## Structure Reports

Online
ISSN 1600-5368

## (2-Amidoethyl- $\kappa^{2} C, O$ )trichloro(3-chloro-propionamide- $\kappa O$ )stannane

Edward R. T. Tiekink, ${ }^{\text {a* }}$ James L. Wardell ${ }^{\text {b,c }}$ and Solange M. S. V. Wardell ${ }^{\text {d* }}$
${ }^{\text {a }}$ Department of Chemistry, The University of Texas at San Antonio, 6900 North Loop 1604 West, San Antonio, Texas 78249-0698, USA,
${ }^{\mathbf{b}}$ Department of Chemistry, University of Aberdeen, Old Aberdeen, AB24 3UE, Scotland, ${ }^{\text {c Instituto de Química, Universidade Federal do }}$ Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil, and ${ }^{\text {d }}$ Complexo Tecnológico de Medicamentos Farmanguinhos, Av.
Comandante Guaranys 447, Jacarepaguá - Rio de Janeiro, RJ, Brazil

Correspondence e-mail:
Edward.Tiekink@utsa.edu,
solangewardell@yahoo.co.uk

## Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
$R$ factor $=0.038$
$w R$ factor $=0.105$
Data-to-parameter ratio $=22.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]The Sn atom in the title compound, $\left[\mathrm{Sn}\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{NO}\right) \mathrm{Cl}_{3^{-}}\right.$ $\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{ClNO}\right)$ ], exists within a fac- $\mathrm{CCl}_{3} \mathrm{O}_{2}$ donor set that defines an octahedral geometry and features a negatively charged chelating 2-amidoethyl ligand as well as a neutral 3chloropropionamide ligand that coordinates exclusively via the carbonyl-O atom. Extensive $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding leads to a layer structure.

## Comment

Functionally substituted organotin compounds, $X_{3} \mathrm{SnCR}_{2^{-}}$ $\mathrm{CH}_{2} \mathrm{COY}$ (1) and the less well studied $X_{2} \mathrm{Sn}\left(\mathrm{CR}_{2} \mathrm{CH}_{2} \mathrm{COY}\right)_{2}$ (2), for $X=$ halide, $R=\mathrm{H}$ or alkyl, and $Y=$ alkyl, aryl, alkoxy or $\mathrm{NH}_{2}$, are readily available from reactions of $R_{2} \mathrm{C}=\mathrm{CH}-$ $\mathrm{COY}, \mathrm{H} X$ and $\mathrm{Sn} X_{2}$ (generally for 1) or Sn (generally for 2) (Hutton \& Oakes, 1976; Hutton et al., 1978; Burley et al., 1979). Original interest in these compounds was primarily involved with their industrial potential as precursors of PVC stabilizers, but much attention was also paid to their coordination chemistry (Milne et al., 2005, and references therein). The title compound (I) was an unexpected product isolated from the reaction between $\mathrm{Sn}, \mathrm{H}_{2} \mathrm{C}=\mathrm{CHCONH}_{2}$ and HCl in diethyl ether solution.

(I)

The structure of (I) (Fig. 1 and Table 1) features an Sn atom within a disorted octahedral geometry defined by three Cl atoms, arranged facially, C and O of the chelating 2-amidoethyl ligand and carbonyl-O from 3-chloropropionamide. The 2-amidoethyl ligand in (I) coordinates in a similar fashion to that found in the only other structure of an amidotin compound, viz. $\mathrm{Cl}_{2} \mathrm{Sn}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}_{2}\right)_{2}$ (Harrison et al., 1979; also see Marsh (1997) for space-group revision).

The crystal structure is stabilized by hydrogen-bonding interactions as summarized in Table 2. Adjacent molecules form inversion-related dimers with an eight-membered $\{\cdots \mathrm{H}-\mathrm{N}-\mathrm{C}=\mathrm{O}\}_{2}$ ring via $\mathrm{N} 1-\mathrm{H} 1 a \cdots \mathrm{O} 1$ hydrogen bonds shown as '(a)' in Fig. 2. These pairs associate with adjacent pairs via $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}^{\mathrm{ii}}$ interactions involving the second $\mathrm{N} 1-$ H amide H atom so as to form a double chain aligned along

Received 21 March 2006 Accepted 22 March 2006


Figure 1
The molecular structure of (I), showing $50 \%$ probability displacement ellipsoids and the atom-numbering scheme.


Figure 2
Packing diagram for (I), viewed down the $b$ axis. Colour code: Sn (brown), Cl (pink), O (red), N (blue), C (grey) \& H (green). Hydrogen bonds are shown as dashed lines.
the $a$ axis, '( $b)^{\prime}$ ' in Fig. 2. N2-H1 $a$ forms an intramolecular hydrogen bond to Cl 2 and $\mathrm{N} 2-\mathrm{H} 1 b$ forms an interaction with $\mathrm{Cl} 3{ }^{\text {iii }}$ so that this Cl atom forms two hydrogen bonds. As these latter interactions extend in the $b$-axis direction, a 2 -dimensional supramolecular array is formed. Connections between layers are made primarily via $\mathrm{C} 4-\mathrm{H} 4 a \cdots \mathrm{Cl}^{\mathrm{iv}}$ interactions. It is the nature of the $\mathrm{Cl} \cdots \mathrm{H}$ interactions that readily accounts for the disparity in the $\mathrm{Sn}-\mathrm{Cl}$ distances that span the range 2.3730 (11) to 2.4735 (10) A. The $\mathrm{Sn}-\mathrm{Cl}$ bond distances systematically elongate in accord with the number of such interactions so that $\mathrm{Sn}-\mathrm{Cl} 1$, with the Cl 1 atom forming only a weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ contact, is significantly shorter than the $\mathrm{Sn}-$ Cl 2 bond, with the Cl 2 atom forming a single $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$
contact, which in turn is significantly shorter than the $\mathrm{Sn}-\mathrm{Cl} 3$ bond, with the Cl 3 atom involved in two $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ contacts.

## Experimental

The title compound (I) was isolated from a reaction between Sn , acrylonitrile and HCl in diethyl ether solution following a general procedure (Hutton \& Oakes, 1976). HCl was bubbled through a well stirred suspension of granulated $\mathrm{Sn}(0.1 \mathrm{~mol})$ and $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCONH}_{2}$ $(0.22 \mathrm{~mol})$ in $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{ml})$, maintained at $273-283 \mathrm{~K}$ until all the Sn had reacted. The reaction mixture was stirred for a further 2 h and all volatiles removed under vacuum. The thick oily liquid was extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and hexane (1:) added. On leaving the mixture at 268 K , a small amount of crystalline (I) was initially deposited, m. p. 524528 K (decomposition).

## Crystal data

$\left[\mathrm{Sn}\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{NO}\right) \mathrm{Cl}_{3}\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{ClNO}\right)\right]$
$M_{r}=404.67$
Triclinic, $P \overline{1}$
$a=7.3582(3) \AA$
$b=9.0387(5) \AA$
$c=10.4342(6) \AA$
$\alpha=92.005(2)^{\circ}$
$\beta=104.529(3)^{\circ}$
$\gamma=96.222(3)^{\circ}$
$V=666.42(6) \AA^{3}$
$Z=2$

$$
D_{x}=2.017 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation

## Cell parameters from 2904

reflections
$\theta=2.9-27.5^{\circ}$
$\mu=2.70 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Needle, colourless

$$
0.14 \times 0.04 \times 0.02 \mathrm{~mm}
$$

## Data collection

| Bruker-Nonius KappaCCD | 3086 independent reflections |
| :--- | :--- |
| $\quad$ diffractometer | 2721 reflections with $I>2 \sigma(I)$ |
| $\varphi$ and $\omega$ scans | $R_{\text {int }}=0.068$ |
| Absorption correction: multi-scan | $\theta_{\max }=27.8^{\circ}$ |
| $\quad(S A D A B S ;$ Sheldrick, 2003 $)$ | $h=-9 \rightarrow 8$ |
| $T_{\min }=0.704, T_{\text {max }}=0.948$ | $k=-11 \rightarrow 11$ |
| 13278 measured reflections | $l=-13 \rightarrow 13$ |
|  |  |
| Refinement |  |
| Refinement on $F^{2}$ | $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0474 P)^{2}\right.$ |
| $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$ | $+1.4199 P]$ |
| $w R\left(F^{2}\right)=0.105$ | where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$ |
| $S=1.09$ | $(\Delta / \sigma)_{\max }<0.001$ |
| 3086 reflections | $\Delta \rho_{\max }=1.11 \mathrm{e} \AA^{-3}$ |
| 136 parameters | $\Delta \rho_{\min }=-1.54 \mathrm{e}^{-3}$ |
| H-atom parameters constrained |  |

## Table 1

Selected geometric parameters ( $\mathrm{A},{ }^{\circ}$ ).

| $\mathrm{Sn}-\mathrm{Cl} 1$ | $2.3730(11)$ | $\mathrm{Cl} 4-\mathrm{C} 4$ | $1.786(5)$ |
| :--- | :---: | :--- | :---: |
| $\mathrm{Sn}-\mathrm{Cl} 2$ | $2.4038(11)$ | $\mathrm{O} 1-\mathrm{C} 3$ | $1.263(5)$ |
| $\mathrm{Sn}-\mathrm{Cl} 3$ | $2.4735(10)$ | $\mathrm{O} 2-\mathrm{C} 6$ | $1.257(5)$ |
| $\mathrm{Sn}-\mathrm{O} 1$ | $2.239(3)$ | $\mathrm{N} 1-\mathrm{C} 3$ | $1.313(5)$ |
| $\mathrm{Sn}-\mathrm{O} 2$ | $2.240(3)$ | $\mathrm{N} 2-\mathrm{C} 6$ | $1.307(6)$ |
| $\mathrm{Sn}-\mathrm{C} 1$ | $2.138(4)$ |  |  |
| $\mathrm{Cl} 1-\mathrm{Sn}-\mathrm{Cl} 2$ | $93.44(4)$ | $\mathrm{Cl} 3-\mathrm{Sn}-\mathrm{O} 1$ | $87.47(8)$ |
| $\mathrm{Cl} 1-\mathrm{Sn}-\mathrm{Cl} 3$ | $90.04(4)$ | $\mathrm{Cl} 3-\mathrm{Sn}-\mathrm{O} 2$ | $168.47(9)$ |
| $\mathrm{Cl} 1-\mathrm{Sn}-\mathrm{O} 1$ | $84.52(8)$ | $\mathrm{Cl} 3-\mathrm{Sn}-\mathrm{C} 1$ | $96.48(13)$ |
| $\mathrm{Cl} 1-\mathrm{Sn}-\mathrm{O} 2$ | $83.93(9)$ | $\mathrm{O} 1-\mathrm{Sn}-\mathrm{O} 2$ | $82.18(11)$ |
| $\mathrm{Cl} 1-\mathrm{Sn}-\mathrm{C} 1$ | $162.38(13)$ | $\mathrm{O} 1-\mathrm{Sn}-\mathrm{C} 1$ | $79.47(14)$ |
| $\mathrm{Cl} 2-\mathrm{Sn}-\mathrm{Cl} 3$ | $93.97(4)$ | $\mathrm{O} 2-\mathrm{Sn}-\mathrm{C} 1$ | $86.66(16)$ |
| $\mathrm{Cl} 2-\mathrm{Sn}-\mathrm{O} 1$ | $177.51(8)$ | $\mathrm{Sn}-\mathrm{O} 1-\mathrm{C} 3$ | $112.5(3)$ |
| $\mathrm{Cl} 2-\mathrm{Sn}-\mathrm{O} 2$ | $96.20(8)$ | $\mathrm{Sn}-\mathrm{O} 2-\mathrm{C} 6$ | $135.8(3)$ |
| $\mathrm{Cl} 2-\mathrm{Sn}-\mathrm{C} 1$ | $102.37(12)$ |  |  |

Table 2
Hydrogen-bond geometry ( $\AA^{\circ},{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 1-\mathrm{H} 1 \mathrm{a} \cdots \mathrm{O}^{\mathrm{i}}$ | 0.88 | 2.06 | $2.924(5)$ | 167 |
| $\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~b} \cdots \mathrm{Cl}^{\mathrm{ii}}$ | 0.88 | 2.47 | $3.326(4)$ | 166 |
| $\mathrm{~N} 2-\mathrm{H} 2 \mathrm{a} \cdots \mathrm{Cl} 2$ | 0.88 | 2.40 | $3.227(4)$ | 156 |
| $\mathrm{~N} 2-\mathrm{H} 2 \mathrm{~b} \cdots \mathrm{Cl} 3^{\text {iii }}$ | 0.88 | 2.40 | $3.250(4)$ | 163 |
| $\mathrm{C} 4-\mathrm{H} 4 \mathrm{a} \cdots \mathrm{Cl} 1^{\text {iv }}$ | 0.99 | 2.79 | $3.742(5)$ | 163 |
| $\mathrm{C} 4-\mathrm{H} 4 \mathrm{~b} \cdots \mathrm{O} 2$ | 0.99 | 2.59 | $2.923(6)$ | 100 |

Symmetry codes: (i) $-x+1,-y+2,-z+1$; (ii) $x+1, y, z$; (iii) $x, y-1, z$; (iv) $-x+1,-y+1,-z+1$.

All H atoms were allowed to ride on their parent atoms in the riding-model approximation at distances of $0.99(\mathrm{C}-\mathrm{H})$ and $0.88 \AA$ $(\mathrm{N}-\mathrm{H})$, and with $U_{\mathrm{iso}}(\mathrm{H})$ values of $1.2 U_{\mathrm{eq}}(\mathrm{C}, \mathrm{N})$. The maximum residual electron density peak was located $1.26 \AA$ from the Sn atom and the deepest hole was located $0.77 \AA$ also from the Sn atom.

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT (Otwinowski \& Minor, 1997); data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Crystal Impact, 2006).; software used to prepare material for publication: SHELXL97.

The authors thank the EPSRC X-ray Crystallographic Service, University of Southampton for the data collection.

## References

Burley, J. W., Hope, O., Hutton, R. E. \& Groenenboom, C. J. (1979). J. Organomet. Chem. 170, 21-37.
Crystal Impact (2006). DIAMOND. Version 3.1. Crystal Impact GbR, Postfach 1251, D-53002 Bonn, Germany.
Harrison, P. G., King, T. J. \& Healey, M. A. (1979). J. Organomet. Chem. 182, 17-36.
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Hutton, R. E., Burley, J. W. \& Oakes, V. (1978). J. Organomet. Chem. 156, 369382.

Hutton, R. E. \& Oakes, V. (1976). Adv. Chem. Ser. 157, 123-136.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Marsh, R. E. (1997). Acta Cryst. B53, 317-322.
Milne, B. F., Pereira, R. P., Rocco, A. M., Skakle, J. M. S., Travis, A. J., Wardell, J. L. \& Wardell, S. M. S. V. (2005). Appl. Organomet. Chem. 19, $363-$ 371.

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.

## supporting information

Edward R. T. Tiekink, James L. Wardell and Solange M. S. V. Wardell

(I)

## Crystal data

$\left[\mathrm{Sn}\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{ClNO}\right)\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{NO}\right) \mathrm{Cl}_{3}\right]$
$M_{r}=404.67$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=7.3582$ ( 3 ) A
$b=9.0387$ (5) $\AA$
$c=10.4342(6) \AA$
$\alpha=92.005(2)^{\circ}$
$\beta=104.529(3)^{\circ}$
$\gamma=96.222(3)^{\circ}$
$V=666.42(6) \AA^{3}$

## Data collection

Bruker-Nonius 95 mm CCD camera on a $\kappa$ goniostat
diffractometer
Radiation source: Bruker-Nonius FR591
rotating anode
10 cm confocal mirrors monochromator
Detector resolution: 9.091 pixels $\mathrm{mm}^{-1}$
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.105$
$S=1.09$
3086 reflections
136 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$Z=2$
$F(000)=392$
$D_{\mathrm{x}}=2.017 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2904 reflections
$\theta=2.9-27.5^{\circ}$
$\mu=2.70 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Plate, colourless
$0.14 \times 0.04 \times 0.02 \mathrm{~mm}$
$T_{\text {min }}=0.704, T_{\text {max }}=0.948$
13278 measured reflections
3086 independent reflections
2721 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.068$
$\theta_{\text {max }}=27.8^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-9 \rightarrow 8$
$k=-11 \rightarrow 11$
$l=-13 \rightarrow 13$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0474 P)^{2}+1.4199 P\right]$
where $P=\left(F_{o}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=1.11 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-1.54 \mathrm{e}^{-3}$

## Special details

Experimental. IR (CsI, $\mathrm{cm}^{-1}$ ): v3396, 3254, 1652, 1576, 1409, 1295, 1166, 970. 740, 666, 616, 584, 480, 367, 314.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$-factors $(\mathrm{gt})$ etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\hat{A}^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }} /_{\text {eq }}$ |
| :--- | :--- | :--- | :--- | :--- |
| Sn | $0.10766(4)$ | $0.75079(3)$ | $0.23109(3)$ | $0.01770(12)$ |
| C11 | $-0.00142(15)$ | $0.72255(13)$ | $0.42547(11)$ | $0.0257(2)$ |
| C12 | $-0.16772(15)$ | $0.60455(12)$ | $0.09151(12)$ | $0.0266(3)$ |
| C13 | $-0.02963(15)$ | $0.98881(11)$ | $0.19741(11)$ | $0.0243(2)$ |
| C14 | $0.5294(2)$ | $0.26714(17)$ | $0.17569(13)$ | $0.0413(3)$ |
| O1 | $0.3632(4)$ | $0.8805(3)$ | $0.3682(3)$ | $0.0197(6)$ |
| O2 | $0.2650(4)$ | $0.5578(3)$ | $0.3009(3)$ | $0.0251(7)$ |
| N1 | $0.6626(5)$ | $0.9740(4)$ | $0.3833(4)$ | $0.0227(8)$ |
| H1A | 0.6735 | 1.0141 | 0.4633 | $0.027^{*}$ |
| H1B | 0.7590 | 0.9852 | 0.3474 | $0.027^{*}$ |
| N2 | $0.0551(6)$ | $0.3494(4)$ | $0.2481(4)$ | $0.0297(9)$ |
| H2A | -0.0356 | 0.3990 | 0.2056 | $0.036^{*}$ |
| H2B | 0.0331 | 0.2524 | 0.2532 | $0.036^{*}$ |
| C1 | $0.2878(6)$ | $0.7847(5)$ | $0.1001(4)$ | $0.0234(9)$ |
| H1C | 0.2785 | 0.6926 | 0.0434 | $0.028^{*}$ |
| H1D | 0.2486 | 0.8659 | 0.0418 | $0.028^{*}$ |
| C2 | $0.4886(7)$ | $0.8253(6)$ | $0.1821(5)$ | $0.0281(10)$ |
| H2C | 0.5566 | 0.8945 | 0.1336 | $0.034^{*}$ |
| H2D | 0.5525 | 0.7339 | 0.1931 | $0.034^{*}$ |
| C3 | $0.5025(6)$ | $0.8973(5)$ | $0.3175(4)$ | $0.0173(8)$ |
| C4 | $0.5541(7)$ | $0.3544(6)$ | $0.3364(5)$ | $0.0283(10)$ |
| H4A | 0.6551 | 0.3132 | 0.4018 | $0.034^{*}$ |
| H4B | 0.5918 | 0.4628 | 0.3353 | $0.034^{*}$ |
| C5 | $0.3718(7)$ | $0.3298(5)$ | $0.3779(5)$ | $0.0265(10)$ |
| H5A | 0.3978 | 0.3566 | 0.4741 | $0.032^{*}$ |
| H5B | 0.3224 | 0.2226 | 0.3627 | $0.032^{*}$ |
| C6 | $0.2227(6)$ | $0.4197(5)$ |  |  |
|  |  |  | $0.3038(4)$ |  |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Sn | $0.01735(18)$ | $0.01386(17)$ | $0.02147(19)$ | $0.00121(11)$ | $0.00494(12)$ | $-0.00209(11)$ |
| $\mathrm{Cl1}$ | $0.0240(5)$ | $0.0293(6)$ | $0.0262(6)$ | $0.0040(4)$ | $0.0102(4)$ | $0.0052(4)$ |
| Cl 2 | $0.0222(5)$ | $0.0192(5)$ | $0.0339(6)$ | $0.0013(4)$ | $0.0003(4)$ | $-0.0066(4)$ |
| Cl 3 | $0.0262(5)$ | $0.0149(5)$ | $0.0345(6)$ | $0.0035(4)$ | $0.0125(4)$ | $0.0021(4)$ |


| C14 | $0.0492(8)$ | $0.0498(8)$ | $0.0325(7)$ | $0.0197(6)$ | $0.0182(6)$ | $0.0047(6)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| O1 | $0.0161(14)$ | $0.0207(15)$ | $0.0216(15)$ | $-0.0011(11)$ | $0.0061(12)$ | $-0.0067(12)$ |
| O2 | $0.0208(15)$ | $0.0153(15)$ | $0.0381(19)$ | $0.0038(12)$ | $0.0046(13)$ | $0.0029(13)$ |
| N1 | $0.0200(18)$ | $0.0232(19)$ | $0.025(2)$ | $-0.0005(14)$ | $0.0090(15)$ | $-0.0054(15)$ |
| N2 | $0.030(2)$ | $0.0147(18)$ | $0.039(2)$ | $0.0007(15)$ | $0.0000(18)$ | $0.0020(16)$ |
| C1 | $0.027(2)$ | $0.026(2)$ | $0.020(2)$ | $0.0012(18)$ | $0.0121(18)$ | $-0.0029(17)$ |
| C2 | $0.028(2)$ | $0.028(2)$ | $0.028(3)$ | $-0.0013(19)$ | $0.012(2)$ | $-0.009(2)$ |
| C3 | $0.0157(19)$ | $0.0165(19)$ | $0.020(2)$ | $0.0027(15)$ | $0.0052(16)$ | $0.0006(15)$ |
| C4 | $0.026(2)$ | $0.027(2)$ | $0.031(3)$ | $0.0083(18)$ | $0.004(2)$ | $0.0024(19)$ |
| C5 | $0.033(3)$ | $0.021(2)$ | $0.027(2)$ | $0.0085(19)$ | $0.009(2)$ | $0.0050(18)$ |
| C6 | $0.029(2)$ | $0.018(2)$ | $0.026(2)$ | $0.0051(17)$ | $0.0173(19)$ | $0.0007(17)$ |

Geometric parameters ( $\AA,{ }^{\circ}$ )

| $\mathrm{Sn}-\mathrm{Cl1}$ | 2.3730 (11) | N2-H2B | 0.8800 |
| :---: | :---: | :---: | :---: |
| $\mathrm{Sn}-\mathrm{Cl} 2$ | 2.4038 (11) | $\mathrm{C} 1-\mathrm{C} 2$ | 1.509 (6) |
| $\mathrm{Sn}-\mathrm{Cl} 3$ | 2.4735 (10) | C1-H1C | 0.9900 |
| $\mathrm{Sn}-\mathrm{O} 1$ | 2.239 (3) | C1-H1D | 0.9900 |
| $\mathrm{Sn}-\mathrm{O} 2$ | 2.240 (3) | C2-C3 | 1.510 (6) |
| $\mathrm{Sn}-\mathrm{C} 1$ | 2.138 (4) | C 2 - H 2 C | 0.9900 |
| C14-C4 | 1.786 (5) | C2-H2D | 0.9900 |
| O1-C3 | 1.263 (5) | $\mathrm{C} 4-\mathrm{C} 5$ | 1.506 (7) |
| O2-C6 | 1.257 (5) | C4-H4A | 0.9900 |
| N1-C3 | 1.313 (5) | C4-H4B | 0.9900 |
| N1-H1A | 0.8800 | C5-C6 | 1.508 (6) |
| N1-H1B | 0.8800 | C5-H5A | 0.9900 |
| N2-C6 | 1.307 (6) | C5-H5B | 0.9900 |
| N2-H2A | 0.8800 |  |  |
| $\mathrm{Cl1}-\mathrm{Sn}-\mathrm{Cl} 2$ | 93.44 (4) | $\mathrm{Sn}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{D}$ | 110.0 |
| $\mathrm{Cl} 1-\mathrm{Sn}-\mathrm{Cl} 3$ | 90.04 (4) | $\mathrm{H} 1 \mathrm{C}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{D}$ | 108.4 |
| $\mathrm{Cl} 1-\mathrm{Sn}-\mathrm{O} 1$ | 84.52 (8) | C1-C2-C3 | 113.5 (4) |
| $\mathrm{Cl} 1-\mathrm{Sn}-\mathrm{O} 2$ | 83.93 (9) | $\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$ | 108.9 |
| $\mathrm{Cl1}-\mathrm{Sn}-\mathrm{C} 1$ | 162.38 (13) | $\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$ | 108.9 |
| $\mathrm{Cl} 2-\mathrm{Sn}-\mathrm{Cl} 3$ | 93.97 (4) | $\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{D}$ | 108.9 |
| $\mathrm{Cl} 2-\mathrm{Sn}-\mathrm{O} 1$ | 177.51 (8) | C3-C2-H2D | 108.9 |
| $\mathrm{C} 2-\mathrm{Sn}-\mathrm{O} 2$ | 96.20 (8) | $\mathrm{H} 2 \mathrm{C}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{D}$ | 107.7 |
| $\mathrm{Cl} 2-\mathrm{Sn}-\mathrm{C} 1$ | 102.37 (12) | $\mathrm{O} 1-\mathrm{C} 3-\mathrm{N} 1$ | 120.5 (4) |
| $\mathrm{Cl} 3-\mathrm{Sn}-\mathrm{O} 1$ | 87.47 (8) | O1-C3-C2 | 120.3 (4) |
| $\mathrm{Cl} 3-\mathrm{Sn}-\mathrm{O} 2$ | 168.47 (9) | N1-C3-C2 | 119.2 (4) |
| $\mathrm{Cl} 3-\mathrm{Sn}-\mathrm{C} 1$ | 96.48 (13) | C5-C4-Cl4 | 111.2 (3) |
| $\mathrm{O} 1-\mathrm{Sn}-\mathrm{O} 2$ | 82.18 (11) | C5-C4-H4A | 109.4 |
| $\mathrm{O} 1-\mathrm{Sn}-\mathrm{C} 1$ | 79.47 (14) | $\mathrm{Cl} 4-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$ | 109.4 |
| $\mathrm{O} 2-\mathrm{Sn}-\mathrm{C} 1$ | 86.66 (16) | C5-C4-H4B | 109.4 |
| $\mathrm{Sn}-\mathrm{O} 1-\mathrm{C} 3$ | 112.5 (3) | $\mathrm{Cl} 4-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$ | 109.4 |
| $\mathrm{Sn}-\mathrm{O} 2-\mathrm{C} 6$ | 135.8 (3) | H4A-C4-H4B | 108.0 |
| C3-N1-H1A | 120.0 | C4-C5-C6 | 113.0 (4) |
| C3-N1-H1B | 120.0 | C4-C5-H5A | 109.0 |


| $\mathrm{H} 1 \mathrm{~A}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$ | 120.0 |
| :--- | :--- |
| $\mathrm{C} 6-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$ | 120.0 |
| $\mathrm{C} 6-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$ | 120.0 |
| $\mathrm{H} 2 \mathrm{~A}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$ | 120.0 |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{Sn}$ | $108.6(3)$ |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$ | 110.0 |
| $\mathrm{Sn}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$ | 110.0 |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{D}$ | 110.0 |


| C6-C5-H5A | 109.0 |
| :--- | :--- |
| C4-C5-H5B | 109.0 |
| C6-C5-H5B | 109.0 |
| H5A-C5-H5B | 107.8 |
| O2-C6-N2 | $123.7(4)$ |
| O2-C6-C5 | $118.5(4)$ |
| N2-C6-C5 | $117.8(4)$ |

Hydrogen-bond geometry ( $A,{ }^{\circ}$ )

| $D — \mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{a} \cdots \mathrm{O}^{\mathrm{i}}$ | 0.88 | 2.06 | $2.924(5)$ | 167 |
| $\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~b} \cdots \mathrm{Cl}^{\mathrm{ii}}$ | 0.88 | 2.47 | $3.326(4)$ | 166 |
| $\mathrm{~N} 2 — \mathrm{H} 2 \mathrm{a} \cdots \mathrm{Cl2}$ | 0.88 | 2.40 | $3.227(4)$ | 156 |
| $\mathrm{~N} 2 — \mathrm{H} 2 \mathrm{~b} \cdots \mathrm{Cl} 3^{\mathrm{iii}}$ | 0.88 | 2.40 | $3.250(4)$ | 163 |
| $\mathrm{C} 4 — \mathrm{H} 4 \mathrm{a} \cdots \mathrm{Cl1}{ }^{\text {iv }}$ | 0.99 | 2.79 | $3.742(5)$ | 163 |
| $\mathrm{C} 4 — \mathrm{H} 4 \mathrm{~b} \cdots \mathrm{O} 2$ | 0.99 | 2.59 | $2.923(6)$ | 100 |

Symmetry codes: (i) $-x+1,-y+2,-z+1$; (ii) $x+1, y, z$; (iii) $x, y-1, z$; (iv) $-x+1,-y+1,-z+1$.


[^0]:    © 2006 International Union of Crystallography All rights reserved

