Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

William T. A. Harrison,^a* Palani Ramadevi^b and Sudalaiandi Kumaresan^b

^aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, and ^bDepartment of Chemistry, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli 627 012, Tamilnadu, India

Correspondence e-mail: w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study T = 293 KMean σ (C–C) = 0.002 Å R factor = 0.031 wR factor = 0.080 Data-to-parameter ratio = 24.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Aqua(dipicolinato- $\kappa^3 O, N, O'$)(1,10-phenanthroline- $\kappa^2 N, N'$)zinc(II) monohydrate

The title compound, $[Zn(C_7H_3NO_4)(C_{12}H_8N_2)(H_2O)]\cdot H_2O$, is isostructural with the manganese(II) analogue. The Zn atom is coordinated by a tridentate dipicolinate dianion, a bidentate 1,10-phenanthroline molecule and a water molecule, resulting in a substantially distorted ZnO_3N_3 octahedral grouping. The crystal packing is consolidated by $O-H \cdots O$ hydrogen bonds and probable π - π stacking.

Comment

The title compound, (I), arose during our exploratory synthetic studies of coordination polymers containing divalent cations, the dipicolinate (dipic) dianion and multi-functional nitrogen-containing ligands such as 4,4-bipyridine (bipy) and 1,10-phenanthroline (phen). Compound (I) is isostructural with the manganese(II) analogue (Ma *et al.*, 2002).

The asymmetric unit of (I) contains a neutral aqua(dipicolinato)(1,10-phenanthroline)zinc(II) molecule accompanied by one water molecule of crystallization (Fig. 1). The dipic dianion bonds to zinc in an O,N,O'-tridentate mode and the phen is N,N'-bidentate. The distorted octahedral ZnO₃N₃ coordination (Table 1) is completed by a water molecule. The substantial deviations of the bond angles from ideal octa-

© 2006 International Union of Crystallography All rights reserved

Figure 1

View of (I), showing 50% displacement ellipsoids and arbitrary spheres for the H atoms. The hydrogen bond is indicated by a dashed line.

Received 1 February 2006 Accepted 3 February 2006

Detail of (I) showing probable π - π stacking interactions shorter than 3.8 Å (as dashed lines) linking the centroids (pink circles) of the phen rings. The Zn1* molecule is generated by the symmetry operation (1 - x, 1 - y, z) and Zn1% by (1 + x, y, z). H atoms have been omitted.

Figure 3

Detail of (I) showing the water-bridged dimeric entity. All H atoms except those of the non-coordinated water molecule have been omitted for clarity. The symmetry code is as in Table 2. Dashed lines indicate hydrogen bonds.

hedral values [range of *cis* angles = 73.99 (4)–122.56 (4)° and range of *trans* angles = 150.12 (4)–161.00 (5)°] may be correlated with the geometrical constraints imposed by the chelating ligands. The Zn–O_d (d = dipic) bond lengths are distinctly different; both are substantially longer than the Zn–O_w (w = water) bond. Very similar equivalent geometric values arose for the isostructural manganese complex (Ma *et al.*, 2002). Considered in isolation, the ZnO₃N₃ grouping in (I) adopts the *mer* geometric isomer. The dipic dianion is close to planar (for the non-H atoms, r.m.s. deviation from the mean plane = 0.028 Å) and the bipy molecule, as expected, is essentially flat (r.m.s. deviation from the mean plane = 0.036 Å). The zinc cation deviates from the dipic and bipy mean planes by 0.0828 (9) and 0.0232 (11) Å, respectively. The

dihedral angle between the dipic and bipy planes is $80.08 (2)^{\circ}$ [equivalent value for the Mn congener = $81.5 (1)^{\circ}$].

The packing in (I) involves a network of $O-H\cdots O$ hydrogen bonds (Table 2) and probable $\pi-\pi$ stacking interactions (Fig. 2) involving the phen ring systems. The shortest $\pi-\pi$ ring-centroid separation of 3.4981 (9) Å involves the centroid, Cg1, of the N1/C1-C4/C12 phen ring and its inversion-generated partner, $Cg1^i$ [symmetry code: (i) 1 - x, 1 - y, z]. In the crystal structure, the solvent water molecules connect complex molecules *via* $O-H\cdots O$ hydrogen bonds, forming centrosymmetric clusters (Fig. 3). In addition, intermolecular $O-H\cdots O$ hydrogen bonds involving the coordinated water molecules connect these clusters into a three-dimensional network (Fig. 4 and Table 2), as in the Mn analogue (Ma *et al.*, 2002).

Compound (I) complements a number of previously described dipicolinate complexes of zinc which show a wide variety of metal-ligand binding modes. For example, in $(C_3H_5N_2)_2[Zn(dipic)_2]\cdot 2H_2O$ (MacDonald et al., 2000), two dipic dianions bond to zinc and the resulting overall dianion is charge-balanced by two imidazolinium cations. In Zn(Hdipic)₂·3H₂O (Håkansson et al., 1993), two Hdipic monoanions chelate the zinc cation, resulting in a neutral molecule. In Zn₂(dipic)₂(H₂O)₅·2H₂O (Håkansson et al., 1993), a dipic ligand acts as a bridge between two Zn centres (one coordinated by two tridentate dipic anions and one coordinated by a monodentate dipic O atom and five water molecules). In $(C_5H_8N_3)$ [Zn(dipic)(Hdipic)]·3H₂O (Ranjbar *et al.*, 2002), one dipic dianion and one Hdipic anion bind to zinc, with 2,6diaminopyridinium serving as the charge-balancing cation. The complex formula of [Zn(phen)₃]₄(NO₃)₇·Hdipic·26H₂O (Moghimi et al., 2005) corresponds to a crystal structure in which the Hdipic anion does not bond to Zn. Finally, a novel variant to (I) is provided by [Zn(bipy)₂(H₂O)₂][Zn(dipic)₂]·7H₂O (Moghimi et al., 2005), in which the bipy molecules and dipic dianions complex separate zinc centres, resulting in a molecular salt.

Experimental

A mixture of Zn(OAc)₂·2H₂O (27 mg), pyridine-2,6-dicarboxylic acid (20 mg), 1,10-phenanthroline monohydrate (24 mg) and water (2.0 ml) (molar ratio = *ca* 1:1:1:9300) was sealed in a 23 ml Teflonlined stainless steel bomb and kept at 423 K under autogenous pressure for 72 h. After slowly cooling (10 K h⁻¹) to room temperature, needle-shaped colourless crystals of (I) were obtained by filtration and rinsing with water and diethyl ether (yield 72%). Analysis calculated for C₁₉H₁₇N₃O₇Zn: C 49.6, H 2.71, N 9.16%; found: C 50.71, H 2.72, N 9.46%. Thermogravimetric analysis for (I) (ramp at 10 K min⁻¹ under N₂) revealed a weight loss of 6.7% between 463 and 468 K, probably corresponding to the loss of both coordinated and non-coordinated water molecules (calculated 8.5%). The dipic and phen ligands decompose slowly (weight loss = 44.8%) over the broad temperature range 493–1173 K. IR (KBr, cm⁻¹): 3445, 1637, 1583, 640, 430.

Crystal data

$[Zn(C_7H_3NO_4)(C_{12}H_8N_2)-$	$D_x = 1.656 \text{ Mg m}^{-3}$
$(H_2O)]\cdot H_2O$	Mo $K\alpha$ radiation
$M_r = 446.71$	Cell parameters from 7488
Monoclinic, $P2_1/c$	reflections
a = 7.5199 (3) Å	$\theta = 2.7 - 32.0^{\circ}$
b = 20.9079 (8) Å	$\mu = 1.42 \text{ mm}^{-1}$
c = 11.5755 (4) Å	T = 293 (2) K
$\beta = 100.135 \ (1)^{\circ}$	Block, colourless
$V = 1791.56 (12) \text{ Å}^3$	$0.21 \times 0.20 \times 0.20 \text{ mm}$
Z = 4	

Data collection

Bruker SMART1000 CCD diffractometer ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2003) $T_{\rm min} = 0.747, T_{\rm max} = 0.757$ 21156 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.080$ S = 0.976439 reflections 263 parameters H-atom parameters constrained

6439 independent reflections
4678 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.025$
$\theta_{\rm max} = 32.5^{\circ}$
$h = -10 \rightarrow 11$
$k = -31 \rightarrow 31$
$l = -13 \rightarrow 17$

$w = 1/[\sigma^2(F_0^2) + (0.0439P)^2]$	
where $P = (F_o^2 + 2F_c^2)/3$	
$(\Delta/\sigma)_{\rm max} = 0.003$	
$\Delta \rho_{\rm max} = 0.33 \text{ e} \text{ Å}^{-3}$	
$\Delta \rho_{\rm min} = -0.33 \text{ e } \text{\AA}^{-3}$	
Extinction correction: SHE	LXL97
Extinction coefficient: 0.002	0(5)

Selected bond lengths (Å).

Zn1-O5	2.0513 (11)	Zn1-O3	2.1941 (11)
Zn1-N3	2.0540 (11)	Zn1-N1	2.2071 (12)
Zn1-N2	2.1168 (11)	Zn1-O1	2.2651 (10)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O5-H51\cdots O4^{i}$	0.84	1.79	2.6058 (17)	162
$O5-H52 \cdot \cdot \cdot O2^{ii}$	0.83	1.90	2.7162 (15)	167
$O6-H61 \cdot \cdot \cdot O2^{iii}$	0.90	1.98	2.8461 (18)	161
O6−H62···O1	0.83	2.14	2.9356 (16)	160

Symmetry codes: (i) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (ii) x + 1, y, z; (iii) -x, -y + 1, -z + 1.

The water H atoms were located in difference maps and refined as riding in their as-found relative positions. The C-bound H atoms were positioned geometrically (C–H = 0.93 Å) and refined as riding. The constraint $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm carrier})$ was applied in all cases.

Data collection: *SMART* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

References

- Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. App. Cryst. 30, 565.
- Håkansson, K., Lindahl, M., Svensson, G. & Albertsson, J. (1993). Acta Chem. Scand. 47, 449–455.
- MacDonald, J. C., Dorrestein, P. C., Pilley, M. M., Foote, M. M., Lundberg, J. L., Henning, R. W., Schultz, A. J. & Manson , J. L. (2000). *J. Am. Chem. Soc.* 122, 11692–11702.
- Ma, C., Fan, C., Chen, C. & Liu, Q. (2002). Acta Cryst. C58, m553-m555.
- Moghimi, A., Sheshmani, S., Shokrollahi, A., Shamsipur, M., Kickelbick, G. & Aghabozorg, H. (2005). Z. Anorg. Allg. Chem. 631, 160–169.
- Ranjbar, M., Moghimi, A., Aghabozorg, H. & Yap, G. Y. A. (2002). *Anal. Sci.* **18**, 219–220.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supporting information

Acta Cryst. (2006). E62, m513–m515 [https://doi.org/10.1107/S160053680600420X]

Aqua(dipicolinato- $\kappa^3 O, N, O'$)(1,10-phenanthroline- $\kappa^2 N, N'$)zinc(II) monohydrate

William T. A. Harrison, Palani Ramadevi and Sudalaiandi Kumaresan

Aqua(dipicolinato- $\kappa^3 O, N, O'$)(1,10-phenanthroline- $\kappa^2 N, N$)zinc(II) monohydrate

Crystal data

 $[Zn(C_7H_3NO_4)(C_{12}H_8N_2)(H_2O)] \cdot H_2O$ $M_r = 446.71$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 7.5199 (3) Å b = 20.9079 (8) Å c = 11.5755 (4) Å $\beta = 100.135$ (1)° V = 1791.56 (12) Å³ Z = 4

Data collection

Bruker SMART1000 CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (SADABS; Bruker, 2003) $T_{\min} = 0.747, T_{\max} = 0.757$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.080$ S = 0.976439 reflections 263 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 912 $D_x = 1.656 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 7488 reflections $\theta = 2.7-32.0^{\circ}$ $\mu = 1.42 \text{ mm}^{-1}$ T = 293 KBlock, colourless $0.21 \times 0.20 \times 0.20 \text{ mm}$

21156 measured reflections 6439 independent reflections 4678 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 32.5^\circ, \theta_{min} = 2.0^\circ$ $h = -10 \rightarrow 11$ $k = -31 \rightarrow 31$ $l = -13 \rightarrow 17$

Secondary atom site location: difference Fourier map Hydrogen site location: difmap and geom H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0439P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.003$ $\Delta\rho_{max} = 0.33$ e Å⁻³ $\Delta\rho_{min} = -0.33$ e Å⁻³ Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc²\lambda³/sin(2 θ)]^{-1/4} Extinction coefficient: 0.0020 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Zn1	0.33893 (2)	0.623507 (7)	0.237913 (15)	0.03005 (6)
C1	0.1319 (2)	0.60512 (7)	-0.02782 (14)	0.0364 (3)
H1	0.0961	0.6476	-0.0244	0.044*
C2	0.0793 (2)	0.57113 (8)	-0.13292 (14)	0.0403 (4)
H2	0.0102	0.5909	-0.1976	0.048*
C3	0.1306 (2)	0.50902 (8)	-0.13923 (14)	0.0404 (4)
Н3	0.0968	0.4861	-0.2085	0.049*
C4	0.2347 (2)	0.47943 (7)	-0.04095 (14)	0.0334 (3)
C5	0.2931 (2)	0.41444 (8)	-0.03885 (16)	0.0427 (4)
Н5	0.2646	0.3897	-0.1064	0.051*
C6	0.3888 (2)	0.38816 (7)	0.05892 (17)	0.0431 (4)
H6	0.4217	0.3453	0.0586	0.052*
C7	0.4409 (2)	0.42541 (7)	0.16389 (15)	0.0358 (3)
C8	0.5440 (2)	0.40106 (8)	0.26720 (17)	0.0450 (4)
H8	0.5773	0.3582	0.2717	0.054*
C9	0.5954 (2)	0.44054 (9)	0.36141 (16)	0.0459 (4)
Н9	0.6635	0.4248	0.4304	0.055*
C10	0.5442 (2)	0.50485 (8)	0.35248 (14)	0.0379 (3)
H10	0.5813	0.5315	0.4165	0.046*
C11	0.39179 (18)	0.49022 (6)	0.16361 (13)	0.0286 (3)
C12	0.28227 (18)	0.51734 (6)	0.06063 (12)	0.0279 (3)
N1	0.23076 (16)	0.57902 (5)	0.06708 (11)	0.0301 (2)
N2	0.44485 (15)	0.52953 (5)	0.25652 (11)	0.0303 (2)
C13	-0.00108 (18)	0.62823 (6)	0.34393 (12)	0.0277 (3)
C14	0.00259 (18)	0.68935 (6)	0.27386 (12)	0.0275 (3)
C15	-0.1326 (2)	0.73519 (7)	0.25645 (16)	0.0410 (4)
H15	-0.2344	0.7311	0.2913	0.049*
C16	-0.1125 (2)	0.78746 (8)	0.18575 (18)	0.0504 (4)
H16	-0.2017	0.8187	0.1722	0.061*
C17	0.0402 (3)	0.79284 (7)	0.13578 (16)	0.0455 (4)
H17	0.0562	0.8280	0.0894	0.055*
C18	0.1689 (2)	0.74519 (7)	0.15580 (13)	0.0331 (3)
C19	0.3407 (2)	0.74316 (7)	0.10289 (15)	0.0403 (4)
N3	0.14862 (15)	0.69489 (5)	0.22351 (11)	0.0270 (2)
O1	0.13117 (14)	0.59104 (5)	0.34531 (10)	0.0343 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

O2	-0.13240 (14)	0.61879 (5)	0.39422 (11)	0.0406 (3)
03	0.44372 (15)	0.69665 (5)	0.13165 (11)	0.0438 (3)
O4	0.3601 (2)	0.78820 (7)	0.03632 (14)	0.0706 (4)
05	0.51776 (15)	0.65501 (7)	0.38119 (11)	0.0517 (3)
H51	0.4890	0.6765	0.4369	0.062*
H52	0.6293	0.6496	0.3895	0.062*
06	0.1270 (2)	0.45365 (6)	0.39703 (12)	0.0675 (4)
H61	0.1122	0.4382	0.4676	0.081*
H62	0.1229	0.4933	0.3996	0.081*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	<i>U</i> ³³	U^{12}	U^{13}	U ²³
Zn1	0.02840 (9)	0.02932 (9)	0.03322 (10)	0.00121 (6)	0.00758 (6)	-0.00367 (6)
C1	0.0365 (8)	0.0359 (7)	0.0356 (8)	-0.0011 (6)	0.0026 (6)	0.0014 (6)
C2	0.0397 (8)	0.0489 (9)	0.0304 (8)	-0.0058 (7)	0.0009 (6)	0.0023 (6)
C3	0.0398 (8)	0.0518 (9)	0.0299 (8)	-0.0124 (7)	0.0066 (6)	-0.0098 (7)
C4	0.0307 (7)	0.0372 (7)	0.0343 (8)	-0.0080(5)	0.0115 (6)	-0.0084 (6)
C5	0.0448 (9)	0.0384 (8)	0.0478 (10)	-0.0078 (7)	0.0159 (7)	-0.0168 (7)
C6	0.0452 (9)	0.0294 (7)	0.0584 (12)	-0.0002 (6)	0.0191 (8)	-0.0088 (7)
C7	0.0331 (7)	0.0308 (7)	0.0466 (9)	0.0018 (5)	0.0154 (6)	0.0011 (6)
C8	0.0435 (9)	0.0368 (8)	0.0570 (11)	0.0098 (7)	0.0153 (8)	0.0104 (7)
C9	0.0425 (9)	0.0519 (9)	0.0435 (10)	0.0109 (7)	0.0082 (7)	0.0154 (8)
C10	0.0349 (8)	0.0462 (8)	0.0323 (8)	0.0029 (6)	0.0044 (6)	0.0031 (6)
C11	0.0258 (6)	0.0300 (6)	0.0320 (7)	-0.0007(5)	0.0108 (5)	-0.0010 (5)
C12	0.0261 (6)	0.0297 (6)	0.0295 (7)	-0.0038 (5)	0.0098 (5)	-0.0030 (5)
N1	0.0303 (6)	0.0293 (5)	0.0306 (6)	-0.0012 (4)	0.0053 (5)	-0.0013 (4)
N2	0.0284 (6)	0.0336 (6)	0.0294 (6)	0.0014 (4)	0.0067 (5)	-0.0007 (5)
C13	0.0253 (6)	0.0286 (6)	0.0296 (7)	-0.0032 (5)	0.0059 (5)	0.0008 (5)
C14	0.0266 (6)	0.0261 (6)	0.0302 (7)	-0.0011 (5)	0.0061 (5)	-0.0001 (5)
C15	0.0320 (8)	0.0363 (8)	0.0562 (11)	0.0061 (6)	0.0115 (7)	0.0057 (7)
C16	0.0444 (9)	0.0373 (8)	0.0687 (13)	0.0108 (7)	0.0074 (9)	0.0118 (8)
C17	0.0581 (10)	0.0305 (7)	0.0473 (10)	0.0015 (7)	0.0079 (8)	0.0118 (7)
C18	0.0424 (8)	0.0281 (6)	0.0301 (8)	-0.0053 (5)	0.0101 (6)	-0.0003 (5)
C19	0.0545 (10)	0.0337 (7)	0.0378 (9)	-0.0149 (7)	0.0220 (7)	-0.0065 (6)
N3	0.0304 (6)	0.0245 (5)	0.0275 (6)	-0.0028 (4)	0.0085 (4)	-0.0001 (4)
01	0.0318 (5)	0.0315 (5)	0.0415 (6)	0.0048 (4)	0.0116 (4)	0.0084 (4)
O2	0.0311 (5)	0.0464 (6)	0.0479 (7)	0.0020 (4)	0.0172 (5)	0.0117 (5)
O3	0.0432 (6)	0.0425 (6)	0.0522 (7)	-0.0105 (5)	0.0261 (6)	-0.0087 (5)
O4	0.0981 (12)	0.0538 (8)	0.0732 (10)	-0.0133 (8)	0.0514 (9)	0.0159 (7)
O5	0.0281 (5)	0.0790 (9)	0.0480 (7)	0.0034 (5)	0.0072 (5)	-0.0315 (6)
O6	0.1085 (12)	0.0482 (7)	0.0422 (8)	-0.0068 (8)	0.0035 (8)	0.0062 (6)

Geometric parameters (Å, °)

Zn1—O5	2.0513 (11)	C10—N2	1.3290 (19)
Zn1—N3	2.0540 (11)	C10—H10	0.9300
Zn1—N2	2.1168 (11)	C11—N2	1.3566 (18)

Zn1—O3	2.1941 (11)	C11—C12	1.441 (2)
Zn1—N1	2.2071 (12)	C12—N1	1.3522 (17)
Zn1—O1	2.2651 (10)	C13—O2	1.2471 (17)
C1—N1	1.3304 (19)	C13—O1	1.2602 (16)
C1—C2	1.404 (2)	C13—C14	1.5165 (18)
C1—H1	0.9300	C14—N3	1 3357 (17)
C^2 C^3	1.360(2)	C14 $C15$	1.3357(17) 1.3857(10)
C2_C3	0.0200	$C_{14} = C_{15}$	1.3857(19)
	0.9300	C15_U15	1.369 (2)
C3-C4	1.406 (2)		0.9300
С3—Н3	0.9300	C16—C17	1.378 (3)
C4—C12	1.411 (2)	C16—H16	0.9300
C4—C5	1.427 (2)	C17—C18	1.380 (2)
C5—C6	1.347 (3)	C17—H17	0.9300
С5—Н5	0.9300	C18—N3	1.3364 (18)
C6—C7	1.438 (2)	C18—C19	1.524 (2)
С6—Н6	0.9300	C19—O4	1.241 (2)
C7—C8	1.402 (2)	C19—O3	1.251 (2)
C7-C11	14043(19)	O5—H51	0 8444
C_{8} C_{9}	1 368 (3)	05 H52	0.8348
C_{0}	0.0200	06 1161	0.0076
	0.9300		0.9030
C9—C10	1.397 (2)	00—H02	0.8296
С9—Н9	0.9300		
$O5 - 7\pi 1 = N2$	100 40 (5)	C0 C10 H10	119.6
$05 - 2 \times 1$ N2	100.40(3)	C9-C10-H10	110.0
05—Zn1—N2	91.97 (5)	N2-C11-C7	122.84 (13)
N3—Zn1—N2	157.96 (5)	N2	117.59 (12)
O5—Zn1—O3	88.88 (5)	C7—C11—C12	119.57 (13)
N3—Zn1—O3	76.23 (4)	N1—C12—C4	123.27 (13)
N2—Zn1—O3	122.56 (4)	N1-C12-C11	117.21 (12)
O5—Zn1—N1	161.00 (5)	C4—C12—C11	119.52 (13)
N3—Zn1—N1	95.27 (5)	C1—N1—C12	118.00 (13)
N2—Zn1—N1	76.86 (4)	C1—N1—Zn1	129.14 (10)
O3—Zn1—N1	84.46 (4)	C12—N1—Zn1	112.79 (9)
05 - 7n1 - 01	94 01 (5)	C10—N2—C11	118 10 (13)
$N_3 = 7n_1 = 01$	73 99 (4)	C10 - N2 - 7n1	126.27(10)
$N_2 = 7n_1 = 01$	87 11 <i>(1</i>)	C_{11} N2 Z_{n1}	126.27(10) 115.30(0)
$n_2 - 2n_1 - 0_1$	57.11(4)	$C_1 = N_2 = 2 III$ $C_2 = C_1^2 = C_1^2$	113.39(9) 125.76(12)
03-211-01	130.12(4)	02 - C13 - C14	123.70(13)
NI = 2nI = 0I	100.63 (4)	02C13C14	118.26 (12)
NI-CI-C2	122.61 (14)	01	115.98 (12)
N1—C1—H1	118.7	N3—C14—C15	120.99 (13)
C2—C1—H1	118.7	N3—C14—C13	113.59 (11)
C3—C2—C1	119.37 (15)	C15—C14—C13	125.36 (13)
С3—С2—Н2	120.3	C14—C15—C16	118.47 (15)
С1—С2—Н2	120.3	C14—C15—H15	120.8
C2—C3—C4	119.96 (14)	C16—C15—H15	120.8
С2—С3—Н3	120.0	C17—C16—C15	119.76 (15)
С4—С3—Н3	120.0	C17—C16—H16	120.1
C3—C4—C12	116.78 (14)	C15—C16—H16	120.1
	···· · (- ·/		

C3—C4—C5	123.97 (14)	C16—C17—C18	118.83 (15)
C12—C4—C5	119.24 (15)	C16—C17—H17	120.6
C6—C5—C4	121.35 (15)	C18—C17—H17	120.6
С6—С5—Н5	119.3	N3—C18—C17	121.16 (14)
C4—C5—H5	119.3	N3—C18—C19	113.96 (13)
C5—C6—C7	120.97 (14)	C17—C18—C19	124.86 (14)
C5—C6—H6	119.5	04	128.30 (16)
C7—C6—H6	119.5	04-C19-C18	115 38 (16)
C8-C7-C11	117.27 (15)	03-C19-C18	116.32 (13)
C_{8} C_{7} C_{6}	123 47 (14)	C14 - N3 - C18	120.77(12)
C_{11} C_{7} C_{6}	129.47(14) 110.23(15)	C14 N3 $7n1$	120.77(12) 121.07(0)
$C_{1}^{0} C_{2}^{0} C_{3}^{0} C_{7}^{0}$	119.23(15) 110.82(15)	C18 N3 7n1	121.07(9)
$C_{2} = C_{3} = C_{1}$	119.62 (15)	$C_{10} = N_{3} = Z_{111}$	116.01(10) 115.20(0)
C_{2}	120.1	$C_{13} = 01 = 2III$	115.29(9)
C^{2}	120.1		113.10 (9)
	119.08 (16)	Zn1—05—H51	124.6
C8—C9—H9	120.5	Zn1—05—H52	123.5
С10—С9—Н9	120.5	H51—O5—H52	111.8
N2—C10—C9	122.86 (16)	H61—O6—H62	108.3
N2—C10—H10	118.6		
N1—C1—C2—C3	0.0 (3)	O5—Zn1—N2—C11	-167.15 (10)
C1—C2—C3—C4	0.2 (2)	N3—Zn1—N2—C11	68.34 (17)
C2—C3—C4—C12	-0.6 (2)	O3—Zn1—N2—C11	-77.22 (11)
C2—C3—C4—C5	179.33 (15)	N1—Zn1—N2—C11	-2.68 (9)
C3—C4—C5—C6	-178.27 (16)	O1—Zn1—N2—C11	98.94 (10)
C12—C4—C5—C6	1.7 (2)	O2-C13-C14-N3	-179.99 (13)
C4—C5—C6—C7	-2.1 (3)	O1—C13—C14—N3	-0.28 (18)
C5—C6—C7—C8	-178.44 (16)	O2—C13—C14—C15	-2.8 (2)
C5—C6—C7—C11	-0.4 (2)	O1—C13—C14—C15	176.89 (14)
C11—C7—C8—C9	-1.3 (2)	N3—C14—C15—C16	-0.4 (2)
C6—C7—C8—C9	176.75 (16)	C13—C14—C15—C16	-177.33 (15)
C7—C8—C9—C10	-0.2(3)	C14—C15—C16—C17	-0.5(3)
C8-C9-C10-N2	1.0(3)	C_{15} C_{16} C_{17} C_{18}	1.1(3)
C8-C7-C11-N2	2, 2, (2)	$C_{16} - C_{17} - C_{18} - N_{3}$	-0.8(3)
C6-C7-C11-N2	-17590(14)	$C_{16} - C_{17} - C_{18} - C_{19}$	177 52 (16)
$C_{8} - C_{7} - C_{11} - C_{12}$	-17855(13)	N_{3} C_{18} C_{19} O_{4}	177.62 (15)
C6-C7-C11-C12	33(2)	C_{17} C_{18} C_{19} O_{4}	-0.8(2)
C_{0} C_{1} C_{12} N_{1}	0.9(2)	$N_{3} = C_{18} = C_{19} = O_{3}$	-23(2)
$C_{5} = C_{4} = C_{12} = N_{1}$	-170.06(13)	$C_{17} = C_{18} = C_{19} = 0.03$	2.3(2)
$C_{3} = C_{4} = C_{12} = N_{1}$	-178.00(13)	$C_{17} = C_{18} = C_{19} = 0.5$	1/9.21(13)
$C_{5} = C_{4} = C_{12} = C_{11}$	-1/8.80(13)	C13 - C14 - N3 - C18	0.0(2)
C_{3}	1.2(2)	C15 - C14 - N3 - C18	174.99 (12)
$N_2 = C_1 = C_1 = N_1$	-4.18 (18)	C12 = C14 = N3 = Zn1	-1/4.88(11)
U/UIIUI2NI	1/0.5/(13)	C13 - C14 - N3 - Zn1	2.42 (16)
N2-C11-C12-C4	1/5.54 (12)	C1/-C18-N3-C14	0.0 (2)
C/-C11-C12-C4	-5.7(2)	C19—C18—N3—C14	-178.55 (12)
C2—C1—N1—C12	0.2 (2)	C1/—C18—N3—Zn1	1/5.63 (12)
C2— $C1$ — $N1$ — $Zn1$	177.03 (11)	C19—C18—N3—Zn1	-2.91 (16)
C4—C12—N1—C1	-0.7(2)	O5—Zn1—N3—C14	-93.69 (11)

C11—C12—N1—C1	179.00 (13)	N2—Zn1—N3—C14	29.46 (19)
C4—C12—N1—Zn1	-178.02 (11)	O3—Zn1—N3—C14	-179.93 (11)
C11—C12—N1—Zn1	1.69 (15)	N1—Zn1—N3—C14	97.10 (11)
O5—Zn1—N1—C1	-121.17 (18)	O1—Zn1—N3—C14	-2.47 (10)
N3—Zn1—N1—C1	24.41 (13)	O5—Zn1—N3—C18	90.68 (11)
N2—Zn1—N1—C1	-176.46 (14)	N2—Zn1—N3—C18	-146.17 (12)
O3—Zn1—N1—C1	-51.16 (13)	O3—Zn1—N3—C18	4.44 (10)
O1—Zn1—N1—C1	99.07 (13)	N1—Zn1—N3—C18	-78.54 (11)
O5—Zn1—N1—C12	55.8 (2)	O1—Zn1—N3—C18	-178.10 (11)
N3—Zn1—N1—C12	-158.65 (9)	O2—C13—O1—Zn1	178.00 (12)
N2—Zn1—N1—C12	0.48 (9)	C14—C13—O1—Zn1	-1.69 (15)
O3—Zn1—N1—C12	125.78 (10)	O5—Zn1—O1—C13	101.89 (10)
O1—Zn1—N1—C12	-83.98 (9)	N3—Zn1—O1—C13	2.21 (10)
C9—C10—N2—C11	-0.1 (2)	N2—Zn1—O1—C13	-166.33 (10)
C9—C10—N2—Zn1	173.96 (12)	O3—Zn1—O1—C13	7.16 (15)
C7-C11-N2-C10	-1.5 (2)	N1—Zn1—O1—C13	-90.28 (10)
C12-C11-N2-C10	179.24 (13)	O4—C19—O3—Zn1	-173.96 (16)
C7—C11—N2—Zn1	-176.25 (11)	C18—C19—O3—Zn1	5.98 (17)
C12—C11—N2—Zn1	4.53 (16)	O5—Zn1—O3—C19	-106.75 (11)
O5—Zn1—N2—C10	18.64 (13)	N3—Zn1—O3—C19	-5.75 (11)
N3—Zn1—N2—C10	-105.88 (16)	N2—Zn1—O3—C19	161.63 (11)
O3—Zn1—N2—C10	108.56 (12)	N1—Zn1—O3—C19	91.06 (11)
N1-Zn1-N2-C10	-176.90 (13)	O1—Zn1—O3—C19	-10.66 (16)
O1—Zn1—N2—C10	-75.28 (12)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
0.84	1.79	2.6058 (17)	162
0.83	1.90	2.7162 (15)	167
0.90	1.98	2.8461 (18)	161
0.83	2.14	2.9356 (16)	160
	<i>D</i> —H 0.84 0.83 0.90 0.83	D—H H···A 0.84 1.79 0.83 1.90 0.90 1.98 0.83 2.14	DHH…AD…A0.841.792.6058 (17)0.831.902.7162 (15)0.901.982.8461 (18)0.832.142.9356 (16)

Symmetry codes: (i) x, -y+3/2, z+1/2; (ii) x+1, y, z; (iii) -x, -y+1, -z+1.