Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Adrian Fowkes and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail: w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.025 wR factor = 0.062 Data-to-parameter ratio = 24.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Received 9 May 2006

Accepted 10 May 2006

Bis(homopiperazinium) diaquapentakis(nitrato- $\kappa^2 O, O'$)lanthanate(III) dinitrate

The title compound, $(C_5H_{14}N_2)_2[La(NO_3)_5(H_2O)_2](NO_3)_2$, contains a network of doubly protonated homopiperazinium (1,4-diazoniacycloheptane) cations, diaquapentanitratolanthanate(III) dianions and nitrate anions. In the complex anion, the 12 O atoms surround La in a distorted icosahedral arrangement. A network of $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds help to consolidate the crystal packing, resulting in a three-dimensional network. The La atom and one N and one O atom lie on a twofold axis.

Comment

The title compound, (I) (Fig. 1), contains organic dications, lanthanum/nitrate/water complex anions and non-coordinated nitrate anions. The La^{III} cation, which occupies a twofold symmetry axis, is surrounded by five bidentate nitrate groups [mean La-O = 2.681 (2) Å] and two water molecules (Table 1). The resulting O_{12} grouping (Fig. 2) surrounding the La ion is a distorted icosahedron. As expected, the icosahedral $O \cdots O$ contacts associated with O atoms that are part of the same nitrate ion are much shorter ($O \cdots O < 2.17$ Å) than the other contacts ($O \cdot \cdot \cdot O > 2.8$ Å). Atoms O1, O5, O2ⁱ, O4ⁱ and $O7^{i}$ [symmetry code (i) -x, y, $\frac{1}{2} - z$] are approximately coplanar (r.m.s. deviation from the mean plane = 0.052 Å) and the symmetry-equivalent set of atoms O2, O4, O7, O1ⁱ and O5ⁱ have the same r.m.s. deviation. The La cation is displaced by 1.0046 (6) Å from each set of five O atoms. The dihedral angle between the two pentagons of O atoms is $1.42 (4)^{\circ}$. A very similar complex anion was seen in (CH₆N₃)₂[La(H₂O)₂- $(NO_3)_5$ (Fowkes & Harrison, 2004).

The conformation of the homopiperazinium cation in (I) approximates to a chair, with atoms N1, C2, C3 and C5 almost coplanar (r.m.s. deviation from the mean plane = 0.033 Å) and C1, C4 and N2 displaced from the plane by -0.672 (3), 1.183 (3) and 1.028 (3) Å, respectively. A similar conformation for the same species was observed by Almond *et al.* (2000)

© 2006 International Union of Crystallography All rights reserved

Figure 1

Component units of (I) (40% probability displacement ellipsoids; H atoms are drawn as small spheres of arbitrary radii). [Symmetry code (i) $-x, y, \frac{1}{2} - z.$]

The LaO₁₂ icosahedron in (I) with $O \cdots O$ contacts shown as solid lines (30% probability displacement ellipsoids). [Symmetry code: (i) -x, y, $\frac{1}{2}$ – z.

with the interesting difference that the 'seat' of the chair was defined by four C atoms rather than three C atoms and one N atom as found here.

As well as coulombic and van der Waals forces, the component species in (I) interact by way of $O-H \cdots O$ and N-H···O hydrogen bonds (Table 2). The O9-H91···O1(x, $1 - y, z - \frac{1}{2}$ bonds link adjacent $[La(H_2O)_2(NO_3)_5]^{2-}$ anions into infinite [100] chains (Fig. 3) and the O9-H92···O12 bond attaches a pendant nitrate ion to the chain. The organic cations cross-link the chains into a three-dimensional network by way of the $N-H \cdots O$ interactions (Fig. 4). In $(CH_6N_3)_2[La(H_2O)_2(NO_3)_5]$ (Fowkes & Harrison, 2004), the anions form a two-dimensional hydrogen-bonded array, rather than the chains seen here.

Figure 3

Detail of a hydrogen-bonded anionic chain in (I). Drawing conventions as in Fig. 1, with hydrogen bonds indicated by dashed lines. [Symmetry codes: (ii) $x, 1 - y, z - \frac{1}{2}$, (iii) -x, 1 - y, -z; (iv) -x, 1 - y, 1 - z.]

Experimental

The following solutions were mixed at 293 K in a Petri dish to result in a clear solution: 5 ml of 0.1 M homopiperazine, 5 ml of 0.1 M lanthanum nitrate and 1 ml of 1 M HCl. Colourless blocks and slabs of (I) grew over the course of a few days as the water evaporated at 293 K.

Crystal data

(C5H14N2)2[La(NO3)5(H2O)2]- $V = 2880.59 (15) \text{ Å}^3$ $(NO_3)_2$ Z = 4 $M_r = 813.38$ $D_x = 1.876 \text{ Mg m}^{-3}$ Monoclinic, C2/c Mo $K\alpha$ radiation a = 17.2458 (5) Å $\mu = 1.60 \text{ mm}^{-1}$ b = 12.8660 (4) Å T = 293 (2) K c = 13.4908 (4) Å Slab, colourless $\beta = 105.780 \ (1)^{\circ}$ $0.40 \times 0.24 \times 0.09 \text{ mm}$

Data collection

```
Bruker SMART 1000 CCD
  diffractometer
\omega scans
Absorption correction: multi-scan
  (SADABS; Bruker, 1999)
  T_{\min} = 0.568, \ T_{\max} = 0.870
```

Refinement

Refinement on F^2	H atoms treated by a mixture of
$R[F^2 > 2\sigma(F^2)] = 0.025$	independent and constrained
$wR(F^2) = 0.062$	refinement
S = 1.00	$w = 1/[\sigma^2(F_o^2) + (0.0369P)^2]$
5192 reflections	where $P = (F_0^2 + 2F_c^2)/3$
211 parameters	$(\Delta/\sigma)_{\rm max} = 0.002$
	$\Delta \rho = -0.97 e \dot{\Delta}^{-3}$

$\rho_{\rm max} = 0.97 \ e \ A$ $\Delta \rho_{\rm min} = -0.79 \text{ e} \text{ Å}^{-3}$

16827 measured reflections

 $R_{\rm int}=0.024$

 $\theta_{\rm max} = 32.5^{\circ}$

5192 independent reflections

4634 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

La1-O1	2.6990 (12)	La1-O5	2.6780 (12)
La1-O2	2.6355 (13)	La1-O7	2.7076 (13)
La1-O4	2.6863 (14)	La1-O9	2.5996 (12)
C1-C2-C3-N2	85.3 (2)	C4-C5-N1-C1	-81.6 (2)
C2-C3-N2-C4	-54.1(2)	C5-N1-C1-C2	60.2 (2)
C3-N2-C4-C5	-16.1(3)	N1-C1-C2-C3	-67.0(2)
N2-C4-C5-N1	76.5 (2)		

Table 2	_	
Hydrogen-bond geometry ((Å, °).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O9−H91···O1 ⁱⁱ	0.79 (2)	2.08 (2)	2.8388 (17)	163 (2)
O9−H92···O12	0.84(2)	1.87 (2)	2.705 (2)	173 (2)
$N1-H1A\cdots O8$	0.90	2.11	2.9817 (17)	163
$N1 - H1B \cdots O5^{ii}$	0.90	1.97	2.8531 (19)	165
$N2-H2A\cdots O9^{v}$	0.90	2.07	2.966 (2)	172
$N2-H2B\cdotsO11^{vi}$	0.90	1.95	2.797 (2)	155
Symmetry codes: (ii) x	$, -y+1, z-\frac{1}{2};$	$(v) - x + \frac{1}{2}, y - $	$\frac{1}{2}$, $-z + \frac{1}{2}$; (vi) x, -	$y + 1, z + \frac{1}{2}$

The water H atoms were located in a difference map and their positions were freely refined The other H atoms were placed in idealized locations [C-H = 0.97 Å and N-H = 0.90 Å] and refined as riding. The constraint $U_{iso}(H) = 1.2U_{eq}(\text{carrier atom})$ was applied in all cases.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT-Plus* (Bruker, 1999); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

AF thanks the Carnegie Trust for the Universities of Scotland for a vacation scholarship.

The packing in (I). Drawing conventions as in Fig. 1. C-bound H atoms have been omitted for clarity and hydrogen bonds are indicated by dashed lines.

References

Almond, P. M., Talley, C. E., Bean, A. C., Peper, S. M. & Albrecht-Smith, T. E. (2000). J. Solid State Chem. 154, 635–641.

- Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA. Farrugia, L. J. (1997). J. App. Cryst. **30**, 565.
- Fowkes, A. & Harrison, W. T. A. (2004). *Acta Cryst.* E60, m1647–m1649.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supporting information

Acta Cryst. (2006). E62, m1301-m1303 [https://doi.org/10.1107/S1600536806017235]

Bis(homopiperazinium) diaquapentakis(nitrato- $\kappa^2 O, O'$)lanthanate(III) dinitrate

F(000) = 1640

 $\theta = 2.0-32.5^{\circ}$ $\mu = 1.60 \text{ mm}^{-1}$

Slab, colourless

 $0.40 \times 0.24 \times 0.09 \text{ mm}$

 $\theta_{\text{max}} = 32.5^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$

16827 measured reflections

5192 independent reflections

4634 reflections with $I > 2\sigma(I)$

T = 293 K

 $R_{\rm int} = 0.024$

 $h = -26 \rightarrow 26$

 $k = -19 \rightarrow 14$ $l = -20 \rightarrow 20$

 $D_{\rm x} = 1.876 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9327 reflections

Adrian Fowkes and William T. A. Harrison

Bis(1,4-diazoniacycloheptane) diaquapentakis(nitrato- $\kappa^2 O, O'$)lanthanum(III) dinitrate ?

Crystal data

 $(C_{5}H_{14}N_{2})_{2}[La(NO_{3})_{5}(H_{2}O)_{2}](NO_{3})_{2}$ $M_{r} = 813.38$ Monoclinic, C2/cHall symbol: -C 2yc a = 17.2458 (5) Å b = 12.8660 (4) Å c = 13.4908 (4) Å $\beta = 105.780$ (1)° V = 2880.59 (15) Å³ Z = 4

Data collection

Bruker SMART 1000 CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (SADABS; Bruker, 1999) $T_{min} = 0.568, T_{max} = 0.870$

Refinement

Kejinemeni	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.025$	Hydrogen site location: difmap (O-H) and geom
$wR(F^2) = 0.062$	(others)
S = 1.00	H atoms treated by a mixture of independent
5192 reflections	and constrained refinement
211 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0369P)^2]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.002$
direct methods	$\Delta \rho_{\rm max} = 0.97 \text{ e } \text{\AA}^{-3}$
	$\Delta ho_{ m min} = -0.79 \ m e \ m \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Lal	0.0000	0.589697 (10)	0.2500	0.01899 (4)
N4	0.14572 (9)	0.53102 (13)	0.43198 (12)	0.0315 (3)
01	0.07532 (8)	0.50627 (11)	0.43465 (10)	0.0339 (3)
O2	0.15348 (8)	0.56177 (12)	0.34585 (10)	0.0363 (3)
O3	0.20254 (10)	0.52783 (16)	0.50843 (13)	0.0609 (5)
N5	0.09740 (10)	0.78175 (12)	0.35558 (11)	0.0333 (3)
O4	0.08949 (9)	0.76256 (11)	0.26240 (9)	0.0367 (3)
O5	0.06011 (8)	0.72372 (10)	0.40356 (9)	0.0308 (3)
O6	0.13956 (15)	0.85228 (16)	0.40015 (13)	0.0792 (7)
N6	0.0000	0.34742 (17)	0.2500	0.0313 (4)
07	0.05025 (9)	0.39674 (10)	0.21651 (12)	0.0357 (3)
08	0.0000	0.25002 (16)	0.2500	0.0495 (6)
O9	0.08881 (8)	0.60093 (11)	0.12251 (9)	0.0262 (2)
H91	0.0813 (13)	0.5617 (18)	0.0762 (18)	0.031*
H92	0.0838 (13)	0.6601 (19)	0.0959 (17)	0.031*
N1	0.09602 (10)	0.18968 (13)	0.10566 (12)	0.0339 (3)
H1A	0.0709	0.2210	0.1480	0.041*
H1B	0.0757	0.2165	0.0423	0.041*
N2	0.23276 (10)	0.11081 (14)	0.30716 (13)	0.0355 (4)
H2A	0.2865	0.1013	0.3267	0.043*
H2B	0.2164	0.1134	0.3650	0.043*
C1	0.07662 (14)	0.07671 (17)	0.10186 (16)	0.0392 (4)
H1C	0.1011	0.0430	0.0535	0.047*
H1D	0.0187	0.0681	0.0763	0.047*
C2	0.10535 (12)	0.02359 (17)	0.20505 (16)	0.0374 (4)
H2C	0.0834	-0.0463	0.1987	0.045*
H2D	0.0835	0.0606	0.2540	0.045*
C3	0.19600 (12)	0.01657 (16)	0.24868 (16)	0.0355 (4)
H3A	0.2086	-0.0433	0.2939	0.043*
H3B	0.2202	0.0054	0.1925	0.043*
C4	0.21694 (13)	0.21552 (16)	0.25651 (15)	0.0382 (4)
H4A	0.2670	0.2543	0.2739	0.046*
H4B	0.1794	0.2524	0.2859	0.046*
C5	0.18364 (12)	0.21604 (16)	0.14100 (15)	0.0363 (4)
H5A	0.1918	0.2844	0.1152	0.044*
H5B	0.2135	0.1664	0.1117	0.044*
N7	0.12793 (11)	0.80286 (16)	-0.01623 (13)	0.0422 (4)
O10	0.1615 (2)	0.7241 (2)	-0.0376 (2)	0.1139 (12)
011	0.13743 (14)	0.88747 (15)	-0.05498 (17)	0.0651 (6)
O12	0.08566 (15)	0.79433 (16)	0.04290 (19)	0.0805 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
La1	0.01944 (6)	0.02038 (7)	0.01708 (6)	0.000	0.00484 (4)	0.000
N4	0.0255 (7)	0.0354 (9)	0.0301 (7)	0.0002 (6)	0.0014 (5)	0.0080 (6)
01	0.0279 (6)	0.0412 (8)	0.0323 (6)	-0.0002 (6)	0.0075 (5)	0.0128 (6)
02	0.0271 (6)	0.0510 (9)	0.0319 (6)	0.0004 (6)	0.0100 (5)	0.0086 (6)
03	0.0400 (9)	0.0812 (14)	0.0452 (9)	-0.0110 (9)	-0.0161 (7)	0.0229 (9)
N5	0.0442 (9)	0.0305 (8)	0.0249 (6)	-0.0137 (7)	0.0090 (6)	-0.0031 (6)
04	0.0540 (8)	0.0357 (7)	0.0226 (5)	-0.0117 (6)	0.0141 (5)	-0.0023 (5)
05	0.0385 (7)	0.0318 (7)	0.0242 (5)	-0.0106 (6)	0.0121 (5)	-0.0038 (5)
06	0.1314 (19)	0.0706 (13)	0.0381 (8)	-0.0730 (14)	0.0272 (10)	-0.0199 (9)
N6	0.0340 (11)	0.0245 (10)	0.0379 (11)	0.000	0.0140 (9)	0.000
07	0.0358 (7)	0.0296 (7)	0.0473 (8)	0.0002 (5)	0.0211 (6)	0.0054 (6)
08	0.0635 (14)	0.0211 (10)	0.0784 (16)	0.000	0.0440 (13)	0.000
09	0.0293 (6)	0.0295 (7)	0.0214 (5)	0.0000 (5)	0.0096 (5)	-0.0027 (5)
N1	0.0394 (8)	0.0374 (9)	0.0239 (6)	0.0124 (7)	0.0065 (6)	0.0044 (6)
N2	0.0260 (7)	0.0480 (10)	0.0300 (7)	0.0019 (7)	0.0034 (6)	0.0098 (7)
C1	0.0393 (10)	0.0423 (12)	0.0312 (9)	0.0004 (8)	0.0013 (8)	-0.0025 (8)
C2	0.0345 (9)	0.0384 (11)	0.0384 (9)	-0.0047 (8)	0.0083 (8)	0.0056 (8)
C3	0.0348 (9)	0.0326 (10)	0.0404 (9)	0.0067 (8)	0.0124 (8)	0.0113 (8)
C4	0.0376 (10)	0.0359 (11)	0.0374 (9)	-0.0026 (8)	0.0037 (8)	0.0022 (8)
C5	0.0391 (10)	0.0356 (10)	0.0370 (9)	0.0029 (8)	0.0153 (8)	0.0101 (8)
N7	0.0451 (9)	0.0487 (11)	0.0360 (8)	0.0017 (8)	0.0167 (7)	0.0105 (8)
O10	0.174 (3)	0.0730 (17)	0.140 (3)	0.0222 (18)	0.119 (2)	0.0206 (16)
011	0.0918 (15)	0.0487 (10)	0.0728 (13)	0.0027 (10)	0.0528 (12)	0.0167 (9)
O12	0.1119 (17)	0.0625 (13)	0.0973 (16)	0.0236 (12)	0.0797 (15)	0.0343 (11)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

La1—O1 ⁱ	2.6990 (12)	N1—C5	1.495 (3)
La1—O1	2.6990 (12)	N1—H1A	0.9000
La1—O2 ⁱ	2.6355 (13)	N1—H1B	0.9000
La1—O2	2.6355 (13)	N2—C3	1.491 (3)
La1—O4	2.6863 (14)	N2—C4	1.502 (3)
La1—O4 ⁱ	2.6863 (14)	N2—H2A	0.9000
Lal—O5	2.6780 (12)	N2—H2B	0.9000
La1—O5 ⁱ	2.6780 (12)	C1—C2	1.508 (3)
La1—O7 ⁱ	2.7076 (13)	C1—H1C	0.9700
Lal—O7	2.7076 (13)	C1—H1D	0.9700
La1—O9 ⁱ	2.5996 (12)	C2—C3	1.516 (3)
La1—O9	2.5996 (12)	C2—H2C	0.9700
N4—O3	1.215 (2)	C2—H2D	0.9700
N401	1.2651 (19)	С3—НЗА	0.9700
N4—O2	1.2686 (19)	С3—Н3В	0.9700
N5—O6	1.215 (2)	C4—C5	1.507 (3)
N5—O4	1.2516 (18)	C4—H4A	0.9700
N5—O5	1.2713 (18)	C4—H4B	0.9700

supporting information

N6	1 253 (3)	С5—Н5А	0 9700
N6-07	1.253(3) 1.2533(17)	C5_H5B	0.9700
$N_{0} O_{7}^{i}$	1.2535(17) 1.2532(17)	N7 012	1.223(2)
$\Omega_0 = H_0 I$	1.2552(17)	N7_011	1.223(2) 1.238(2)
09—1191 09—1191	0.79(2) 0.84(2)	N7_010	1.238(2) 1.238(3)
09—1192 N1 C1	0.04(2)	N/—010	1.238 (3)
NI—CI	1.489 (3)		
09 ⁱ —La1—O9	173.63 (6)	01—La1—07	72.17 (5)
$O9^{i}$ —La1— $O2^{i}$	68.80 (4)	O7 ⁱ —La1—O7	47.05 (6)
O9—La1—O2 ⁱ	112.14 (4)	O3—N4—O1	121.74 (16)
O9 ⁱ —La1—O2	112.14 (4)	O3—N4—O2	121.77 (17)
O9—La1—O2	68.80 (4)	O1—N4—O2	116.47 (14)
O2 ⁱ —La1—O2	164.33 (7)	N4—O1—La1	95.65 (9)
O9 ⁱ —La1—O5	68.05 (4)	N4—O2—La1	98.62 (10)
O9—La1—O5	107.59 (4)	O6—N5—O4	122.11 (16)
O2 ⁱ —La1—O5	126.38 (4)	O6—N5—O5	120.28 (15)
O2—La1—O5	65.32 (4)	O4—N5—O5	117.61 (14)
O9 ⁱ —La1—O5 ⁱ	107.59 (4)	N5—O4—La1	97.45 (10)
09—La1—05 ⁱ	68.05 (4)	N5—O5—La1	97.31 (9)
$O2^{i}$ —La1—O5 ⁱ	65.32 (4)	08—N6—07	120.42 (11)
02 —La1— 05^{i}	126.38 (4)	08—N6—07 ⁱ	120.42 (11)
05 —La1— 05^{i}	99.83 (6)	$07-N6-07^{i}$	119.2 (2)
$O9^{i}$ —La1—O4	110.16 (4)	N6—O7—La1	96.89 (11)
09—La1—04	64.10 (4)	La1—09—H91	119.4 (17)
$O2^{i}$ _La1_O4	128.81 (5)	La1—09—H92	108.9(15)
02—La1— 04	66.36 (5)	H91—O9—H92	106(2)
05-1a1-04	47 45 (4)	C1-N1-C5	11551(16)
05^{i} La1 04	67.05 (4)	C1—N1—H1A	108.4
$O9^{i}$ La1 $O4^{i}$	64 10 (4)	C5—N1—H1A	108.4
$09-1a1-04^{i}$	110 16 (4)	C1—N1—H1B	108.4
02^{i} La1 01^{i}	66 36 (5)	C5—N1—H1B	108.4
02 —La1— 04^{i}	128 81 (5)	H1A—N1—H1B	107.5
$05-1.a1-04^{i}$	67.05 (4)	$C_3 N_2 C_4$	119 36 (15)
05^{i} Lu1 01^{i}	47.45(4)	$C_3 N_2 H_2 A$	107.5
04 —I a1— 04^{i}	68 22 (6)	C4—N2—H2A	107.5
O_{i}^{i} La1 O_{i}^{i}	114 24 (4)	$C_3 N_2 H_2 B$	107.5
$09 - 1 = 1 - 01^{i}$	68 51 (4)	C4 N2 H2B	107.5
O^{2i} Lat O^{1i}	47 62 (A)	$H_{2} = H_{2} = H_{2} B$	107.0
02 - La1 - 01	174 45 (4)	N1 - C1 - C2	113 34 (16)
05 La1 01^{i}	124.43(4) 163.32(5)	$N_1 = C_1 = C_2$	108.0
O_{5} La1 O_{1}	105.52(5)	$C_2 = C_1 = H_1C_2$	108.9
04 La1 01^{i}	120.72(4)	N1 C1 H1D	108.9
O_4 La1 O_1^{i}	120.72(4)	$C_2 = C_1 = H_1 D_2$	108.9
$Oq^{i} I = 1 - O1$	68 51 (4)		100.9
$O_{2} = La_{1} = O_{1}$	$114 \ 24 \ (A)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.7 115.50(17)
O_2^i La1 O_1	117.24 (4)	$C_1 = C_2 = C_3$	113.30(17) 108.4
$O_2 = La_1 = O_1$	127.73(7)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	108.4
O_2 —La1— O_1	+7.02(4)	$C_{1} = C_{2} = H_{2}$	100.4
UJ-Lai-Ui	03.33 (4)	$C_1 - C_2 - \Pi_2 D$	100.4

05^{i} —La1—01	163 32 (5)	C3—C2—H2D	108.4
04-1a1-01	98 49 (4)	H_2C — C_2 — H_2D	107.5
$O4^{i}$ La1 $O1$	120 72 (4)	$N_2 - C_3 - C_2$	113 72 (16)
$O1^{i}$ Lat $O1$	133,13 (6)	$N_2 = C_3 = H_3 A$	108.8
O^{i} La1 O^{i}	70 59 (4)	$C_2 = C_3 = H_3 \Delta$	108.8
$O_{i} = La_{i} = O_{i}$	115 74 (4)	N2 C3 H3B	108.8
O_{2}^{i} La1 O_{2}^{i}	113.74(4)	$12 - C_3 - 113B$	108.8
$O_2 = La1 = O_1^{i}$	06.44(5)	$L_2 = C_3 = H_2 D$	108.8
O_2 —La1— O_7	90.75(3)	$M_{2} = C_{4} = C_{5}$	107.7 116.45(17)
O_{5} La1 O_{7}	122.37(4)	N2 - C4 - U3	110.45 (17)
03 - Lal - 0/	150.19 (5)	N2—C4—H4A	108.2
04 —La1— $0/^{4}$	162.41 (5)	C5—C4—H4A	108.2
$04^{-}Lal = 07^{+}$	124.40 (4)	N2—C4—H4B	108.2
$OI^{-}LaI = O/^{1}$	72.17 (5)	C5—C4—H4B	108.2
OI—LaI—O/	64.97 (5)	H4A—C4—H4B	107.3
O9 ¹ —La1—O7	115.74 (4)	N1—C5—C4	113.38 (15)
09—La1—07	70.59 (4)	N1—C5—H5A	108.9
$O2^{i}$ —La1—O7	96.75 (5)	C4—C5—H5A	108.9
O2—La1—O7	68.44 (5)	N1—C5—H5B	108.9
O5—La1—O7	130.19 (5)	C4—C5—H5B	108.9
O5 ⁱ —La1—O7	122.37 (4)	H5A—C5—H5B	107.7
O4—La1—O7	124.40 (4)	O12—N7—O11	121.7 (2)
O4 ⁱ —La1—O7	162.41 (5)	O12—N7—O10	118.5 (2)
Ol ⁱ —Lal—O7	64.97 (5)	O11—N7—O10	119.8 (2)
O3—N4—O1—La1	165.63 (19)	O1—La1—O4—N5	-39.07 (12)
O2-N4-O1-La1	-12.69 (18)	O7 ⁱ —La1—O4—N5	-58.18 (19)
O9 ⁱ —La1—O1—N4	-147.79 (12)	O7—La1—O4—N5	-113.23 (12)
O9—La1—O1—N4	25.97 (12)	O6—N5—O5—La1	-175.0 (2)
O2 ⁱ —La1—O1—N4	170.05 (10)	O4—N5—O5—La1	4.27 (18)
O2—La1—O1—N4	7.36 (10)	O9 ⁱ —La1—O5—N5	-153.38 (12)
O5—La1—O1—N4	-72.44 (11)	O9—La1—O5—N5	21.68 (11)
O5 ⁱ —La1—O1—N4	-68.28 (18)	O2 ⁱ —La1—O5—N5	-114.76 (11)
04-La1-01-N4	-39.39(12)	02-La1-05-N5	77.40 (11)
$O4^{i}$ —La1—O1—N4	-109.04(11)	05^{i} —La1— 05 —N5	-48.26(10)
$O1^{i}$ —La1—O1—N4	108.57 (11)	04-La1-05-N5	-2.39(10)
07^{i} La1 01 N4	$134\ 35\ (12)$	04^{i} La1 05 N5	-8330(11)
07 - 1a1 - 01 - N4	84 12 (11)	01^{i} La1 05 N5	-52.03(19)
$03 - N4 - 02 - I_{21}$	-165 23 (18)	01 - 1 + 1 - 05 - N5	13053(11)
01 - N4 - 02 - La1	13.09(18)	07^{i} L 21 05^{i} N5	150.35(11) 159.45(10)
O^{0i} La1 O2 N/	17.58 (13)	07 La1 05 N5	100.81(11)
O_{2} La1 O_{2} N4	-160.21(12)	O^{2} N6 O^{7} La1	100.81 (11)
O_{2}^{i} La1 O_{2} N4	-109.21(13)	$O_{i} = N_{i} = O_{i} = O_{i}$	180.0
02—La1— 02 —N4	-72.09(11)	O/-NO-O/-Lai	0.0
O_{3} —La1— O_{2} —IN4	00.44(11)	O_{2} —La1— O_{1} —No	162 14 (10)
03 La1 02 N4	132.40(11)	O_{2i} La1 O_{2} NG	-103.14(10)
U4—La1— $U2$ —N4	120.70(12)	U_2 —La1— U_1 —N6	-52.00(9)
U4—La1— $U2$ —N4	91.44 (12)	U_2 —La1— U_1 —N6	122./1 (9)
OI-LaI-O2-N4	-127.15 (11)	U_{2} —La1—U/—N6	99.86 (8)
		a =:	

O7 ⁱ —La1—O2—N4	-54.17 (12)	O4—La1—O7—N6	160.22 (7)
O7—La1—O2—N4	-92.51 (12)	O4 ⁱ —La1—O7—N6	-67.52 (17)
O6—N5—O4—La1	175.0 (2)	O1 ⁱ —La1—O7—N6	-88.45 (9)
O5—N5—O4—La1	-4.26 (18)	O1—La1—O7—N6	72.07 (8)
O9 ⁱ —La1—O4—N5	31.07 (12)	O7 ⁱ —La1—O7—N6	0.0
O9—La1—O4—N5	-151.96 (13)	C1—C2—C3—N2	85.3 (2)
O2 ⁱ —La1—O4—N5	109.59 (11)	C2-C3-N2-C4	-54.1 (2)
O2—La1—O4—N5	-75.04 (11)	C3—N2—C4—C5	-16.1 (3)
O5—La1—O4—N5	2.43 (10)	N2-C4-C5-N1	76.5 (2)
O5 ⁱ —La1—O4—N5	132.26 (12)	C4C5N1C1	-81.6 (2)
O4 ⁱ —La1—O4—N5	80.70 (11)	C5—N1—C1—C2	60.2 (2)
O1 ⁱ —La1—O4—N5	167.69 (10)	N1—C1—C2—C3	-67.0 (2)

Symmetry code: (i) -x, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D····A	<i>D</i> —H··· <i>A</i>
09—H91…O1 ⁱⁱ	0.79 (2)	2.08 (2)	2.8388 (17)	163 (2)
O9—H92…O12	0.84 (2)	1.87 (2)	2.705 (2)	173 (2)
N1—H1A···O8	0.90	2.11	2.9817 (17)	163
N1—H1 <i>B</i> ····O5 ⁱⁱ	0.90	1.97	2.8531 (19)	165
N2—H2A····O9 ⁱⁱⁱ	0.90	2.07	2.966 (2)	172
N2—H2 B ···O11 ^{iv}	0.90	1.95	2.797 (2)	155

Symmetry codes: (ii) *x*, -*y*+1, *z*-1/2; (iii) -*x*+1/2, *y*-1/2, -*z*+1/2; (iv) *x*, -*y*+1, *z*+1/2.