metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Cameron Evans,* Louis J. Farrugia and Marcus Tegel

West CHEM, Department of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, Scotland

Correspondence e-mail: cevans@chem.gla.ac.uk

Key indicators

Single-crystal X-ray study T = 100 KMean σ (C–C) = 0.003 Å R factor = 0.021 wR factor = 0.042 Data-to-parameter ratio = 34.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(*tert*-butyl isocyanide)- $1\kappa^2$ C-di- μ -carbonyl-2: $3\kappa^4$ C-octacarbonyl- $1\kappa^2$ C, $2\kappa^3$ C, $3\kappa^3$ C*triangulo*-diironosmium

The preparation of the mixed-metal cluster, $[Fe_2Os(C_5H_9N)_2(CO)_{10}]$, and its crystal structure at 100 K are reported. This complex, along with the cluster in the preceding paper, are the first structurally characterized substitution derivatives of $Fe_2Os(CO)_{12}$. The isonitrile ligands adopt axial positions on the osmium centre and the cluster is isostructural with the Fe_2Ru analogue.

Comment

The background to this study has been set out in the preceding paper (Evans *et al.*, 2006). We report here and in that paper the synthesis and structures of $\text{Fe}_2\text{Os}(\text{CO})_{12-n}(\text{CNBu}^t)_n$ (n = 1 and 2).

 $Fe_2Os(CO)_{10}(CNBu')_2$, (II), was prepared by carbonyl substitution of the parent $Fe_2Os(CO)_{12}$ cluster using standard methods (Farrugia & Mertes, 2002). The compound was characterized spectroscopically, by FAB mass spectrometry, and by single-crystal X-ray structure determination. The structure was determined at room temperature and 100 K with no discernible metal atom disorder at either temperature. As the structures at different temperatures are essentially identical, only the more precise low-temperature structure will be discussed here.

The structure of (II) at 100 K is shown in Fig. 1. Both isonitrile ligands adopt axial positions on the Os atom, identical to that reported for the Fe₂Ru analogue but contrasting with Fe₃(CO)₁₀(CNBu')₂ [where one isonitrile is axial and the other equatorial (Murray *et al.*, 1990)] and $M_3(CO)_{10}(CNR)_2$ [M = Ru and Os; R = Bu' and Me] (Dawson *et al.*, 1982; Bruce *et al.*, 1983; Farrugia *et al.*, 1998), where the two isonitrile ligands are axial but attached to different metal centres. The average Fe–Os distance [2.7590 (3) Å] and Fe–Fe distance [2.5738 (3) Å] are longer than those reported (Farrugia & Mertes, 2002) for the ruthenium analogue [Ru–Fe = 2.7527 (3) Å and Fe–Fe = 2.5678 (2) Å]. Two carbonyl ligands symmetrically bridge the Fe–Fe bond [$\delta(M-C) = 0.009$ and 0.003 Å for C14 and C24, respectively].

© 2006 International Union of Crystallography All rights reserved

Received 24 January 2006 Accepted 3 February 2006

Experimental

Complex (II) was prepared in the same manner as reported for the ruthenium analogue (Farrugia & Mertes, 2002) by reaction of the parent carbonyl with a 1:2 molar ratio of isonitrile. The product was purified by chromatography on Florisil using hexane/CH₂Cl₂ mixtures as eluant. Crystals were obtained from a concentrated hexane solution at 25 K. Analysis calculated for C₂₀H₁₈Fe₂N₂O₁₀Os: C 32.10, H 2.42, N 3.74%; found: C 32.15, H 2.20, N 3.74%. IR [ν (CN), cm⁻¹] 2200 (νw), 2170 (m); IR [ν (CO), cm⁻¹] 2053 (w), 2021 (νs), 2015 (νs), 1981 (m), 1975 (m), 1901 (νw), 1834 (νw), 1802 (w). ¹H NMR: δ 1.54 (s, CH₃). Mass spectrum, m/z = 750.2 [M^+], 694.2 [M^+ – 3CO], 666.2 [M^+ – 3CO], 638.2 [M^+ – 4CO], 610.2 [M^+ – 5CO], 582.2 [M^+ – 6CO], 554.3 [M^+ – 7CO], 526.3 [M^+ – 8CO], 498.3 [M^+ – 9CO], 470.3 [M^+ – 10CO].

Crystal data

 $\begin{bmatrix} Fe_2Os(C_3H_9N)_2(CO)_{10} \end{bmatrix} \\ M_r = 748.26 \\ Monoclinic, P2_1/a \\ a = 11.6903 (2) Å \\ b = 12.4357 (2) Å \\ c = 17.6041 (3) Å \\ \beta = 91.753 (1)^{\circ} \\ V = 2558.03 (7) Å^3 \\ Z = 4 \\ \end{bmatrix}$

 $D_x = 1.943 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 11369 reflections $\theta = 2.2-35.0^{\circ}$ $\mu = 6.13 \text{ mm}^{-1}$ T = 100 (2) KPrism, purple $0.3 \times 0.3 \times 0.2 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer9945 reflections with $I > 2\sigma(I)$ φ or ω scans $R_{int} = 0.032$ Absorption correction: multi-scan $\theta_{max} = 35.0^{\circ}$ (Blessing, 1995) $h = -18 \rightarrow 18$ $T_{min} = 0.197, T_{max} = 0.294$ $k = -20 \rightarrow 20$ 64585 measured reflections $l = -27 \rightarrow 28$ 10967 independent reflections $l = -27 \rightarrow 28$

Refinement

 Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.0113P)^2$
 $R[F^2 > 2\sigma(F^2)] = 0.021$ + 1.9594P]

 $wR(F^2) = 0.042$ where $P = (F_o^2 + 2F_c^2)/3$

 S = 1.1 $(\Delta/\sigma)_{max} = 0.002$

 10967 reflections
 $\Delta\rho_{max} = 1.28 \text{ e Å}^{-3}$

 317 parameters
 $\Delta\rho_{min} = -0.94 \text{ e Å}^{-3}$

 H-atom parameters constrained
 Extinction correction: SHELXL97

 Extinction coefficient: 0.00024 (4)

All H atoms were placed in calculated positions and refined using a riding model [C-H = 0.98 Å and U_{iso} (H) = $1.5U_{eq}$ (C)]. The highest features in the difference map are associated with the Os atom.

Data collection: *COLLECT* (Nonius, 2000); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *SCALEPACK* and *DENZO* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Figure 1

A view of $Fe_2Os(CO)_{10}(CNBu')_2$, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level, with H atoms represented by circles of arbitrary size.

CE thanks the New Zealand Foundation for Research, Science and Technology for a Postdoctoral Research Fellowship (contract No. UOGX0201).

References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Bruce, M. I., Matisons, J. G., Wallis, R. C., Patrick, J. M., Skelton, B. W. & White, A. H. (1983). J. Chem. Soc. Dalton Trans. pp. 2365–2373.
- Dawson, P. A., Johnson, B. F. G., Lewis, J., Puga, J., Raithby, P. R. & Rosales, M. J. (1982). J. Chem. Soc. Dalton Trans. pp. 233–235.
- Evans, C., Farrugia, L. J. & Tegel, M. (2006). Acta Cryst. E62, m475-m477.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Farrugia, L. J. & Mertes, P. (2002). J. Cluster Sci. 13, 199-213.
- Farrugia, L. J., Rosenhahn, C. & Whitworth, S. (1998). J. Cluster Sci. 9, 505– 528.
- Murray, J. B., Nicholson, B. K. & Whitton, A. J. (1990). J. Organomet. Chem. 385, 91–100.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supporting information

Acta Cryst. (2006). E62, m478-m479 [https://doi.org/10.1107/S1600536806004247]

Bis(*tert*-butyl isocyanide)- $1\kappa^2$ C-di- μ -carbonyl- $2:3\kappa^4$ C-octacarbonyl- $1\kappa^2$ C, $2\kappa^3$ C, $3\kappa^3$ C-*triangulo*-diironosmium

Cameron Evans, Louis J. Farrugia and Marcus Tegel

Bis(tert-butyl isocyanide)- $1\kappa^2$ C-di- μ -carbonyl- $2:3\kappa^4$ C-octacarbonyl- $1\kappa^2$ C, $2\kappa^3$ C, $3\kappa^3$ C-triangulo-diironosmium

Crystal data

[Fe₂Os(C₅H₉N)₂(CO)₁₀] $M_r = 748.26$ Monoclinic, P2₁/a Hall symbol: -P 2yab a = 11.6903 (2) Å b = 12.4357 (2) Å c = 17.6041 (3) Å $\beta = 91.753$ (1)° V = 2558.03 (7) Å³ Z = 4

Data collection

KappaCCD diffractometer Graphite monochromator CCD rotation images, thick slices scans Absorption correction: multi-scan (Blessing, 1995) $T_{min} = 0.197, T_{max} = 0.294$ 64585 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.021$ $wR(F^2) = 0.042$ S = 1.110967 reflections 317 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 1440 $D_x = 1.943 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 11369 reflections $\theta = 2.2-35.0^{\circ}$ $\mu = 6.13 \text{ mm}^{-1}$ T = 100 KPrism, purple $0.3 \times 0.3 \times 0.2 \text{ mm}$

10967 independent reflections 9945 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 35.0^{\circ}, \ \theta_{min} = 2.4^{\circ}$ $h = -18 \rightarrow 18$ $k = -20 \rightarrow 20$ $l = -27 \rightarrow 28$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0113P)^2 + 1.9594P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 1.28 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.94 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL97, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.00024 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso} * / U_{\rm eq}$ х Zv 0.078714 (5) 0.01175 (2) Os1 0.796803 (5) 0.264536(3) Fe1 0.01250 (4) 0.715245 (19) -0.128082(18)0.246561 (13) Fe2 0.567762 (19) 0.024601 (19) 0.256179 (14) 0.01351 (4) N1 0.79148 (13) 0.09910 (12) 0.08484 (9) 0.0182 (3) 0.44331 (9) N2 0.79307 (13) 0.04302 (13) 0.0176(3)O11 0.59757 (13) -0.33642(11)0.23028(9)0.0249(3)012 0.88483 (13) -0.14605(12)0.12654 (8) 0.0261 (3) O13 0.88504 (13) -0.19340(12)0.36481 (9) 0.0270(3)O14 0.58792 (12) -0.07302(11)0.10291 (8) 0.0207(2)O21 0.33447(12)-0.06186(13)0.23777 (10) 0.0294(3)O22 0.53743 (15) 0.20690 (13) 0.15018 (10) 0.0320(3)O23 0.53714 (14) 0.17035 (13) 0.38615 (9) 0.0308(3)O24 0.39045 (8) 0.58865 (12) -0.12054(11)0.0212(2)031 0.79104 (13) 0.28107 (9) 0.32166 (11) 0.0265 (3) 0.0273 (3) 032 1.05737 (12) 0.07111 (12) 0.26688 (10) C1 0.79257 (14) 0.09169 (13) 0.15043 (10) 0.0149(3)C2 0.37818 (10) 0.0158 (3) 0.79353 (14) 0.05589 (13) C11 0.64394 (15) -0.25598(14)0.23622 (10) 0.0166(3)C12 0.81911 (15) -0.13642(14)0.17307 (10) 0.0180(3)C13 0.81919 (15) -0.16485(14)0.31989 (10) 0.0180(3)C14 0.61172 (14) -0.06415(13)0.16762 (10) 0.0163(3)C21 0.42448 (15) -0.02751(14)0.24587 (10) 0.0182(3)C22 0.55314 (15) 0.13531 (15) 0.19031 (11) 0.0201 (3) C23 0.0202 (3) 0.55223 (15) 0.11236 (15) 0.33704 (11) C24 0.61162 (14) -0.09012(14)0.32994 (10) 0.0168(3)C31 0.79279 (14) 0.22992 (14) 0.27532 (10) 0.0170(3)C32 0.95936 (15) 0.07170(13) 0.26613 (10) 0.0168 (3) C100 0.78631 (17) 0.10920 (16) 0.00192 (10) 0.0206(3)C101 0.6633(2)0.1395(2)-0.02095(14)0.0380(6) H11A 0.6444 0.2092 0.0015 0.057* H11B 0.6109 0.0845 -0.00250.057* H11C 0.6557 0.1443 -0.07640.057* C102 0.00110 (19) -0.03189(13)0.0362(5)0.8185 (3) H12A 0.7626 -0.0533-0.01750.054* H12B 0.8948 -0.0199-0.01260.054*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

H12C	0.819	0.0069	-0.0874	0.054*
C103	0.8706 (2)	0.19684 (19)	-0.01871 (13)	0.0317 (5)
H13A	0.8473	0.2651	0.0039	0.048*
H13B	0.8716	0.2044	-0.0741	0.048*
H13C	0.9473	0.1775	0.0008	0.048*
C200	0.78282 (16)	0.02367 (16)	0.52508 (10)	0.0203 (3)
C201	0.8067 (2)	-0.09521 (18)	0.53928 (12)	0.0321 (5)
H21A	0.7491	-0.1386	0.5117	0.048*
H21B	0.8035	-0.1102	0.5938	0.048*
H21C	0.8829	-0.1132	0.5214	0.048*
C202	0.6608 (2)	0.0530 (2)	0.54526 (13)	0.0358 (5)
H22A	0.6068	0.0062	0.5174	0.054*
H22B	0.6457	0.1281	0.5314	0.054*
H22C	0.6515	0.0437	0.6	0.054*
C203	0.8706 (2)	0.0943 (2)	0.56696 (12)	0.0328 (5)
H23A	0.9478	0.073	0.5529	0.049*
H23B	0.8629	0.0857	0.6219	0.049*
H23C	0.8576	0.1697	0.553	0.049*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Os1	0.01157 (3)	0.01227 (3)	0.01136 (3)	-0.00138 (2)	-0.00030 (2)	0.00027 (2)
Fe1	0.01141 (9)	0.01120 (9)	0.01485 (10)	0.00009 (7)	-0.00012 (7)	-0.00092 (7)
Fe2	0.01043 (9)	0.01270 (9)	0.01735 (10)	0.00028 (7)	-0.00046 (8)	-0.00107 (8)
N1	0.0176 (6)	0.0210 (7)	0.0161 (6)	-0.0007 (5)	0.0000 (5)	0.0036 (5)
N2	0.0175 (6)	0.0206 (7)	0.0148 (6)	-0.0028 (5)	-0.0002 (5)	-0.0020 (5)
O11	0.0254 (7)	0.0174 (6)	0.0317 (8)	-0.0042 (5)	-0.0045 (6)	0.0005 (5)
O12	0.0241 (7)	0.0309 (7)	0.0237 (7)	0.0057 (6)	0.0058 (5)	-0.0002 (6)
O13	0.0269 (7)	0.0290 (7)	0.0246 (7)	0.0034 (6)	-0.0082 (6)	0.0002 (6)
O14	0.0216 (6)	0.0230 (6)	0.0173 (6)	0.0020 (5)	-0.0034 (5)	-0.0020 (5)
O21	0.0170 (6)	0.0325 (8)	0.0388 (9)	-0.0052 (5)	0.0000 (6)	-0.0067 (6)
O22	0.0361 (8)	0.0272 (7)	0.0329 (8)	0.0083 (6)	0.0025 (7)	0.0084 (6)
O23	0.0309 (8)	0.0314 (8)	0.0300 (8)	0.0043 (6)	-0.0008 (6)	-0.0121 (6)
O24	0.0224 (6)	0.0236 (6)	0.0179 (6)	-0.0021 (5)	0.0028 (5)	0.0013 (5)
O31	0.0250 (7)	0.0162 (6)	0.0383 (8)	-0.0008(5)	0.0025 (6)	-0.0014 (5)
O32	0.0152 (6)	0.0293 (7)	0.0375 (8)	0.0000 (5)	-0.0006(5)	0.0005 (6)
C1	0.0122 (6)	0.0147 (7)	0.0177 (7)	-0.0004 (5)	-0.0001 (5)	0.0012 (5)
C2	0.0146 (7)	0.0162 (7)	0.0165 (7)	-0.0022 (5)	-0.0001 (5)	-0.0010 (5)
C11	0.0181 (7)	0.0160 (7)	0.0156 (7)	0.0018 (5)	-0.0028 (5)	0.0003 (5)
C12	0.0168 (7)	0.0183 (7)	0.0188 (7)	0.0023 (6)	-0.0011 (6)	0.0013 (6)
C13	0.0177 (7)	0.0177 (7)	0.0186 (7)	-0.0006 (6)	-0.0004 (6)	-0.0008 (6)
C14	0.0135 (7)	0.0159 (7)	0.0195 (7)	-0.0010 (5)	-0.0002 (5)	0.0002 (5)
C21	0.0165 (7)	0.0188 (7)	0.0194 (8)	0.0006 (6)	0.0007 (6)	-0.0022 (6)
C22	0.0179 (7)	0.0200 (8)	0.0226 (8)	0.0033 (6)	0.0013 (6)	-0.0012 (6)
C23	0.0167 (7)	0.0207 (8)	0.0232 (8)	0.0015 (6)	-0.0014 (6)	-0.0017 (6)
C24	0.0147 (7)	0.0173 (7)	0.0184 (7)	-0.0026 (5)	-0.0010 (5)	-0.0019 (6)
C31	0.0142 (7)	0.0182 (7)	0.0188 (8)	-0.0014 (5)	0.0013 (6)	-0.0003 (6)

supporting information

C32	0.0164 (7)	0.0157 (7)	0.0182 (7)	-0.0002 (5)	-0.0007 (5)	0.0007 (6)
C100	0.0243 (8)	0.0244 (8)	0.0130 (7)	0.0007 (6)	-0.0001 (6)	0.0042 (6)
C101	0.0302 (11)	0.0592 (16)	0.0241 (10)	0.0038 (10)	-0.0075 (8)	0.0130 (10)
C102	0.0589 (16)	0.0281 (10)	0.0214 (10)	0.0033 (10)	-0.0012 (10)	-0.0045 (8)
C103	0.0414 (12)	0.0319 (11)	0.0222 (9)	-0.0078 (9)	0.0072 (8)	0.0065 (8)
C200	0.0223 (8)	0.0285 (9)	0.0102 (7)	-0.0030 (7)	0.0013 (6)	-0.0010 (6)
C201	0.0475 (13)	0.0293 (10)	0.0194 (9)	-0.0012 (9)	0.0018 (9)	0.0061 (7)
C202	0.0257 (10)	0.0606 (16)	0.0214 (10)	0.0030 (10)	0.0062 (8)	-0.0039 (9)
C203	0.0390 (12)	0.0418 (12)	0.0171 (8)	-0.0133 (10)	-0.0059 (8)	-0.0048 (8)

Geometric parameters (Å, °)

Os1—C31	1.8906 (18)	O24—C24	1.169 (2)
Os1—C32	1.9017 (17)	O31—C31	1.146 (2)
Os1—C1	2.0143 (17)	O32—C32	1.145 (2)
Os1—C2	2.0221 (17)	C100—C103	1.521 (3)
Os1—Fe1	2.7576 (2)	C100—C102	1.522 (3)
Os1—Fe2	2.7604 (2)	C100—C101	1.528 (3)
Fe1—C11	1.8023 (17)	C101—H11A	0.98
Fe1—C13	1.8044 (18)	C101—H11B	0.98
Fe1—C12	1.8041 (18)	C101—H11C	0.98
Fe1—C14	1.9812 (17)	C102—H12A	0.98
Fe1—C24	1.9884 (18)	C102—H12B	0.98
Fe1—Fe2	2.5738 (3)	C102—H12C	0.98
Fe2—C21	1.8000 (18)	C103—H13A	0.98
Fe2—C22	1.8047 (19)	C103—H13B	0.98
Fe2—C23	1.8073 (19)	C103—H13C	0.98
Fe2—C24	1.9858 (18)	C200—C202	1.525 (3)
Fe2—C14	1.9904 (18)	C200—C203	1.524 (3)
N1-C1	1.158 (2)	C200—C201	1.524 (3)
N1-C100	1.465 (2)	C201—H21A	0.98
N2—C2	1.158 (2)	C201—H21B	0.98
N2-C200	1.468 (2)	C201—H21C	0.98
O11—C11	1.141 (2)	C202—H22A	0.98
O12—C12	1.146 (2)	C202—H22B	0.98
O13—C13	1.143 (2)	C202—H22C	0.98
O14—C14	1.169 (2)	C203—H23A	0.98
O21—C21	1.141 (2)	C203—H23B	0.98
O22—C22	1.148 (2)	C203—H23C	0.98
O23—C23	1.144 (2)		
C31—Os1—C32	94.13 (7)	O12-C12-Fe1	177.30 (17)
C31—Os1—C1	91.18 (7)	O13—C13—Fe1	176.45 (16)
C32—Os1—C1	90.71 (7)	O14—C14—Fe1	140.12 (14)
C31—Os1—C2	92.23 (7)	O14—C14—Fe2	139.09 (14)
C32—Os1—C2	91.61 (7)	Fe1—C14—Fe2	80.79 (7)
C1—Os1—C2	175.73 (7)	O21—C21—Fe2	178.31 (17)
C31—Os1—Fe1	158.36 (5)	O22—C22—Fe2	175.85 (17)

C32—Os1—Fe1	107.50 (5)	O23—C23—Fe2	176.16 (17)
C1—Os1—Fe1	87.85 (5)	O24—C24—Fe2	140.02 (15)
C2—Os1—Fe1	88.03 (5)	O24—C24—Fe1	139.26 (15)
C31—Os1—Fe2	102.76 (5)	Fe2—C24—Fe1	80.73 (7)
C32—Os1—Fe2	163.11 (5)	O31—C31—Os1	179.18 (17)
C1—Os1—Fe2	88.41 (5)	O32—C32—Os1	177.73 (16)
C2—Os1—Fe2	88.33 (5)	N1-C100-C103	106.99 (16)
Fe1—Os1—Fe2	55.606 (7)	N1-C100-C102	108.10 (16)
C11—Fe1—C13	98.51 (8)	C103—C100—C102	111.69 (19)
C11—Fe1—C12	101.31 (8)	N1-C100-C101	107.07 (16)
C13—Fe1—C12	92.59 (8)	C103—C100—C101	111.83 (18)
C11—Fe1—C14	90.72 (7)	C102—C100—C101	110.9 (2)
C13—Fe1—C14	170.76 (7)	C100—C101—H11A	109.5
C12—Fe1—C14	85.99 (7)	C100-C101-H11B	109.5
C11—Fe1—C24	89.64 (7)	H11A—C101—H11B	109.5
C13—Fe1—C24	86.80 (8)	C100—C101—H11C	109.5
C12—Fe1—C24	168.99 (8)	H11A—C101—H11C	109.5
C14—Fe1—C24	92.84 (7)	H11B—C101—H11C	109.5
C11—Fe1—Fe2	110.43 (6)	C100—C102—H12A	109.5
C13—Fe1—Fe2	125.29 (6)	C100—C102—H12B	109.5
C12—Fe1—Fe2	123.81 (6)	H12A—C102—H12B	109.5
C14—Fe1—Fe2	49.76 (5)	C100—C102—H12C	109.5
C24—Fe1—Fe2	49.59 (5)	H12A—C102—H12C	109.5
C11—Fe1—Os1	172.65 (6)	H12B—C102—H12C	109.5
C13—Fe1—Os1	86.06 (6)	C100—C103—H13A	109.5
C12—Fe1—Os1	84.14 (6)	C100—C103—H13B	109.5
C14—Fe1—Os1	84.72 (5)	H13A—C103—H13B	109.5
C24—Fe1—Os1	84.85 (5)	C100—C103—H13C	109.5
Fe2—Fe1—Os1	62.253 (7)	H13A—C103—H13C	109.5
C21—Fe2—C22	98.07 (8)	H13B-C103-H13C	109.5
C21—Fe2—C23	100.44 (8)	N2-C200-C202	107.11 (16)
C22—Fe2—C23	92.04 (9)	N2-C200-C203	107.81 (16)
C21—Fe2—C24	91.61 (8)	C202—C200—C203	111.72 (18)
C22—Fe2—C24	170.28 (8)	N2-C200-C201	107.45 (15)
C23—Fe2—C24	87.07 (8)	C202—C200—C201	111.25 (19)
C21—Fe2—C14	89.04 (7)	C203—C200—C201	111.26 (18)
C22—Fe2—C14	86.64 (8)	C200—C201—H21A	109.5
C23—Fe2—C14	170.53 (8)	C200—C201—H21B	109.5
C24—Fe2—C14	92.64 (7)	H21A—C201—H21B	109.5
C21—Fe2—Fe1	110.55 (6)	C200—C201—H21C	109.5
C22—Fe2—Fe1	124.82 (6)	H21A—C201—H21C	109.5
C23—Fe2—Fe1	125.52 (6)	H21B—C201—H21C	109.5
C24—Fe2—Fe1	49.68 (5)	C200—C202—H22A	109.5
C14—Fe2—Fe1	49.45 (5)	C200—C202—H22B	109.5
C21—Fe2—Os1	172.43 (6)	H22A—C202—H22B	109.5
C22—Fe2—Os1	85.46 (6)	C200—C202—H22C	109.5
C23—Fe2—Os1	86.07 (6)	H22A—C202—H22C	109.5
C24—Fe2—Os1	84.82 (5)	H22B—C202—H22C	109.5

C14—Fe2—Os1	84.47 (5)	C200—C203—H23A	109.5
Fe1—Fe2—Os1	62.141 (7)	C200—C203—H23B	109.5
C1—N1—C100	178.22 (18)	H23A—C203—H23B	109.5
C2—N2—C200	175.33 (17)	C200—C203—H23C	109.5
N1—C1—Os1	179.22 (15)	H23A—C203—H23C	109.5
N2—C2—Os1	179.17 (15)	H23B—C203—H23C	109.5
O11—C11—Fe1	179.03 (17)		
C31—Os1—Fe1—C13	-135.44 (15)	C2-Os1-Fe2-C22	137.62 (8)
C32—Os1—Fe1—C13	46.72 (8)	Fe1—Os1—Fe2—C22	-133.62 (6)
C1—Os1—Fe1—C13	136.79 (7)	C31—Os1—Fe2—C23	-46.65 (8)
C2—Os1—Fe1—C13	-44.35 (7)	C32—Os1—Fe2—C23	135.29 (19)
Fe2—Os1—Fe1—C13	-133.67 (6)	C1—Os1—Fe2—C23	-137.49 (8)
C31—Os1—Fe1—C12	131.54 (15)	C2—Os1—Fe2—C23	45.26 (8)
C32—Os1—Fe1—C12	-46.30 (8)	Fe1—Os1—Fe2—C23	134.03 (6)
C1—Os1—Fe1—C12	43.77 (7)	C31—Os1—Fe2—C24	-134.06(7)
C2—Os1—Fe1—C12	-137.36(7)	C32—Os1—Fe2—C24	47.88 (19)
Fe2—Os1—Fe1—C12	133.32 (6)	C1—Os1—Fe2—C24	135.09 (7)
C31—Os1—Fe1—C14	45.04 (15)	C2—Os1—Fe2—C24	-42.15 (7)
C32—Os1—Fe1—C14	-132.80 (8)	Fe1—Os1—Fe2—C24	46.61 (5)
C1—Os1—Fe1—C14	-42.73 (7)	C31—Os1—Fe2—C14	132.77 (7)
C2—Os1—Fe1—C14	136.14 (7)	C32—Os1—Fe2—C14	-45.29 (19)
Fe2—Os1—Fe1—C14	46.82 (5)	C1—Os1—Fe2—C14	41.92 (7)
C31—Os1—Fe1—C24	-48.31 (15)	C2—Os1—Fe2—C14	-135.32 (7)
C32—Os1—Fe1—C24	133.86 (8)	Fe1—Os1—Fe2—C14	-46.56 (5)
C1—Os1—Fe1—C24	-136.07 (7)	C31—Os1—Fe2—Fe1	179.33 (5)
C2—Os1—Fe1—C24	42.79 (7)	C32—Os1—Fe2—Fe1	1.27 (18)
Fe2—Os1—Fe1—C24	-46.53 (5)	C1—Os1—Fe2—Fe1	88.48 (5)
C31—Os1—Fe1—Fe2	-1.77 (14)	C2—Os1—Fe2—Fe1	-88.76 (5)
C32—Os1—Fe1—Fe2	-179.61 (6)	C11—Fe1—C14—O14	-63.4 (2)
C1—Os1—Fe1—Fe2	-89.54 (5)	C12—Fe1—C14—O14	37.9 (2)
C2—Os1—Fe1—Fe2	89.32 (5)	C24—Fe1—C14—O14	-153.1 (2)
C11—Fe1—Fe2—C21	-2.83 (9)	Fe2—Fe1—C14—O14	-180.0 (2)
C13—Fe1—Fe2—C21	-120.02 (9)	Os1—Fe1—C14—O14	122.3 (2)
C12—Fe1—Fe2—C21	117.26 (9)	C11—Fe1—C14—Fe2	116.52 (7)
C14—Fe1—Fe2—C21	69.86 (9)	C12—Fe1—C14—Fe2	-142.18 (7)
C24—Fe1—Fe2—C21	-73.82 (9)	C24—Fe1—C14—Fe2	26.85 (6)
Os1—Fe1—Fe2—C21	177.85 (6)	Os1—Fe1—C14—Fe2	-57.71 (4)
C11—Fe1—Fe2—C22	-119.14 (9)	C21—Fe2—C14—O14	61.5 (2)
C13—Fe1—Fe2—C22	123.67 (10)	C22—Fe2—C14—O14	-36.6 (2)
C12—Fe1—Fe2—C22	0.95 (10)	C24—Fe2—C14—O14	153.1 (2)
C14—Fe1—Fe2—C22	-46.45 (10)	Fe1—Fe2—C14—O14	180.0 (2)
C24—Fe1—Fe2—C22	169.87 (10)	Os1—Fe2—C14—O14	-122.4 (2)
Os1—Fe1—Fe2—C22	61.54 (7)	C21—Fe2—C14—Fe1	-118.45 (7)
C11—Fe1—Fe2—C23	117.52 (10)	C22—Fe2—C14—Fe1	143.41 (7)
C13—Fe1—Fe2—C23	0.33 (10)	C24—Fe2—C14—Fe1	-26.88 (6)
C12—Fe1—Fe2—C23	-122.39 (10)	Os1—Fe2—C14—Fe1	57.65 (4)
C14—Fe1—Fe2—C23	-169.79 (10)	C21—Fe2—C24—O24	-63.6 (2)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	61.80 (8) 0.99 (9) 46.20 (9) 168.92 (9) 43.68 (9) 108.33 (6) 72.69 (9) 70.12 (9) 7.40 (9) 143.68 (9) 07.99 (6) 79.32 (6) 2.14 (7) 60.59 (7) 107.99 (6) 08.33 (6) 5.71 (8) 132.35 (19) 45.13 (7)	C14—Fe2—C24—O24 Fe1—Fe2—C24—O24 Os1—Fe2—C24—O24 C21—Fe2—C24—Fe1 C23—Fe2—C24—Fe1 C14—Fe2—C24—Fe1 Os1—Fe2—C24—Fe1 C11—Fe1—C24—O24 C13—Fe1—C24—O24 C12—Fe1—C24—O24 C14—Fe1—C24—O24 Os1—Fe1—C24—O24 C11—Fe1—C24—O24 C11—Fe1—C24—O24 C11—Fe1—C24—Fe2 C13—Fe1—C24—Fe2 C12—Fe1—C24—Fe2 C12—Fe1—C24—Fe2 Os1—Fe1—C24—Fe2 Os1—Fe1—C24—Fe2	$\begin{array}{c} -152.8 (2) \\ -179.5 (2) \\ 123.0 (2) \\ 115.89 (7) \\ -143.74 (7) \\ 26.78 (6) \\ -57.42 (4) \\ 61.9 (2) \\ -36.6 (2) \\ -123.7 (4) \\ 152.6 (2) \\ 179.5 (2) \\ -122.9 (2) \\ -117.62 (7) \\ 143.84 (7) \\ 56.7 (4) \\ -26.92 (6) \\ 57.51 (4) \end{array}$
--	--	---	--	---