Labat^a* and Joan Halfpenny^b

^aUniversity of Liverpool, Department of Chemistry, Crown Street, L69 7ZD, England, and ^bDepartment of Chemistry and Physics, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, England

Correspondence e-mail: gael.labat@liv.ac.uk

Key indicators

Single-crystal X-ray study T = 153 K Mean σ (C–C) = 0.002 Å R factor = 0.028 wR factor = 0.071 Data-to-parameter ratio = 14.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

A thiophene-based azacryptand Mannich base: 15,35dipropyl-2,5,8,22,25,28-hexaoxa-12,18,32,38-tetrathia-15,35-diazapentacyclo[29.5.5.5.0.0]tetraconta-1(37),9(13),10,17(21),19,29(33),30,39-octaene

The molecule of the title compound, $C_{34}H_{46}N_2O_6S_4$ is composed of four thiophene rings bridged by two $-O(CH_2)_2O$ - and two $-CH_2(NC_2H_5)CH_2$ - chains. The macrocyclic molecule possesses a center of symmetry. In the crystal structure, the molecules are bridged by $C-H \cdots O$ interactions, forming chains along the *a* axis.

Comment

The preparation of cryptand-like structures, incorporating four thiophene rings, was previously described by Chaffin et al. (2001, 2002). The title compound is the first of a range of four thiophene-based azacryptand Mannich bases. The macrocycle incorporates six O and two N donor atoms. The coordination chemistry of aza and mixed oxa-aza macrocycles containing different pendant arms attached to the aza centers has attracted the attention of many researchers over the past twenty years (Tei et al., 2000; Wainwright, 1997; Bernhardt & Lawrance, 1990; Gokel, 1992; Hancock et al., 1996; Hambley et al., 2001; Buschmann & Schollmeyer, 2000; Dietrich et al., 1969). These ligands can exhibit remarkable metal-ion selectivity and show specific complexation behavior, forming metal complexes with unusual structures (references as above, together with Laufer, 1987; Parker & Williams, 1996). Macrocyclic crown ethers and other ionophores can bind cations (Gokel & Durst, 1976), anions and small neutral organic molecules (Kellogg, 1984).

© 2006 International Union of Crystallography All rights reserved The centrosymmetric molecule is non-planar. Selected bond distances and angles are given in Table 1. Each of the four

Received 7 June 2006 Accepted 6 July 2006

Figure 1

The molecular structure of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (a) - x, -y, 1 - z.]

Figure 2

The molecular packing of compound (I), with hydrogen bonds shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

thiophene rings is planar, and opposite rings are parallel by symmetry. The S1 and S2 rings form a dihedral angle of 82.50 (3)°. The cross-molecule distances between the thiophene rings are S1...S1ⁱ = 11.323 (2) Å and S2...S2ⁱ = 14.735 (4) Å [symmetry code: (i) -x, -y, 1 - z.] The large separation of the S1 and S2 thiophene rings [S1...S2 = 12.567 (3) Å], and the relative proximity of the S1 and S2ⁱ rings [S1...S2ⁱ = 3.8412 (12) Å], means that the O and N atoms do not lie in the same plane. The largest cross-cavity distances are N1...N1ⁱ = 10.223 (3) Å, and O3...O3ⁱ = 10.052 (4) Å. The macrocyclic cavity can be divided into three small cavities defined respectively by least-squares planes through the N1, O2, O3 and O1ⁱ donor atoms for the first, through N1ⁱ, O2ⁱ, O3ⁱ and O1 for the second, and through O1. O2, O1ⁱ and O2ⁱ for the third. The two NO₃ planes are parallel and form a dihedral angle of $47.61 (5)^{\circ}$ with the third plane. The largest cross-cavity distances for these three smaller cavities are N1···O2 = N1ⁱ···O2ⁱ = 5.422 (2) Å, O1···O3ⁱ = $O1^{i} \cdots O3 = 5.656$ (2) Å, $O1 \cdots O1^{i} = 4.806$ (3) Å, and $O2 \cdots O2^{i} = 6.425$ (3) Å. The $N1 \cdots S1^{i}$ and $N1 \cdots S2$ distances are 3.0851 (18) Å and 3.4439 (17) Å, respectively. The $N1 \cdots S2$ distance is equal to the sum of the van der Waals radii (3.45 Å), whereas the $N1 \cdot \cdot \cdot S1^{i}$ distance is much shorter, and also considerably shorter than the non-bonded N...S interaction reported by Halfpenny & Sloman (2000) and Koziol et al. (1988). Consistent with this are the smaller S1-C1-C17 and S2-C10-C13 angles, compared with C2-C1-C17 and C9-C10-C13, and the smaller torsion angle S2-C10-C13-N1, compared with C9-C10-C13-N1. Some distortion in the thiophene ring bond lengths and angles is observed in many substituted thiophene compounds, the most obvious effect being the asymmetric nature of the S-C bonds (Koziol et al., 1988). In the present compound the rings associated with the $S \cdots N$ interactions have nearly symmetrical bond lengths, but the bond angles are clearly asymmetric. This is possibly due to the movement of some electron density towards N1. In many examples (Koziol *et al.*, 1988), the nitrogen is sp^2 hybridized rather than sp^3 as in the present compound, and therefore the C–N distance is shorter, facilitating the S \cdots N interaction. As in the macrocycle described by Halfpenny & Sloman (2000), the steric restrictions imposed by the C and N atoms being part of the large macrocyclic ring makes such short S...N contacts quite remarkable. They confirm that the electron pairs of the N atoms are directed outside the cavity, which is not favorable for complexation with a metal ion. However, this macrocycle, compared with one having two thiophene groups (Halfpenny & Sloman, 2000), shows greater flexibility in solution, allowing the cavity to accommodate small as well as large metal cations.

The molecules are linked by hydrogen bonds (Table 2). Fig. 2 shows the packing arrangement, giving a chain along the a axis.

Experimental

Compound (I) was synthesized using method A described by Chaffin *et al.* (2001). It was dissolved with stirring in a minimum of a 1:1:1 mixture of methanol/diethyl ether/dichloromethane. Slow evaporation at 277 K gave yellow blocks suitable for X-ray crystallographic analysis.

Crystal data	
$C_{34}H_{46}N_2O_6S_4$	$V = 842.9 (2) \text{ Å}^3$
$M_r = 706.97$	Z = 1
Triclinic, P1	$D_x = 1.393 \text{ Mg m}^{-3}$
a = 6.8178 (9) Å	Mo $K\alpha$ radiation
b = 9.4311 (18) Å	$\mu = 0.33 \text{ mm}^{-1}$
c = 13.833 (2) Å	T = 153 (2) K
$\alpha = 105.69 \ (2)^{\circ}$	Block, yellow
$\beta = 92.453 \ (18)^{\circ}$	$0.30 \times 0.30 \times 0.30$ mm
$\gamma = 98.79 \ (2)^{\circ}$	

Data collection

STOE IPDS diffractometer φ scans Absorption correction: none 6702 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.071$ S = 0.973075 reflections 209 parameters

Table 1

Selected	geometric	parameters	(Å,	°)	
----------	-----------	------------	-----	----	--

C1-C2	1.374 (2)	C9-C10	1.367 (2)
C1-C17 ⁱ	1.494 (2)	C9-O3	1.3727 (18)
C1-S1	1.7245 (14)	C9-C12	1.424 (2)
C2-O1	1.3744 (18)	C10-C13	1.494 (2)
C2-C3	1.416 (2)	C10-S2	1.7251 (15)
C3-C4	1.357 (2)	C11-C12	1.358 (2)
C4-S1	1.7147 (18)	C11-S2	1.7065 (16)
C5-O1	1.4349 (18)	C13-N1	1.4758 (18)
C5-C6	1.499 (2)	C14-N1	1.4710 (19)
C6-O2	1.426 (2)	C14-C15	1.521 (2)
C7-O2	1.4231 (19)	C15-C16	1.518 (2)
C7-C8	1.506 (2)	C17-N1	1.4739 (18)
C8-O3	1.4329 (17)	$C17-C1^{i}$	1.494 (2)
$C2 - C1 - C17^{1}$	128.46 (13)	C9-C10-S2	109.68 (11)
C2-C1-S1	109.63 (12)	C13-C10-S2	122.34 (10)
$C17^{i}-C1-S1$	121.44 (10)	C12-C11-S2	112.27 (12)
C1-C2-O1	119.10 (15)	C11-C12-C9	111.38 (13)
C1 - C2 - C3	114.16 (13)	N1-C13-C10	113.45 (13)
O1-C2-C3	126.72 (14)	N1-C14-C15	114.07 (14)
C4-C3-C2	111.80 (14)	C16-C15-C14	113.43 (13)
C3-C4-S1	112.00 (13)	$N1 - C17 - C1^{i}$	113.40 (12)
O1-C5-C6	107.24 (14)	C14-N1-C17	111.82 (11)
O2-C6-C5	111.60 (12)	C14-N1-C13	107.99 (12)
O2-C7-C8	111.30 (13)	C17-N1-C13	110.93 (10)
O3-C8-C7	107.47 (12)	C2-O1-C5	116.08 (13)
C10-C9-O3	119.54 (13)	C7-O2-C6	115.95 (13)
C10-C9-C12	114.17 (13)	C9-O3-C8	116.48 (12)
O3-C9-C12	126.29 (13)	C4-S1-C1	92.39 (8)
C9-C10-C13	127.96 (13)	C11-S2-C10	92.48 (7)
C9 C10 C13 N1	-108 44 (17)	C3 C2 O1 C5	_12 3 (2)
$S_{2}=C_{10}=C_{13}=N_{1}$	-100.44(17) 73.47(15)	$C_{10} = C_{2} = 01 = C_{3}$	-12.3(2) 171 75(13)
C1 - C2 - O1 - C5	168.99 (13)	C13 - C9 - O3 - C8 C12 - C9 - O3 - C8	-8.3(2)

Symmetry code: (i) -x, -y, -z + 1.

3075 independent reflections
2468 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.026$
$\theta_{\rm max} = 25.9^{\circ}$

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0468P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.34 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.18 \text{ e } \text{\AA}^{-3}$

 Table 2

 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\overline{C3-H3A\cdots O2^{ii}}$	0.95	2.50	3.142 (2)	125
C13−H13A···O3	0.99	2.58	2.9636 (18)	103

Symmetry code: (ii) x + 1, y, z.

H atoms were positioned geometrically and treated as riding atoms, with C-H = 0.95–0.99 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ [1.5 $U_{eq}(C)$ for methyl groups].

Data collection: *EXPOSE* (Stoe & Cie, 2000); cell refinement: *CELL* (Stoe & Cie, 2000); data reduction: *INTEGRATE* (Stoe & Cie, 2000); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97*.

We thank Professor Helen Stoeckli-Evans (Neuchâtel) for making available the Stoe IPDS diffractometer for data collection.

References

- Bernhardt, P. V. & Lawrance, G. A. (1990). Coord. Chem. Rev. 104, 297–343. Buschmann, H.-J. & Schollmeyer, E. (2000). J. Inclus. Phenom. Macrocyclic Chem. 38, 85–97.
- Chaffin, J. D. E., Barker, J. M. & Huddleston, P. R. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 1398–1405.
- Chaffin, J. D. E., Barker, J. M. & Huddleston, P. R. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 717-724.
- Dietrich, B., Lehn, J.-M. & Sauvage, J. P. (1969). Tetrahedron Lett. pp. 2885– 2892.
- Gokel, G. W. (1992). Chem. Soc. Rev. 21, 39-47.
- Gokel, G. W. & Durst, H. D. (1976). Synthesis, pp. 168-184.
- Halfpenny, J. & Sloman, Z. S. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 1877– 1879.
- Hambley, T. W., Lindoy, L. F., Reimers, J. R., Turner, P., Wei, G. & Widmer-Cooper, A. N. (2001). J. Chem. Soc. Dalton Trans. pp. 614–620.
- Hancock, R. D., Maumela, H. & De Sousa, A. S. (1996). Coord. Chem. Rev. 148, 315–347.
- Kellogg, R. M. (1984). Angew. Chem. Int. Ed. Engl. 23, 782-794.
- Koziol, A. E., Palenik, R. C. & Palenik, G. J. (1988). J. Chem. Soc. Chem. Commun. pp. 226–227.
- Laufer, R. B. (1987). Chem. Rev. 87, 901–927.
- Parker, D. & Williams, J. A. G. (1996). J. Chem. Soc. Dalton Trans. pp. 3613– 3628.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
- Spek, A. L. (2005). J. Appl. Cryst. **30**, 7–15. Stoe & Cie (2000). *IPDSI Manual.* Stoe & Cie, Darmstadt, Germany.
- Tei, L., Blake, A. J., Bencini, A., Vatancoli, B., Wilson, C. & Schröder, M.
- (2000). J. Chem. Soc. Dalton Trans. pp. 4122–4129.
- Wainwright, K. P. (1997). Coord. Chem. Rev. 166, 35-90.

supporting information

Acta Cryst. (2006). E62, o3310–o3312 [https://doi.org/10.1107/S1600536806026250]

A thiophene-based azacryptand Mannich base: 15,35-dipropyl-2,5,8,22,25,28hexaoxa-12,18,32,38-tetrathia-15,35-diazapentacyclo-[29.5.5.5.0.0]tetraconta-1(37),9(13),10,17(21),19,29(33),30,39-octaene

Gaël Labat and Joan Halfpenny

(|)

Crystal data $C_{34}H_{46}N_2O_6S_4$ $M_r = 706.97$ Triclinic, P1 Hall symbol: -P 1 a = 6.8178 (9) Å b = 9.4311 (18) Å c = 13.833 (2) Å a = 105.69 (2)° $\beta = 92.453$ (18)° $\gamma = 98.79$ (2)° V = 842.9 (2) Å³

Data collection

STOE IPDS

diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ scans 6702 measured reflections 3075 independent reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.071$ S = 0.973075 reflections 209 parameters 0 restraints Primary atom site location: structure-invariant direct methods Z = 1 F(000) = 376 $D_x = 1.393 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8000 reflections $\theta = 1.7-26.1^{\circ}$ $\mu = 0.33 \text{ mm}^{-1}$ T = 153 K Block, yellow $0.30 \times 0.30 \times 0.30 \text{ mm}$

2468 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$ $\theta_{max} = 25.9^{\circ}, \ \theta_{min} = 2.3^{\circ}$ $h = -8 \rightarrow 8$ $k = -11 \rightarrow 11$ $l = -17 \rightarrow 16$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0468P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.34$ e Å⁻³ $\Delta\rho_{min} = -0.18$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso} * / U_{\rm eq}$ х v ZC1 0.4451 (2) 0.0144 (3) -0.01853(16)0.69307 (11) C2 -0.11678 (16) 0.4154 (2) 0.59807 (11) 0.0157(3)C3 0.5838(2)-0.18181(17)0.56586(12) 0.0200(3)H3A 0.5870 -0.25090.5019 0.024* 0.7401 (2) 0.0226 (4) C4 -0.13354(18)0.63748 (12) H4A 0.8658 -0.16490.6296 0.027* C5 0.2208 (2) -0.22591(17)0.44070 (11) 0.0196 (3) H5B 0.2688 -0.32190.4332 0.024* 0.024* H5A 0.3047 -0.16710.4036 C6 0.0068(2)-0.25369(18)0.40002 (11) 0.0222(4)H6A -0.04470.027* -0.15810.4171 H6B -0.0026-0.29250.3256 0.027* C7 -0.50898(17)0.0203(3)-0.1501(2)0.37889 (12) H7B -0.1424-0.57670.4220 0.024* H7A -0.0465-0.52450.3309 0.024* C8 -0.3525(2)-0.54710(16)0.32111 (11) 0.0182(3)-0.3875-0.65640.2900 0.022* H8A 0.022* H8B -0.4550-0.51500.3669 C9 -0.5217(2)-0.46729(15)0.19600 (11) 0.0154(3)C10 -0.5267(2)-0.38039(15)0.13156 (11) 0.0143(3)C11 -0.8579(2)0.14872 (12) 0.0202(3)-0.51720(17)-0.99460.024* H11A -0.55950.1455 C12 -0.7110(2)-0.54805(17)0.20517 (11) 0.0193 (3) H12A 0.023* -0.7318-0.61500.2456 C13 -0.3552(2)-0.28857(15)0.10070(11) 0.0148(3)-0.22980.018* H13A -0.31710.1218 -0.36600.018* H13B -0.31170.0263 C14 -0.1845(2)-0.04886(16)0.09950(11) 0.0183(3)H14B -0.2062-0.08810.0252 0.022* H14A -0.0558-0.07250.022* 0.1208 C15 -0.1706(2)0.12006(17)0.12842 (12) 0.0219 (4) H15B -0.16130.1585 0.2028 0.026* H15A -0.04680.1645 0.1051 0.026* C16 -0.3466(3)0.17036 (17) 0.08441 (12) 0.0241 (4) 0.036* H16A -0.46890.1324 0.1107

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H16B	-0.3584	0.1314	0.0108	0.036*
H16C	-0.3262	0.2798	0.1034	0.036*
C17	-0.3116 (2)	-0.08422 (16)	0.25501 (11)	0.0155 (3)
H17A	-0.1713	-0.0352	0.2755	0.019*
H17B	-0.3330	-0.1761	0.2775	0.019*
N1	-0.34467 (18)	-0.12615 (13)	0.14419 (9)	0.0131 (3)
01	0.23168 (16)	-0.14461 (12)	0.54526 (8)	0.0204 (3)
O2	-0.11268 (17)	-0.35816 (13)	0.44016 (8)	0.0251 (3)
O3	-0.34329 (16)	-0.47027 (11)	0.24466 (8)	0.0189 (2)
S1	0.68377 (6)	-0.00920 (4)	0.74384 (3)	0.02039 (11)
S2	-0.76908 (6)	-0.39373 (4)	0.08420 (3)	0.01816 (11)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0129 (7)	0.0144 (7)	0.0158 (7)	-0.0007 (6)	0.0000 (6)	0.0056 (6)
C2	0.0132 (7)	0.0168 (7)	0.0164 (7)	0.0002 (6)	0.0009 (6)	0.0049 (6)
C3	0.0179 (8)	0.0200 (8)	0.0189 (7)	0.0021 (6)	0.0047 (7)	0.0002 (6)
C4	0.0157 (8)	0.0248 (8)	0.0280 (8)	0.0057 (7)	0.0056 (7)	0.0070 (7)
C5	0.0214 (9)	0.0214 (8)	0.0129 (7)	0.0000 (6)	0.0014 (6)	0.0014 (6)
C6	0.0252 (9)	0.0230 (8)	0.0158 (7)	0.0026 (7)	-0.0042 (7)	0.0030 (6)
C7	0.0208 (8)	0.0227 (8)	0.0182 (7)	0.0047 (6)	-0.0007(7)	0.0067 (6)
C8	0.0206 (8)	0.0169 (7)	0.0179 (7)	0.0003 (6)	0.0000 (6)	0.0080 (6)
C9	0.0157 (8)	0.0134 (7)	0.0152 (7)	0.0018 (6)	-0.0015 (6)	0.0017 (6)
C10	0.0141 (8)	0.0111 (7)	0.0156 (7)	0.0011 (6)	-0.0007 (6)	0.0008 (5)
C11	0.0165 (8)	0.0186 (8)	0.0226 (8)	-0.0029 (6)	0.0011 (7)	0.0045 (6)
C12	0.0198 (8)	0.0174 (7)	0.0201 (7)	-0.0019 (6)	-0.0002 (7)	0.0070 (6)
C13	0.0164 (8)	0.0123 (7)	0.0148 (7)	0.0024 (6)	0.0009 (6)	0.0026 (6)
C14	0.0159 (8)	0.0174 (7)	0.0206 (7)	-0.0007 (6)	0.0026 (7)	0.0053 (6)
C15	0.0214 (9)	0.0175 (8)	0.0249 (8)	-0.0034 (6)	0.0023 (7)	0.0065 (6)
C16	0.0316 (10)	0.0171 (7)	0.0230 (8)	0.0002 (7)	0.0010 (7)	0.0068 (6)
C17	0.0159 (8)	0.0153 (7)	0.0142 (7)	0.0028 (6)	-0.0025 (6)	0.0030 (6)
N1	0.0146 (6)	0.0112 (6)	0.0131 (6)	0.0008 (5)	0.0014 (5)	0.0033 (5)
01	0.0151 (6)	0.0248 (6)	0.0155 (5)	0.0034 (5)	-0.0022 (5)	-0.0034 (4)
O2	0.0201 (6)	0.0299 (6)	0.0181 (5)	-0.0030 (5)	0.0023 (5)	-0.0016 (5)
O3	0.0154 (5)	0.0209 (5)	0.0219 (5)	-0.0011 (4)	-0.0033 (5)	0.0117 (4)
S 1	0.0147 (2)	0.0250 (2)	0.0195 (2)	0.00264 (15)	-0.00250 (16)	0.00388 (15)
S2	0.0155 (2)	0.01807 (19)	0.02069 (19)	0.00139 (14)	-0.00219 (16)	0.00645 (15)

Geometric parameters (Å, °)

C1—C2	1.374 (2)	C9—C12	1.424 (2)	
C1-C17 ⁱ	1.494 (2)	C10—C13	1.494 (2)	
C1—S1	1.7245 (14)	C10—S2	1.7251 (15)	
C2—O1	1.3744 (18)	C11—C12	1.358 (2)	
С2—С3	1.416 (2)	C11—S2	1.7065 (16)	
C3—C4	1.357 (2)	C11—H11A	0.950	
С3—НЗА	0.950	C12—H12A	0.950	

~ . ~ .		64.4 A.4	
C4—S1	1.7147 (18)	C13—N1	1.4758 (18)
C4—H4A	0.950	С13—Н13А	0.990
C5—O1	1.4349 (18)	C13—H13B	0.990
C5—C6	1.499 (2)	C14—N1	1.4710 (19)
C5—H5B	0.990	C14—C15	1.521 (2)
С5—Н5А	0.990	C14—H14B	0.990
C6—O2	1.426 (2)	C14—H14A	0.990
С6—Н6А	0.990	C15—C16	1.518 (2)
С6—Н6В	0.990	C15—H15B	0.990
C7—O2	1.4231 (19)	C15—H15A	0.990
C7—C8	1.506 (2)	C16—H16A	0.980
С7—Н7В	0.990	C16—H16B	0.980
С7—Н7А	0.990	C16—H16C	0.980
C8-03	1 4329 (17)	C17—N1	1 4739 (18)
C8—H8A	0.990	$C17 - C1^{i}$	1 494 (2)
C8—H8B	0.990	C17 H17A	0.990
$C_0 = C_{10}$	1.367(2)	C17 H17R	0.990
C_{2}	1.307(2) 1.2727(19)		0.990
03	1.5727 (18)		
C_{2} C_{1} $C_{17^{i}}$	128 46 (13)	C12 C11 H11A	123.0
$C_2 = C_1 = C_1 / C_2$	128.40(13) 100.63(12)	S2 C11 H11A	123.9
$C_{2} - C_{1} - S_{1}$	109.03(12) 121.44(10)	52 - C11 - C12 - C0	123.9 111 28 (12)
$C_{1} = C_{1} = S_{1}$	121.44(10) 110(10(15))	$C_{11} = C_{12} = C_{9}$	111.30 (13)
C1 = C2 = C1	119.10 (13)	CII = CI2 = HI2A	124.5
C1 - C2 - C3	114.16 (13)	C9—C12—H12A	124.3
01	126.72 (14)	NI-C13-C10	113.45 (13)
C4—C3—C2	111.80 (14)	N1—C13—H13A	108.9
С4—С3—Н3А	124.1	C10—C13—H13A	108.9
С2—С3—НЗА	124.1	N1—C13—H13B	108.9
C3—C4—S1	112.00 (13)	C10—C13—H13B	108.9
C3—C4—H4A	124.0	H13A—C13—H13B	107.7
S1—C4—H4A	124.0	N1—C14—C15	114.07 (14)
O1—C5—C6	107.24 (14)	N1—C14—H14B	108.7
O1—C5—H5B	110.3	C15—C14—H14B	108.7
С6—С5—Н5В	110.3	N1—C14—H14A	108.7
O1—C5—H5A	110.3	C15—C14—H14A	108.7
С6—С5—Н5А	110.3	H14B—C14—H14A	107.6
H5B—C5—H5A	108.5	C16—C15—C14	113.43 (13)
O2—C6—C5	111.60 (12)	C16—C15—H15B	108.9
O2—C6—H6A	109.3	C14—C15—H15B	108.9
С5—С6—Н6А	109.3	C16—C15—H15A	108.9
02—C6—H6B	109.3	C14-C15-H15A	108.9
C5-C6-H6B	109.3	H15B-C15-H15A	107.7
Н6АС6Н6В	109.5	C_{15} C_{16} H_{16A}	109.5
02-07-08	111 30 (13)	C15— $C16$ — $H16R$	109.5
02 C7 H7B	100 /		109.5
$C_{2} = C_{1} = H_{1} B$	109.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_{0} = C_{1} = H_{1}$	109.4		109.5
$U_2 - U_1 - \Pi_1 A$	109.4		109.3
Lo-L/-H/A	109.4	нтов—Сто—нтоС	109.3

H7B—C7—H7A	108.0	N1-C17-C1 ⁱ	113.40 (12)
O3—C8—C7	107.47 (12)	N1-C17-H17A	108.9
O3—C8—H8A	110.2	C1 ⁱ —C17—H17A	108.9
C7—C8—H8A	110.2	N1-C17-H17B	108.9
O3—C8—H8B	110.2	C1 ⁱ —C17—H17B	108.9
С7—С8—Н8В	110.2	H17A—C17—H17B	107.7
H8A—C8—H8B	108.5	C14—N1—C17	111.82 (11)
С10—С9—ОЗ	119.54 (13)	C14—N1—C13	107.99 (12)
C10—C9—C12	114.17 (13)	C17—N1—C13	110.93 (10)
O3—C9—C12	126.29 (13)	C2—O1—C5	116.08 (13)
C9—C10—C13	127.96 (13)	C7—O2—C6	115.95 (13)
C9—C10—S2	109.68 (11)	C9—O3—C8	116.48 (12)
C13—C10—S2	122.34 (10)	C4—S1—C1	92.39 (8)
C12—C11—S2	112.27 (12)	C11—S2—C10	92.48 (7)
C17 ⁱ —C1—C2—O1	-10.0 (2)	C15—C14—N1—C13	173.59 (11)
S1—C1—C2—O1	177.86 (10)	C1 ⁱ —C17—N1—C14	105.63 (14)
C17 ⁱ —C1—C2—C3	171.12 (14)	C1 ⁱ —C17—N1—C13	-133.75 (13)
S1—C1—C2—C3	-1.02 (16)	C10-C13-N1-C14	-173.83 (11)
C1—C2—C3—C4	0.73 (19)	C10-C13-N1-C17	63.30 (15)
O1—C2—C3—C4	-178.04 (14)	C1—C2—O1—C5	168.99 (13)
C2—C3—C4—S1	-0.09 (17)	C3—C2—O1—C5	-12.3 (2)
O1—C5—C6—O2	-69.51 (16)	C6—C5—O1—C2	175.84 (12)
O2—C7—C8—O3	71.31 (16)	C8—C7—O2—C6	-99.17 (16)
O3—C9—C10—C13	3.4 (2)	C5—C6—O2—C7	-96.95 (15)
C12—C9—C10—C13	-176.49 (15)	C10—C9—O3—C8	171.75 (13)
O3—C9—C10—S2	-178.27 (11)	C12—C9—O3—C8	-8.3 (2)
C12—C9—C10—S2	1.80 (17)	С7—С8—О3—С9	-168.07 (13)
S2—C11—C12—C9	0.63 (18)	C3—C4—S1—C1	-0.42 (13)
C10-C9-C12-C11	-1.6 (2)	C2-C1-S1-C4	0.81 (12)
O3—C9—C12—C11	178.48 (14)	$C17^{i}$ — $C1$ — $S1$ — $C4$	-171.98 (12)
C9-C10-C13-N1	-108.44 (17)	C12-C11-S2-C10	0.32 (13)
S2-C10-C13-N1	73.47 (15)	C9-C10-S2-C11	-1.20 (12)
N1-C14-C15-C16	-68.03 (17)	C13—C10—S2—C11	177.20 (13)
C15—C14—N1—C17	-64.09 (16)		

Symmetry code: (i) -x, -y, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
С3—Н3А…О2 ^{іі}	0.95	2.50	3.142 (2)	125
C13—H13A····O3	0.99	2.58	2.9636 (18)	103

Symmetry code: (ii) *x*+1, *y*, *z*.