Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Andrei S. Batsanov^{a*} and Igor F. Perepichka^b

^aDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, England, and ^bL. M. Litvinenko Institute of Physical Organic and Coal Chemistry, National Academy of Sciences of Ukraine, Donetsk 83114, Ukraine

Correspondence e-mail: a.s.batsanov@durham.ac.uk

Key indicators

Single-crystal X-ray study T = 110 K Mean σ (C–C) = 0.007 Å R factor = 0.067 wR factor = 0.172 Data-to-parameter ratio = 10.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Ethyl 9-dicyanomethylene-2,5,7-trinitrofluorene-4-carboxylate

The title compound, $C_{19}H_9N_5O_8$, has a warped fluorene ring system due to steric repulsion between the 4-ethoxycarbonyl and 5-nitro groups.

Received 24 January 2006 Accepted 26 January 2006

Comment

The title compound, (I), has been obtained in the course of our studies of electron acceptors of the fluorene series and their charge-transfer complexes and radical ion salts with π -electron donors, *e.g.* tetrathiafulvalene family donors (Perepichka *et al.*, 1998, 2000, 2002; Batsanov *et al.*, 2001, 2002; Kuz'mina *et al.*, 2002).

The molecular structure of (I) is strongly influenced by steric repulsion between the nitro and ethoxycarbonyl groups in positions 4 and 5, respectively. This overcrowding, indicated, for example, by the short (intramolecular) non-bonding distances N4···O5 [2.730 (5) Å] and C17···O4 [2.711 (6) Å], causes the above-mentioned substituents to tilt out of the fluorene plane in opposite directions. Furthermore, the fluorene aromatic system itself loses planarity and adopts a warped (twisted) conformation, the deviations (Å) of its C atoms from the mean plane being: C1 -0.186 (4), C2 -0.149(4), C3 0.135(4), C4 0.245(4), C5 -0.226(4), C6 -0.145 (4), C7 0.070 (4), C8 0.138 (4), C9 0.033 (4), C10 -0.039 (4), C11 0.060 (5), C12 -0.013 (5) and C13 0.078 (4). Similar distortions are typical for other fluorene derivatives with bulky substituents in positions 4 and 5, e.g. 9-dicyanomethylene-2,4,5,7-tetranitrofluorene (Silverman et al., 1974;

All rights reserved

© 2006 International Union of Crystallography

Figure 1

The molecular structure of (I). Atomic displacement ellipsoids are drawn at the 50% probability level.

Batsanov et al., 2001), 9-dicyanomethylene-4,5-dinitrofluorene-2,7-disulfonamide (Batsanov & Perepichka, 2004) or 9-dicyanomethylene-4-bromo-2,5,7-trinitrofluorene (Perepichka et al., 2002).

Experimental

To a suspension of 2,5,7-trinitro-9-oxofluorene-4-carboxylic acid (10.0 g, 27.8 mmol), (II), in thionyl chloride (50 ml) a catalytic amount of N,N-dimethylformamide (2 drops) was added. The mixture was refluxed for 2 h (full dissolution occurring in 15-20 min) and then evaporated under reduced pressure until dry. Ethanol (50 ml) was added to the residue, the mixture was refluxed for 3 h and left to cool for crystallization. The precipitate was filtered off, washed with cold ethanol (2 \times 20 ml) and dried to yield crude compound (III) (9.1 g, 84%; m.p. 426-430 K). This was dissolved in boiling dioxane (25 ml), filtered hot and the filtrate was diluted with hot ethanol (100 ml). On cooling, the solid was filtered off, washed with ethanol and dried. This procedure was repeated to give pure compound (III) (7.2 g, 67%) as yellow crystals (m.p. 434-435 K). ¹H NMR (200 MHz, acetone-d₆): δ 8.99 (1H, d, J = 2.0 Hz, H-3), 8.83 (1H, d, J = 2.0 Hz, H-6), 8.78 (1H, d, J = 2.2 Hz, H-8), 8.69 (1H, d, J = 2.2 Hz, H-1), 4.42 (2H, q, J = 7.2 Hz, CH2), 1.43 (3H, t, J = 7.2 Hz, CH3). ¹³C NMR (50 MHz, acetone- d_6): δ 186.21 (C=O), 165.44 (-CO₂-), 150.71, 150.56, 147.36, 144.19, 140.30, 140.08, 139.18, 132.90, 131.05, 126.38, 122.95, 122.00, 63.84 (CH₂), 14.32 (CH₃). MS (EI): m/z 387 (M⁺, 100%). HRMS (EI): m/z 387.03447; calculated exact mass: 387.03388. Analysis found: C 49.52, H 2.40, N 10.89%; C₁₆H₉N₃O₉ requires: C 49.62, H 2.34, N 10.85%.

Compound (III) (5.0 g, 12.9 mmol) was dissolved in N,Ndimethylformamide (25 ml), malonitrile (2.2 g, 33.3 mmol) was added to this solution and the mixture was stirred at room temperature for 1 h (the product began to precipitate in 30 min). 2-Propanol (100 ml) was added to the mixture and it was allowed to stand at 273 K for 1-2 h. The solid was filtered off, washed with 2-propanol and dried to yield crude compound (I) (5.2 g, 93%; m.p. 539-543 K). It was dissolved in boiling dioxane (75 ml), hot 2-propanol was added to the solution and the product left to crystallize. The solid was filtered off, washed with 2-propanol and dried. The purification procedure was repeated once more, to afford pure compound (I) (4.8 g, 85%) as bright-yellow crystals (m.p. 543-545 K). ¹H NMR (200 MHz, acetone- d_6 + half a drop CF₃CO₂D): δ 9.69 (1H, d, J = 2.0 Hz, H-8),

9.60 (1H, d, J = 2.0 Hz, H-1), 9.04 (1H, d, J = 2.0 Hz, H-6), 8.88 (1H, d J = 2.0 Hz, H-3), 4.43 (2H, q, J = 7.2 Hz, CH2), 1.44 (3H, t, J = 7.2 Hz, CH3). ¹³C NMR (100 MHz, acetone- d_6 + 0.5 drop CF₃CO₂D): δ 165.30 (-CO₂-), 154.81, 141.14, 140.14, 139.25, 137.49, 133.05, 130.49, 125.76, 124.75, 123.70, 121.52, 117.74, 113.96, 113.37, 113.32, 110.17, 63.96 (CH₂), 14.36 (CH₃). MS (EI): m/z 435 (M⁺, 100%). Analysis found: C 52.52, H 2.03, N 16.15%; C19H9N5O8 requires: C 52.42, H 2.08, N 16.09%. Compound (I) was dissolved in hot acetonitrile and left to cool slowly to yield single crystals of X-ray quality.

Crystal data

$C_{19}H_9N_5O_8$	$D_x = 1.615 \text{ Mg m}^{-3}$
$M_r = 435.31$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 1107
$a = 19.481 (2) \text{\AA}$	reflections
b = 8.620 (1) Å	$\theta = 3.1-22.6^{\circ}$
c = 10.814 (1) Å	$\mu = 0.13 \text{ mm}^{-1}$
$\beta = 99.40 \ (1)^{\circ}$	T = 110 (2) K
V = 1791.6 (3) Å ³	Prism, yellow
Z = 4	$0.18 \times 0.07 \times 0.07 \ \mathrm{mm}$

1518 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.126$ $\theta_{\text{max}} = 25.0^{\circ}$ $h = -13 \rightarrow 22$

 $k = -9 \rightarrow 10$ $l = -12 \rightarrow 12$

Data collection

Bruker SMART 1 K CCD areadetector diffractometer ω scans Absorption correction: none 7993 measured reflections 3079 independent reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0632P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.067$	+ 0.5406P]
$wR(F^2) = 0.172$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.03	$(\Delta/\sigma)_{\rm max} < 0.001$
3079 reflections	$\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$
292 parameters	$\Delta \rho_{\rm min} = -0.37 \text{ e} \text{ \AA}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXTL
-	Extinction coefficient: 0.018 (2)

Table 1

Selected geometric parameters (Å, °).

N15-C15	1.152 (6)	C10-C11	1.412 (6)
N16-C16	1.147 (6)	C11-C12	1.502 (7)
C9-C14	1.352 (7)	C12-C13	1.397 (7)
C9-C10	1.465 (7)	C14-C16	1.444 (7)
C9-C13	1.495 (6)	C14-C15	1.446 (7)
C2 C1 C10	116.0 (4)	C(CE C12	1177(5)
C2-C1-C10	110.9 (4)	0-05-012	117.7 (5)
$C_3 - C_2 - C_1$	123.3 (4)	C/-C6-C5	119.2 (5)
C2-C3-C4	118.0 (5)	C6 - C7 - C8	124.3 (5)
C3-C4-C11	121.4 (4)	C7-C8-C13	116.0 (5)

The diffraction was rather weak, with a mean $I/\sigma(I)$ ratio of 5.2. The methyl group was refined as a rigid body (C-H = 0.98 Å)rotating around the C–C bond, with a common (refined) U_{iso} value for all three H atoms. Other H atoms were treated as riding in idealized positions, with $Csp^3 - H = 0.99 \text{ Å}$ and $Csp^2 - H = 0.95 \text{ Å}$, and $U_{iso}(H) = 1.3U_{eq}(C)$ and $1.2U_{eq}(C)$, respectively.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank Professor M. R. Bryce for fruitful advice.

References

- Batsanov, A. S., Bryce, M. R., Lyubchik, S. B. & Perepichka, I. F. (2002). *Acta Cryst.* E58, o1106–o1110.
- Batsanov, A. S. & Perepichka, I. F. (2004). *Acta Cryst.* E60, o1892–o1894. Batsanov, A. S., Perepichka, I. F., Bryce, M. R. & Howard, J. A. K. (2001). *Acta*
- Cryst. C57, 1299–1302. Bruker (1997). SMART (Version 5.054) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT. Version 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.

- Kuz'mina, L. G., Perepichka, I. F., Perepichka, D. F., Howard, J. A. K. & Bryce, M. R. (2002). Crystallogr. Rep. 47, 251–261.
- Perepichka, D. F., Bryce, M. R., Perepichka, I. F., Lyubchik, S. B., Christensen, C. A., Godbert, N., Batsanov, A. S., Levillain, E., McInnes, E. J. L. & Zhao, J. P. (2002). J. Am. Chem. Soc. 124, 14227–14238.
- Perepichka, I. F., Kuz'mina, L. G., Perepichka, D. F., Bryce, M. R., Goldenberg, L. M., Popov, A. F. & Howard, J. A. K. (1998). J. Org. Chem. 63, 6484– 6493.
- Perepichka, I. F., Popov, A. F., Orekhova, T. V., Bryce, M. R., Andrievskii, A. M., Batsanov, A. S., Howard, J. A. K. & Sokolov, N. I. (2000). J. Org. Chem. 65, 3053–3063.
- Silverman, J., Yannoni, N. F. & Krukonis, A. P. (1974). Acta Cryst. B30, 1474–1480.

supporting information

Acta Cryst. (2006). E62, o885-o887 [https://doi.org/10.1107/S1600536806003175]

Ethyl 9-dicyanomethylene-2,5,7-trinitrofluorene-4-carboxylate

Andrei S. Batsanov and Igor F. Perepichka

Ethyl 9-dicyanomethylene-2,5,7-trinitrofluorene-4-carboxylate

Crystal data

 $C_{19}H_9N_5O_8$ $M_r = 435.31$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 19.481 (2) Å b = 8.620(1) Å c = 10.814(1) Å $\beta = 99.40 (1)^{\circ}$ V = 1791.6 (3) Å³ Z = 4

Data collection

Bruker SMART 1 K CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8 pixels mm⁻¹ ω scans 7993 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.067$ H-atom parameters constrained $wR(F^2) = 0.172$ S = 1.03where $P = (F_0^2 + 2F_c^2)/3$ 3079 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$ 292 parameters $\Delta \rho_{\rm min} = -0.37 \ {\rm e} \ {\rm \AA}^{-3}$ 0 restraints Extinction correction: SHELXTL. Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier Extinction coefficient: 0.018 (2) map

Special details

Experimental. The data collection nominally covered over a hemisphere of reciprocal space, by a combination of 4 sets of ω scans; each set at different φ and/or 2θ angles and each scan (46.5 sec exposure) covering 0.3° in ω . Crystal to detector distance 6.03 cm.

F(000) = 888 $D_{\rm x} = 1.615 {\rm Mg m^{-3}}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 1107 reflections $\theta = 3.1 - 22.6^{\circ}$ $\mu = 0.13 \text{ mm}^{-1}$ T = 110 KPrism, yellow $0.18 \times 0.07 \times 0.07 \text{ mm}$

3079 independent reflections 1518 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.126$ $\theta_{\rm max} = 25.0^{\circ}, \ \theta_{\rm min} = 2.1^{\circ}$ $h = -13 \rightarrow 22$ $k = -9 \rightarrow 10$ $l = -12 \rightarrow 12$

Hydrogen site location: inferred from $w = 1/[\sigma^2(F_o^2) + (0.0632P)^2 + 0.5406P]$ $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.53613 (17)	0.2322 (4)	0.2237 (4)	0.0309 (9)	
O2	0.55693 (17)	0.2996 (4)	0.4205 (3)	0.0321 (10)	
O3	0.34804 (18)	0.4135 (4)	0.6081 (3)	0.0330 (10)	
O4	0.28475 (17)	0.5939 (4)	0.5031 (3)	0.0293 (9)	
O5	0.21531 (18)	0.2915 (4)	0.4372 (3)	0.0323 (10)	
O6	0.13270 (17)	0.4589 (4)	0.4749 (3)	0.0302 (10)	
O7	-0.00294 (18)	0.6632 (5)	0.0855 (4)	0.0407 (11)	
08	0.04476 (17)	0.6932 (5)	-0.0813 (4)	0.0385 (11)	
N2	0.5196 (2)	0.2939 (5)	0.3175 (5)	0.0264 (11)	
N4	0.3258 (2)	0.4838 (5)	0.5107 (4)	0.0271 (11)	
N7	0.0466 (2)	0.6547 (5)	0.0287 (4)	0.0309 (12)	
N15	0.4359 (2)	0.4704 (5)	-0.1171 (4)	0.0264 (11)	
N16	0.2283 (2)	0.6451 (5)	-0.2394 (4)	0.0317 (12)	
C1	0.4162 (2)	0.4011 (6)	0.1842 (5)	0.0216 (12)	
H1	0.4389	0.3905	0.1133	0.026*	
C2	0.4497 (2)	0.3643 (5)	0.3044 (5)	0.0198 (12)	
C3	0.4208 (3)	0.3903 (6)	0.4109 (5)	0.0246 (12)	
H3	0.4471	0.3747	0.4920	0.029*	
C4	0.3523 (2)	0.4397 (5)	0.3960 (5)	0.0202 (12)	
C5	0.1783 (3)	0.4889 (6)	0.2876 (5)	0.0245 (13)	
C6	0.1152 (2)	0.5433 (6)	0.2194 (5)	0.0272 (13)	
H6	0.0741	0.5440	0.2561	0.033*	
C7	0.1136 (2)	0.5954 (6)	0.0985 (5)	0.0225 (12)	
C8	0.1697 (2)	0.5900 (6)	0.0349 (5)	0.0252 (13)	
H8	0.1657	0.6200	-0.0506	0.030*	
C9	0.3006 (2)	0.5089 (6)	0.0615 (5)	0.0206 (12)	
C10	0.3476 (2)	0.4543 (5)	0.1728 (4)	0.0190 (12)	
C11	0.3132 (2)	0.4608 (5)	0.2780 (4)	0.0191 (12)	
C12	0.2382 (3)	0.4980 (6)	0.2302 (5)	0.0237 (12)	
C13	0.2325 (2)	0.5381 (6)	0.1038 (5)	0.0204 (12)	
C14	0.3158 (2)	0.5339 (6)	-0.0545 (5)	0.0222 (12)	
C15	0.3831 (3)	0.4987 (6)	-0.0877 (5)	0.0224 (12)	
C16	0.2665 (3)	0.5949 (6)	-0.1573 (5)	0.0235 (12)	
C17	0.1782 (2)	0.4036 (6)	0.4085 (5)	0.0261 (13)	
C18	0.1288 (3)	0.3746 (6)	0.5921 (4)	0.0294 (14)	
H181	0.1753	0.3702	0.6450	0.038*	
H182	0.1123	0.2671	0.5734	0.038*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supporting information

C19	0.0786 (3)	0.4606 (7)	0.6594 (5)	0.0380 (15)	
H191	0.0952	0.5670	0.6766	0.049 (10)*	
H192	0.0753	0.4081	0.7385	0.049 (10)*	
H193	0.0327	0.4629	0.6066	0.049 (10)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
01	0.025 (2)	0.034 (2)	0.036 (2)	0.0071 (17)	0.0116 (17)	0.0019 (19)
O2	0.022 (2)	0.039 (3)	0.031 (2)	0.0037 (18)	-0.0046 (18)	0.0040 (18)
O3	0.034 (2)	0.044 (3)	0.019 (2)	0.0073 (19)	-0.0010 (16)	0.0118 (19)
O4	0.023 (2)	0.038 (2)	0.028 (2)	0.0037 (19)	0.0053 (16)	-0.0030 (18)
05	0.030 (2)	0.028 (2)	0.040 (2)	0.0083 (19)	0.0079 (17)	0.0064 (18)
O6	0.022 (2)	0.038 (2)	0.031 (2)	0.0013 (17)	0.0063 (17)	0.0005 (18)
O7	0.019 (2)	0.058 (3)	0.046 (3)	0.0080 (19)	0.0083 (19)	0.014 (2)
08	0.023 (2)	0.062 (3)	0.028 (2)	0.0122 (19)	-0.0031 (17)	0.006 (2)
N2	0.022 (2)	0.021 (3)	0.036 (3)	-0.001 (2)	0.004 (2)	0.006 (2)
N4	0.022 (3)	0.030 (3)	0.029 (3)	0.004 (2)	0.001 (2)	0.004 (2)
N7	0.020 (3)	0.039 (3)	0.033 (3)	0.005 (2)	0.001 (2)	0.005 (2)
N15	0.021 (3)	0.033 (3)	0.025 (3)	-0.001 (2)	0.005 (2)	-0.001 (2)
N16	0.025 (3)	0.040 (3)	0.030 (3)	0.003 (2)	0.004 (2)	0.003 (2)
C1	0.019 (3)	0.015 (3)	0.030 (3)	0.000 (2)	0.001 (2)	0.000 (2)
C2	0.019 (3)	0.013 (3)	0.028 (3)	0.003 (2)	0.005 (2)	0.003 (2)
C3	0.025 (3)	0.022 (3)	0.024 (3)	-0.002 (2)	-0.002 (2)	0.003 (2)
C4	0.021 (3)	0.015 (3)	0.023 (3)	0.002 (2)	0.001 (2)	-0.001 (2)
C5	0.019 (3)	0.028 (3)	0.028 (3)	0.003 (2)	0.008 (2)	0.001 (2)
C6	0.015 (3)	0.036 (4)	0.031 (3)	0.000 (2)	0.005 (2)	-0.003 (3)
C7	0.015 (3)	0.029 (3)	0.023 (3)	0.003 (2)	-0.001 (2)	0.000 (2)
C8	0.021 (3)	0.033 (3)	0.020 (3)	-0.004 (2)	-0.001 (2)	-0.001 (2)
C9	0.013 (3)	0.019 (3)	0.030 (3)	-0.002 (2)	0.003 (2)	-0.005 (2)
C10	0.014 (3)	0.019 (3)	0.023 (3)	-0.003 (2)	0.000 (2)	-0.002 (2)
C11	0.018 (3)	0.016 (3)	0.024 (3)	0.004 (2)	0.006 (2)	-0.001 (2)
C12	0.022 (3)	0.023 (3)	0.025 (3)	0.005 (2)	0.001 (2)	-0.002 (2)
C13	0.020 (3)	0.019 (3)	0.022 (3)	-0.002 (2)	0.001 (2)	-0.001 (2)
C14	0.021 (3)	0.022 (3)	0.024 (3)	-0.003 (2)	0.003 (2)	0.000 (2)
C15	0.023 (3)	0.025 (3)	0.018 (3)	-0.002 (2)	-0.002 (2)	0.003 (2)
C16	0.018 (3)	0.029 (3)	0.023 (3)	-0.001 (2)	0.001 (2)	-0.005 (3)
C17	0.012 (3)	0.032 (4)	0.034 (3)	-0.003 (3)	0.004 (2)	-0.002 (3)
C18	0.028 (3)	0.040 (4)	0.020 (3)	-0.004 (3)	0.001 (2)	0.007 (3)
C19	0.036 (3)	0.052 (4)	0.027 (3)	-0.007 (3)	0.010 (3)	0.002 (3)

Geometric parameters (Å, °)

01—N2	1.234 (5)	C5—C12	1.412 (7)	
O2—N2	1.228 (5)	C5—C17	1.500 (7)	
O3—N4	1.231 (5)	C6—C7	1.378 (7)	
O4—N4	1.235 (5)	С6—Н6	0.9500	
O5—C17	1.217 (6)	C7—C8	1.384 (6)	

supporting information

O6—C17	1.317 (6)	C8—C13	1.398 (7)
O6—C18	1.474 (6)	С8—Н8	0.9500
O7—N7	1.228 (5)	C9—C14	1.352 (7)
O8—N7	1.230 (5)	C9—C10	1.465 (7)
N2—C2	1.476 (6)	C9—C13	1.495 (6)
N4—C4	1.469 (6)	C10—C11	1.412 (6)
N7—C7	1.487 (6)	C11—C12	1.502 (7)
N15—C15	1.152 (6)	C12—C13	1.397 (7)
N16—C16	1.147 (6)	C14—C16	1.444 (7)
C1—C2	1.393 (6)	C14—C15	1.446 (7)
C1—C10	1.401 (6)	C18—C19	1.505 (7)
C1—H1	0.9501	C18—H181	0.9900
$C^2 - C^3$	1 381 (6)	C18—H182	0.9900
C3—C4	1 385 (6)	C19—H191	0.9800
C3—H3	0.9500	C19—H192	0.9800
C4-C11	1 388 (6)	C19—H193	0.9799
C5-C6	1.300(0) 1.407(7)		0.7777
05-00	1.407 (7)		
C17—O6—C18	115 1 (4)	C14-C9-C13	126 6 (4)
02 - N2 - 01	124 6 (4)	C10-C9-C13	120.0(1) 105 6 (4)
02 - N2 - C2	124.0(4) 118 1 (4)	C1 - C10 - C11	105.0(4) 120.9(4)
01 - N2 - C2	1173(4)	C1 - C10 - C9	120.5(4) 120.5(4)
03_N4_04	117.3(4) 124.7(4)	$C_{11} = C_{10} = C_{9}$	129.5(4) 109.6(4)
$O_3 N_4 C_4$	124.7(4) 1181(4)	C_{1} C_{10} C_{10}	109.0(+) 118.3(4)
$O_3 = N_4 = C_4$	117.1(4)	$C_{4} = C_{11} = C_{10}$	110.3(+) 134.5(4)
04 $N4$ $C4$ 07 $N7$ 08	117.1(4) 124.5(4)	$C_{1} = C_{11} = C_{12}$	107.1(4)
07 N7 C7	124.5(4) 117.6(4)	$C_{10} = C_{11} = C_{12}$	107.1(+) 120.3(4)
$O_{1} = N_{1} = C_{1}$	117.0(4) 117.0(4)	$C_{13} = C_{12} = C_{13}$	120.3(4) 107.0(4)
C_{2} C_{1} C_{10}	117.9 (4)	$C_{13} - C_{12} - C_{11}$	107.9(4)
$C_2 = C_1 = C_{10}$	110.9 (4)	$C_{12} = C_{12} = C_{11}$	131.0(3) 121.6(4)
$C_2 = C_1 = H_1$	121.3	$C_{12} = C_{13} = C_{8}$	121.0(4)
$C_1 = C_1 = C_1$	121.7 122.2(4)	$C_{12}^{} C_{13}^{} C_{9}^{}$	100.9(4) 120.4(5)
$C_3 = C_2 = C_1$	123.3 (4)	$C_{0} = C_{10} = C_{10}$	129.4(3) 122.6(4)
$C_3 = C_2 = N_2$	117.0 (4)	C_{9} C_{14} C_{15}	123.0(4)
C1 = C2 = N2	117.9 (4)	C_{9} C_{14} C_{15} C_{16} $C_$	122.7(4)
$C_2 = C_3 = C_4$	118.0 (3)	C10-C14-C13	113.7(4) 179.2(5)
$C_2 = C_3 = H_3$	121.0	N15-C15-C14	1/8.3(3)
C4 - C3 - H3	121.0	N10-C10-C14	1/8.7(0)
$C_3 = C_4 = C_{11}$	121.4(4)	05 - 017 - 06	125.0(5)
$C_3 - C_4 - N_4$	110.5 (4)	05-017-05	121.7(5)
CII - C4 - N4	121.8 (4)	06-017-05	113.2(5)
C6-C5-C12	11/./ (5)	06-018-019	107.6 (4)
C6—C5—C17	119.7 (4)	06—C18—H181	110.2
C12—C5—C17	122.0 (4)	C19—C18—H181	110.1
C/	119.2 (5)	06-C18-H182	110.3
С/—С6—Н6	120.3	C19—C18—H182	110.2
С5—С6—Н6	120.4	H181—C18—H182	108.5
C6—C7—C8	124.3 (5)	C18—C19—H191	109.5
C6—C7—N7	118.4 (4)	C18—C19—H192	109.6

C8—C7—N7	117.2 (5)	H191—C19—H192	109.5
C7—C8—C13	116.0 (5)	С18—С19—Н193	109.4
С7—С8—Н8	122.0	H191—C19—H193	109.5
С13—С8—Н8	122.0	H192—C19—H193	109.5
C14—C9—C10	127.7 (4)		
C10-C1-C2-C3	-5.7 (7)	C1-C10-C11-C4	11.1 (7)
C10-C1-C2-N2	174.2 (4)	C9—C10—C11—C4	-169.1 (4)
O2—N2—C2—C3	-19.5 (6)	C1-C10-C11-C12	-171.2 (4)
O1—N2—C2—C3	160.0 (4)	C9-C10-C11-C12	8.6 (5)
O2—N2—C2—C1	160.6 (4)	C6—C5—C12—C13	-9.2 (7)
O1—N2—C2—C1	-19.9 (6)	C17—C5—C12—C13	161.8 (5)
C1—C2—C3—C4	7.2 (7)	C6—C5—C12—C11	175.6 (5)
N2-C2-C3-C4	-172.7 (4)	C17—C5—C12—C11	-13.4 (9)
C2-C3-C4-C11	0.8 (7)	C4-C11-C12-C13	167.2 (5)
C2-C3-C4-N4	-173.0 (4)	C10-C11-C12-C13	-9.9 (5)
O3—N4—C4—C3	-33.3 (6)	C4—C11—C12—C5	-17.1 (10)
O4—N4—C4—C3	143.6 (4)	C10-C11-C12-C5	165.8 (5)
O3—N4—C4—C11	152.9 (5)	C5—C12—C13—C8	8.5 (8)
O4—N4—C4—C11	-30.2 (6)	C11—C12—C13—C8	-175.2 (4)
C12—C5—C6—C7	3.2 (8)	C5—C12—C13—C9	-169.0 (4)
C17—C5—C6—C7	-168.0 (5)	C11—C12—C13—C9	7.2 (5)
C5—C6—C7—C8	4.0 (8)	C7—C8—C13—C12	-1.5 (7)
C5—C6—C7—N7	-179.1 (4)	C7—C8—C13—C9	175.5 (5)
O7—N7—C7—C6	4.4 (7)	C14—C9—C13—C12	-179.7 (5)
O8—N7—C7—C6	-176.2 (5)	C10-C9-C13-C12	-2.0 (5)
O7—N7—C7—C8	-178.4 (5)	C14—C9—C13—C8	3.0 (8)
O8—N7—C7—C8	1.0 (7)	C10-C9-C13-C8	-179.4 (5)
C6—C7—C8—C13	-4.8 (8)	C10-C9-C14-C16	-177.0 (5)
N7—C7—C8—C13	178.2 (4)	C13—C9—C14—C16	0.1 (8)
C2-C1-C10-C11	-3.7 (7)	C10-C9-C14-C15	4.3 (8)
C2-C1-C10-C9	176.5 (5)	C13—C9—C14—C15	-178.5 (5)
C14—C9—C10—C1	-6.9 (9)	C18—O6—C17—O5	0.3 (7)
C13—C9—C10—C1	175.5 (5)	C18—O6—C17—C5	177.6 (4)
C14—C9—C10—C11	173.3 (5)	C6—C5—C17—O5	140.5 (5)
C13—C9—C10—C11	-4.3 (5)	C12—C5—C17—O5	-30.4 (8)
C3—C4—C11—C10	-9.7 (7)	C6—C5—C17—O6	-36.9 (7)
N4-C4-C11-C10	163.8 (4)	C12—C5—C17—O6	152.2 (5)
C3—C4—C11—C12	173.5 (5)	C17—O6—C18—C19	175.8 (4)
N4—C4—C11—C12	-13.0 (8)		