Acta Crystallographica Section E

Structure Reports

Online

2-Deoxy-2-fluoro-2-C-methyl-d-ribono-1,4-lactone (fluoromethylrib)

ISSN 1600-5368

Samuel Parker, ${ }^{\text {a* }}$ David Watkin, ${ }^{\text {a }}$ Benjamin Mayes, ${ }^{\text {b }}$ Richard Storer, ${ }^{\text {b }}$ Sarah Jenkinson ${ }^{\text {c }}$ and George Fleet ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Chemical Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, ${ }^{\text {b }}$ Idenix
Pharmaceuticals, 60 Hampshire Street, Cambridge, MA 02139, USA, and ${ }^{\text { }}$ Department of Organic Chemistry, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England

Correspondence e-mail:
samuel.parker@magd.ox.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.030$
$w R$ factor $=0.098$
Data-to-parameter ratio $=9.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]The relative stereochemistry of the fluoro substituent (as ribo) and the ring size of the lactone (as five) in the title compound, $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{FO}_{4}$, have been established by X-ray crystallographic analysis.

Comment

Until recently, carbohydrate building blocks with branched carbon chains have not been readily available in large quantities (Bols, 1996; Lichtenthaler \& Peters, 2004). The Kiliani reaction of ketoses with cyanide, followed by acetonation (Hotchkiss et al., 2004; Soengas et al., 2005), provides access to a novel class of carbohydrate scaffold which contains a branched hydroxymethyl carbon chain. Branched sugars bearing a C-2 alkyl group are also available from the Kiliani reaction of cyanide with 1-deoxyketoses, themselves prepared by addition of organometallic reagents to sugar lactones. Thus, reaction of cyanide with a protected 1-deoxy-D-ribulose afforded the isopropylidene derivative of arabinono-1,5lactone (1) (Hotchkiss et al., 2006), shown to crystallize in a boat conformation (Punzo, Watkin, Jenkinson \& Fleet, 2005).

(2)

(3)

Received 7 February 2006 Accepted 20 February 2006

Figure 1
The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.

Figure 2
A c-axis projection. The molecules are linked by hydrogen bonds (dashed lines) into pleated sheets perpendicular to c.
proceeded with inversion of configuration to give the ribonolactone (3) in a boat conformation with the C-2 methyl group in a hindered flagpole position. A minor product was also formed during the azide displacement reaction and was proven by X-ray analysis to have the ribo-configuration (4) (Punzo et al., 2006). It is noteworthy that the 1,5-lactones (1), (3) and (4) all adopt a boat conformation in the solid state.

When the trifluoromethanesulfonate (2) was treated with tris(dimethylamino)sulfur trimethylsilyl difluoride - an excellent source of nucleophilic fluoride - fluorolactone (5) was isolated as the major product. Removal of the isopropylidene protecting group by treatment with aqueous acid gave the title unprotected fluorolactone, (6). The crystal structure reported in this paper (Fig. 1) establishes the relative ribo-stereochemistry in both (5) and (6), and also shows that deprotection of the ketal (5) is accompanied by contraction of
the six-ring lactone in (5) to give a five-ring lactone in (6). The quaternary fluoride (6) is likely to be a powerful intermediate for the synthesis of a novel class of carbohydrate in which a F atom is attached to a quaternary centre. The absolute configuration of (6) was established by the use of Derythronolactone as the starting material for the preparation of (1).

The crystal structure consists of pleated sheets lying perpendicular to c, with molecules linked by hydrogen bonds (Fig. 2). There is a short contact between adjacent sheets [2.86 A for O9…C5 $\left.\left(\frac{1}{2}+x, \frac{1}{2}-y, 1-z\right)\right]$.

Experimental

The fluorolactone (6) (Mayes et al., 2006) was crystallized from ethyl acetate:heptane (8:1), m.p. $415-416 \mathrm{~K} ;[\alpha]_{20}^{D}+129.3^{\circ}(c=0.9$ in $\mathrm{CH}_{3} \mathrm{CN}$).

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{FO}_{4}$
$M_{r}=164.13$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=7.3570$ (2) A
$b=8.2864$ (2) \AA
$c=11.7886$ (3) A
$V=718.67$ (3) \AA^{3}
$Z=4$
$D_{x}=1.517 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Nonius KappaCCD diffractometer ω scans
Absorption correction: multi-scan (DENZO/SCALEPACK;
Otwinowski \& Minor, 1997)
$T_{\text {min }}=0.64, T_{\text {max }}=0.94$
1612 measured reflections

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F^{2}\right)+(0.1 P)^{2}\right]$
where $P=\left[\max \left(F_{\mathrm{o}}{ }^{2}, 0\right)+2{F_{\mathrm{c}}}^{2}\right] / 3$
$w R\left(F^{2}\right)=0.098$
$(\Delta / \sigma)_{\text {max }}<0.001$
$S=0.91$
$\Delta \rho_{\text {max }}=0.22 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.18 \mathrm{e}^{-3}$
958 reflections
100 parameters

Mo $K \alpha$ radiation

Cell parameters from 900 reflections
$\theta=1-27^{\circ}$
$\mu=0.14 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Block, colourless
$0.60 \times 0.40 \times 0.40 \mathrm{~mm}$

> 964 independent reflections 958 reflections with $I>-3 \sigma(I)$
> $R_{\text {int }}=0.008$
> $\theta_{\max }=27.5^{\circ}$
> $h=-9 \rightarrow 9$
> $k=-10 \rightarrow 10$
> $l=-14 \rightarrow 14$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O9-H6 \cdots O8 $^{\mathrm{i}}$	0.82	1.90	$2.701(2)$	165
O8-H7 \cdots O $^{\text {ii }}$	0.84	2.01	$2.804(2)$	157

Symmetry codes: (i) $x-\frac{1}{2},-y-\frac{1}{2},-z+2$; (ii) $x+\frac{1}{2},-y+\frac{1}{2},-z+2$.

The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry ($\mathrm{C}-\mathrm{H}$ in the range $0.93-0.98, \mathrm{O}-$ $\mathrm{H}=0.82 \AA$) and $U_{\text {iso }}(\mathrm{H})$ (in the range 1.2-1.5 times $U_{\text {eq }}$ of the parent atom), after which the positions were refined with riding constraints.

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZOISCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure:

organic papers

SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Bols, M. (1996). Carbohydrate Building Blocks. New York: Wiley.
Hotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. \& Fleet, G. W. J. (2006). Tetrahedron Lett. 47, 315-318.
Hotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. \& Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461-9464.

Lichtenthaler, F. W. \& Peters, S. (2004). C. R. Chim. 7, 65-90.
Mayes, B. A., Storer, R., Watkin, D. J., Jenkinson, S. F. \& Fleet, G. W. J. (2006) In preparation.
Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Punzo, F., Watkin, D. J., Jenkinson, S. F., Cruz, F. P. \& Fleet, G. W. J. (2005). Acta Cryst. E61, o511-o512.
Punzo, F., Watkin, D. J., Jenkinson, S. F., Cruz, F. P. \& Fleet, G. W. J. (2006). Acta Cryst. E62, o321-o323.
Punzo, F., Watkin, D. J., Jenkinson, S. F. \& Fleet, G. W. J. (2005). Acta Cryst. E61, o127-129.
Soengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. \& Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755-5759.
Watkin, D. J., Prout, C. K. \& Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

supporting information

Acta Cryst. (2006). E62, o1208-o1210 [https://doi.org/10.1107/S1600536806006337]

2-Deoxy-2-fluoro-2-C-methyl-d-ribono-1,4-lactone (fluoromethylrib)

Samuel Parker, David Watkin, Benjamin Mayes, Richard Storer, Sarah Jenkinson and George Fleet

2-Deoxy-2-fluoro-2-C-methyl-D-ribono-1,4-lactone

Crystal data
$\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{FO}_{4}$
$M_{r}=164.13$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=7.3570$ (2) \AA
$b=8.2864$ (2) \AA
$c=11.7886(3) \AA$
$V=718.67(3) \AA^{3}$
$Z=4$
$F(000)=344$
Data collection
Nonius KappaCCD
diffractometer
Graphite monochromator ω scans
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski \& Minor, 1997)
$T_{\text {min }}=0.64, T_{\text {max }}=0.94$
$D_{\mathrm{x}}=1.517 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 900 reflections
$\theta=1-27^{\circ}$
$\mu=0.14 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Block, colourless
$0.60 \times 0.40 \times 0.40 \mathrm{~mm}$

1612 measured reflections
964 independent reflections
958 reflections with $I>-3 \sigma(I)$
$R_{\text {int }}=0.008$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=3.0^{\circ}$
$h=-9 \rightarrow 9$
$k=-10 \rightarrow 10$
$l=-14 \rightarrow 14$

Primary atom site location: structure-invariant direct methods
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F^{2}\right)+(0.1 P)^{2}\right]$
where $P=\left[\max \left(F_{\mathrm{o}}{ }^{2}, 0\right)+2 F_{\mathrm{c}}^{2}\right] / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.22$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.18$ e \AA^{-3}

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.26615(19)$	$-0.06271(16)$	$0.80936(11)$	0.0189
C2	$0.45465(18)$	$-0.13941(14)$	$0.81193(11)$	0.0165
C3	$0.53478(17)$	$-0.07250(16)$	$0.92219(11)$	0.0174

O4	$0.44849(12)$	$0.08566(11)$	$0.93581(9)$	0.0193
C5	$0.30033(19)$	$0.09816(14)$	$0.87060(11)$	0.0184
O6	$0.20970(13)$	$0.21809(11)$	$0.86637(9)$	0.0266
C7	$0.7384(2)$	$-0.04800(18)$	$0.91928(13)$	0.0223
O8	$0.81162(14)$	$-0.00656(11)$	$1.02682(10)$	0.0284
O9	$0.45498(14)$	$-0.30961(9)$	$0.80642(8)$	0.0214
F10	$0.15671(11)$	$-0.15009(10)$	$0.88691(8)$	0.0270
C11	$0.1703(2)$	$-0.05096(18)$	$0.69793(13)$	0.0289
H21	0.5219	-0.0960	0.7483	0.0171^{*}
H31	0.4997	-0.1418	0.9867	0.0184^{*}
H71	0.7913	-0.1502	0.8971	0.0248^{*}
H72	0.7657	0.0375	0.8615	0.0253^{*}
H111	0.0568	0.0094	0.7100	0.0416^{*}
H6	0.3993	-0.3510	0.8589	0.0318^{*}
H7	0.7703	0.0866	1.0403	0.0405^{*}
H1	0.1448	-0.1591	0.6721	0.0420^{*}
H2	0.2452	0.0073	0.6451	0.0406^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
C1	$0.0190(7)$	$0.0156(5)$	$0.0222(7)$	$-0.0029(5)$	$0.0005(5)$	$0.0018(5)$
C2	$0.0179(7)$	$0.0144(5)$	$0.0172(6)$	$-0.0005(5)$	$0.0018(5)$	$0.0002(4)$
C3	$0.0202(6)$	$0.0129(5)$	$0.0192(6)$	$0.0046(5)$	$-0.0004(5)$	$0.0008(5)$
O4	$0.0221(5)$	$0.0150(4)$	$0.0209(5)$	$0.0043(4)$	$-0.0017(4)$	$-0.0037(4)$
C5	$0.0193(6)$	$0.0169(6)$	$0.0189(7)$	$-0.0003(5)$	$0.0023(5)$	$0.0007(5)$
O6	$0.0258(6)$	$0.0207(5)$	$0.0333(7)$	$0.0078(4)$	$0.0012(5)$	$-0.0014(4)$
C7	$0.0197(6)$	$0.0229(6)$	$0.0244(8)$	$0.0022(5)$	$-0.0035(5)$	$-0.0001(5)$
O8	$0.0311(5)$	$0.0206(4)$	$0.0334(6)$	$0.0043(4)$	$-0.0154(5)$	$-0.0012(4)$
O9	$0.0281(6)$	$0.0128(4)$	$0.0231(5)$	$0.0017(4)$	$0.0076(4)$	$-0.0012(4)$
F10	$0.0202(4)$	$0.0260(5)$	$0.0347(5)$	$-0.0024(4)$	$0.0068(4)$	$0.0059(4)$
C11	$0.0315(8)$	$0.0240(7)$	$0.0313(9)$	$-0.0023(7)$	$-0.0107(7)$	$0.0007(6)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{C} 2$	1.5258 (19)	O4-C5	1.3378 (16)
C1-C5	1.5367 (17)	C5-O6	1.1978 (17)
C1-F10	1.4171 (15)	C7-08	1.4195 (18)
C1-C11	1.4941 (17)	C7-H71	0.968
C2-C3	1.5311 (18)	C7-H72	1.003
C2-O9	1.4118 (13)	O8-H7	0.845
C2-H21	0.968	O9-H6	0.818
C3-O4	1.4651 (16)	C11-H111	0.984
C3-C7	1.512 (2)	C11-H1	0.964
C3-H31	0.987	C11-H2	0.961
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 5$	101.73 (10)	C3-O4-C5	111.06 (10)
C2-C1-F10	106.90 (10)	C1-C5-O4	109.64 (10)

$\mathrm{C} 5-\mathrm{C} 1-\mathrm{F} 10$	$103.48(10)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 11$	$118.26(12)$
$\mathrm{C} 5-\mathrm{C} 1-\mathrm{C} 11$	$115.71(11)$
$\mathrm{F} 10-\mathrm{C} 1-\mathrm{C} 11$	$109.41(11)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$102.47(10)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 9$	$114.63(11)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{O} 9$	$113.59(11)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 21$	107.1
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 21$	109.1
$\mathrm{O} 9-\mathrm{C} 2-\mathrm{H} 21$	109.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 4$	$104.49(10)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 7$	$114.26(12)$
$\mathrm{O} 4-\mathrm{C} 3-\mathrm{C} 7$	$108.16(11)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 31$	110.1
$\mathrm{O} 4-\mathrm{C} 3-\mathrm{H} 31$	108.8
$\mathrm{C} 7-\mathrm{C} 3-\mathrm{H} 31$	110.8

$\mathrm{C} 1-\mathrm{C} 5-\mathrm{O} 6$	$127.52(12)$
$\mathrm{O} 4-\mathrm{C} 5-\mathrm{O} 6$	$122.80(12)$
$\mathrm{C} 3-\mathrm{C} 7-\mathrm{O} 8$	$112.83(12)$
$\mathrm{C} 3-\mathrm{C} 7-\mathrm{H} 71$	106.7
$\mathrm{O} 8-\mathrm{C} 7-\mathrm{H} 71$	107.5
$\mathrm{C} 3-\mathrm{C} 7-\mathrm{H} 72$	107.9
$\mathrm{O} 8-\mathrm{C} 7-\mathrm{H} 72$	111.1
$\mathrm{H} 71-\mathrm{C} 7-\mathrm{H} 72$	110.8
$\mathrm{C} 7-\mathrm{O} 8-\mathrm{H} 7$	104.6
$\mathrm{C} 2-\mathrm{O} 9-\mathrm{H} 6$	112.5
$\mathrm{C} 1-\mathrm{C} 11-\mathrm{H} 111$	107.9
$\mathrm{C} 1-\mathrm{C} 11-\mathrm{H} 1$	108.0
$\mathrm{H} 111-\mathrm{C} 11-\mathrm{H} 1$	110.7
$\mathrm{C} 1-\mathrm{C} 11-\mathrm{H} 2$	109.4
$\mathrm{H} 111-\mathrm{C} 11-\mathrm{H} 2$	108.9
$\mathrm{H} 1-\mathrm{C} 11-\mathrm{H} 2$	112.0

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O9—H6 $\cdots{ }^{\mathrm{H}}$				
O8—H7 \cdots O6 $^{\mathrm{ii}}$	0.82	1.90	$2.701(2)$	165

Symmetry codes: (i) $x-1 / 2,-y-1 / 2,-z+2$; (ii) $x+1 / 2,-y+1 / 2,-z+2$.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

