Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zoltán A. Gál, Phillip M. Mallinson \ddagger and Simon J. Clarke*

Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, England
\# Current address: Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, England.

Correspondence e-mail:
simon.clarke@chem.ox.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{N}-\mathrm{C})=0.006 \AA$
R factor $=0.026$
$w R$ factor $=0.050$
Data-to-parameter ratio $=20.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Strontium nitride carbodiimide, $\mathbf{S r}_{\mathbf{4}} \mathbf{N}_{\mathbf{2}}\left(\mathrm{CN}_{\mathbf{2}}\right)$

Strontium nitride carbodiimide, $\mathrm{Sr}_{4} \mathrm{~N}_{2}\left(\mathrm{CN}_{2}\right)$, is isostructural with the calcium analogue and consists of a framework of edge- and vertex-sharing $\operatorname{Sr}_{6} \mathrm{~N}$ octahedra forming channels within which almost linear and almost symmetrical carbodiimide anions reside, surrounded by eight strontium ions.

Comment

There is increasing interest in the chemistry of the nitrides of the elements and one way to grow crystals of alkaline earth main group nitrides is to make use of a molten sodium flux (Yamane \& DiSalvo, 1996; Reckeweg \& DiSalvo, 2000). In attempting to grow crystals of strontium aluminium nitrides we grew crystals of the title phase. Strontium nitride carbodiimide is isostructural with the calcium analogue $\mathrm{Ca}_{4} \mathrm{~N}_{2}\left(\mathrm{CN}_{2}\right)$ (Reckeweg \& DiSalvo, 2000) and with $\mathrm{Ca}_{3.2} \mathrm{Sr}_{0.8} \mathrm{~N}_{2}\left(\mathrm{CN}_{2}\right)$ (Höhn et al., 2000). The structure consists of a three-dimensional framework of $\mathrm{Sr}_{6} \mathrm{~N}$ octahedra, centred by atoms N 3 and N4, linked by their edges and vertices. Channels are formed which accommodate the carbodiimide anions. Each N atom of the carbodiimide anion is within $3.0 \AA$ of four strontium ions and the $\left[\mathrm{CN}_{2}\right]^{2-}$ anions should be considered eight-coordinate by strontium cations. Atoms Sr 1 and Sr 3 are coordinated by five N atoms within $3 \AA, \mathrm{Sr} 2$ is in approximately octahedral coordination by six N atoms, and Sr 4 is in distorted tetrahedral coordination by four N atoms within $2.7 \AA$, with a fifth N atom 3.228 (4) A distant. The carbodiimide anions are almost linear, with an $\mathrm{N}-\mathrm{C}-\mathrm{N}$ bond angle of $178.0(5)^{\circ}$, and the anion is in the symmetrical carbodiimide form, with $\mathrm{C}-\mathrm{N}$ bond lengths of 1.240 (6) and 1.235 (6) \AA, which are equal within experi-

Figure 1
The structure of $\mathrm{Sr}_{4} \mathrm{~N}_{2}\left(\mathrm{CN}_{2}\right)$, showing the framework of $\mathrm{Sr}_{6} \mathrm{~N}$ octahedra and the channels containing the carbodiimide anions. The detail shows the asymmetric unit, with 99% displacement ellipsoids.

Received 19 September 2005 Accepted 27 September 2005 Online 30 September 2005
mental uncertainty. The geometry of the carbodiimide anions in $\mathrm{Ca}_{4} \mathrm{~N}_{2}\left(\mathrm{CN}_{2}\right)$ is similar: $\mathrm{C}-\mathrm{N}$ bond lengths of 1.22 (1) and 1.24 (1) \AA, and an $\mathrm{N}-\mathrm{C}-\mathrm{N}$ angle of 179.7 (10) ${ }^{\circ}$ (Reckeweg \& DiSalvo, 2000). The structure of $\mathrm{Sr}_{4} \mathrm{~N}_{2}\left(\mathrm{CN}_{2}\right)$ is shown in Fig. 1.

Experimental

Strontium nitride carbodiimide was synthesized by reacting together $\mathrm{Sr}(99 \%$, Aldrich, 100 mg$), \mathrm{NaN}_{3}(99 \%$, Aldrich, 85 mg$), \mathrm{Al}(99.99 \%$, Aldrich, 31 mg) and $\mathrm{Na}(99+\%, \mathrm{BDH}, 200 \mathrm{mg})$ in a sealed nickel tube at 1073 K for 4 d , with slow cooling to 673 K prior to removal of the tube from the furnace. A small number of colourless crystals of the product were obtained after sublimation of excess sodium from the reactants. No other crystalline products were identified in the reaction. The carbon forming the carbodiimide units presumably arises adventitiously from the nickel tube or from one or more of the reactants, as noted by Reckeweg \& DiSalvo (2000).

Crystal data

$\mathrm{Sr}_{4} \mathrm{~N}_{2}\left(\mathrm{CN}_{2}\right)$
$M_{r}=418.53$
Orthorhombic, Pnma
$a=12.2928$ (4) \AA
$b=3.8261$ (1) \AA
$c=14.3291$ (5) A
$V=673.95$ (4) \AA^{3}
$Z=4$
$D_{x}=4.125 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Nonius KappaCCD diffractometer ω scans
Absorption correction: analytical (Alcock, 1970)
$T_{\text {min }}=0.062, T_{\text {max }}=0.301$
14693 measured reflections
1156 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.050$
$S=1.07$
1156 reflections
56 parameters

Mo $K \alpha$ radiation

Cell parameters from 43855 reflections
$\theta=1.0-33.1^{\circ}$
$\mu=31.39 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Prism, colourless above
$0.09 \times 0.05 \times 0.02 \mathrm{~mm}$

942 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.076$
$\theta_{\text {max }}=30.5^{\circ}$
$h=-17 \rightarrow 17$
$k=-5 \rightarrow 5$
$l=-20 \rightarrow 20$

$$
\begin{aligned}
& \begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0142 P)^{2}\right. \\
& \quad+1.6092 P] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.12 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.99 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.00093
\end{aligned} \text { (15) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{Sr} 1-\mathrm{N} 3^{\text {i }}$	2.551 (3)	Sr3-N4	2.490 (4)
$\mathrm{Sr} 1-\mathrm{N} 3^{\text {ii }}$	2.551 (3)	$\mathrm{Sr} 3-\mathrm{N} 3{ }^{\text {ii }}$	2.616 (3)
Sr1-N2	2.799 (4)	$\mathrm{Sr} 3-\mathrm{N} 3{ }^{\text {i }}$	2.616 (3)
$\mathrm{Sr} 1-\mathrm{N} 1^{\text {iii }}$	2.837 (3)	Sr3-N1 ${ }^{\text {i }}$	2.998 (3)
$\mathrm{Sr} 1-\mathrm{N} 1^{\text {iv }}$	2.837 (3)	$\mathrm{Sr} 3-\mathrm{N} 1^{\text {ii }}$	2.998 (3)
$\mathrm{Sr} 2-\mathrm{N} 4^{\mathrm{v}}$	2.674 (3)	$\mathrm{Sr} 4-\mathrm{N} 4{ }^{\text {viii }}$	2.500 (2)
$\mathrm{Sr} 2-\mathrm{N} 4^{\text {vi }}$	2.674 (3)	$\mathrm{Sr} 4-\mathrm{N} 4^{\text {ix }}$	2.500 (2)
Sr2-N3	2.740 (4)	Sr4-N3	2.592 (4)
$\mathrm{Sr} 2-\mathrm{N} 4^{\text {vii }}$	2.774 (4)	Sr4-N2	2.683 (4)
$\mathrm{Sr} 2-\mathrm{N} 2^{\text {vi }}$	2.867 (3)	N1-C5	1.240 (6)
Sr2-N2 ${ }^{\text {v }}$	2.867 (3)	N2-C5	1.235 (6)
N2-C5-N1	178.0 (5)		

Symmetry codes: (i) $-x+\frac{1}{2},-y+1, z+\frac{1}{2}$; (ii) $-x+\frac{1}{2},-y, z+\frac{1}{2}$; (iii) $-x,-y,-z+1$; (iv) $-x,-y+1,-z+1$; (v) $-x+\frac{1}{2},-y, z-\frac{1}{2}$; (vi) $-x+\frac{1}{2},-y+1, z-\frac{1}{2}$; (vii) $x-\frac{1}{2}, y,-z+\frac{1}{2}$; (viii) $-x+1,-y+1,-z+1$; (ix) $-x+1,-y,-z+1$.

The highest residdual electron-density peak is located $1.57 \AA$ from atom Sr 3 . $\left[1.12 \mathrm{e} \AA^{-3}\right.$].

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski \& Minor, 1997); program(s) used to solve structure: SHELX97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Dowty, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Alcock, N. W. (1970). Crystallographic Computing, Proceedings of the International Summer School, edited by S. R. Hall, pp. 271-278. Copenhagen: Munksgaard.
Dowty, E. (2005). ATOMS. Version 6-2. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Höhn, P., Niewa, R. \& Kniep R. (2000). Z. Kristallogr. New Cryst. Struct. 215, 323-324.
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Reckeweg, O. \& DiSalvo, F. J. (2000). Angew. Chem. Int. Ed. 39, 412-414.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. Release 97-2. University of Göttingen, Germany.
Yamane, H. \& DiSalvo, F. J. (1996). J. Alloys Compd. 240, 33-36.

supporting information

Strontium nitride carbodiimide, $\mathrm{Sr}_{4} \mathrm{~N}_{\mathbf{2}}\left(\mathrm{CN}_{2}\right)$

Zoltán A. Gál, Phillip M. Mallinson and Simon J. Clarke

S1. Comment

There is increasing interest in the chemistry of the nitrides of the elements and one way to grow crystals of alkaline earth main group nitrides is to make use of a molten sodium flux (Yamane \& DiSalvo, 1996; Reckeweg \& DiSalvo, 2000). In attempting to grow crystals of strontium aluminium nitrides we grew crystals of the title phase. Strontium nitride carbodiimide is isostructural with the calcium analogue $\mathrm{Ca}_{4} \mathrm{~N}_{2}\left(\mathrm{CN}_{2}\right)$ (Reckeweg \& DiSalvo, 2000) and with $\mathrm{Ca}_{3.2} \mathrm{Sr}_{0.8} \mathrm{~N}_{2}\left(\mathrm{CN}_{2}\right)$ (Höhn et al., 2000). The structure consists of a three-dimensional framework of $\mathrm{Sr}_{6} \mathrm{~N}$ octahedra, centred by atoms N3 and N4, linked by their edges and vertices. Channels are formed which accommodate the carbodiimide anions. Each N atom of the carbodiimide anion is within $3.0 \AA$ of four strontium ions and the $\left[\mathrm{CN}_{2}\right]^{2-}$ anions should be considered eightcoordinate by strontium cations. Atoms Sr 1 and Sr 3 are coordinated by five N atoms within $3 \AA, \mathrm{Sr} 2$ is in approximately octahedral coordination by six N atoms, and Sr 4 is in distorted tetrahedral coordination by four N atoms within $2.7 \AA$, with a fifth N atom 3.228 (4) \AA distant. The carbodiimide anions are almost linear, with an $\mathrm{N}-\mathrm{C}-\mathrm{N}$ bond angle of $178.0(5)^{\circ}$, and the anion is in the symmetrical carbodiimide form, with $\mathrm{C}-\mathrm{N}$ bond lengths of 1.240 (6) and 1.235 (6) \AA, which are equal within experimental uncertainty. The geometry of the carbodiimide anions in $\mathrm{Ca}_{4} \mathrm{~N}_{2}\left(\mathrm{CN}_{2}\right)$ is similar: CN bond lengths of 1.22 (1) and 1.24 (1) \AA, and an $\mathrm{N} — \mathrm{C} — \mathrm{~N}$ angle of 179.7 (10) ${ }^{\circ}$ (Reckeweg \& DiSalvo, 2000). The structure of $\mathrm{Sr}_{4} \mathrm{~N}_{2}\left(\mathrm{CN}_{2}\right)$ is shown in Fig. 1.

S2. Experimental

Strontium nitride carbodiimide was synthesized by reacting together $\mathrm{Sr}\left(99 \%\right.$, Aldrich, 100 mg), $\mathrm{NaN}_{3}(99 \%$, Aldrich, 85 $\mathrm{mg}), \mathrm{Al}(99.99 \%$, Aldrich, 31 mg$)$ and $\mathrm{Na}(99+\%, \mathrm{BDH}, 200 \mathrm{mg})$ in a sealed nickel tube at 1073 K for 4 d , with slow cooling to 673 K prior to removal of the tube from the furnace. A small numbers of colourless crystals of the product were obtained after sublimation of excess sodium from the reactants. No other crystalline products were identified in the reaction. The carbon forming the carbodiimide units presumably arises adventitiously from the nickel tube or from one or more of the reactants, as noted by Reckeweg \& DiSalvo (2000).

Figure 1
The structure of $\mathrm{Sr}_{4} \mathrm{~N}_{2}\left(\mathrm{CN}_{2}\right)$, showing the framework of $\mathrm{Sr}_{6} \mathrm{~N}$ octahedra and the channels containing the carbodiimide anions. The detail shows the asymmetric unit depicting 99% displacement ellipsoids.

Strontium nitride carbodiimide

Crystal data

$\mathrm{Sr}_{4} \mathrm{~N}_{2}\left(\mathrm{CN}_{2}\right)$

$M_{r}=418.53$
Orthorhombic, Pnma
Hall symbol: -P 2ac 2n
$a=12.2928$ (4) \AA
$b=3.8261$ (1) \AA
$c=14.3291(5) \AA$
$V=673.95$ (4) \AA^{3}
$Z=4$

Data collection

Nonius KappaCCD
diffractometer
Radiation source: Enraf Nonius FR590
Graphite monochromator
CCD rotation images, thick slices scans
Absorption correction: analytical
(Alcock, 1970)
$T_{\text {min }}=0.062, T_{\text {max }}=0.301$
$F(000)=744$
$D_{\mathrm{x}}=4.125 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 43855 reflections
$\theta=1.0-33.1^{\circ}$
$\mu=31.39 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Prism, white
$0.09 \times 0.05 \times 0.02 \mathrm{~mm}$

14693 measured reflections
1156 independent reflections
942 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.076$
$\theta_{\text {max }}=30.5^{\circ}, \theta_{\text {min }}=5.2^{\circ}$
$h=-17 \rightarrow 17$
$k=-5 \rightarrow 5$
$l=-20 \rightarrow 20$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.050$
$S=1.07$
1156 reflections
56 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier
map
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0142 P)^{2}+1.6092 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=1.12 \mathrm{e}^{-3} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.99 \mathrm{e}^{-3}$
Extinction correction: SHELXL97, $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.00093 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Sr1	$0.11185(3)$	0.25	$0.59628(3)$	$0.00995(11)$
Sr2	$0.12505(3)$	0.25	$0.03205(3)$	$0.00994(11)$
Sr3	$0.33905(3)$	0.25	$0.73997(3)$	$0.00994(11)$
Sr4	$0.40728(3)$	0.25	$0.31366(3)$	$0.01062(11)$
N1	$0.0547(3)$	0.25	$0.3728(3)$	$0.0178(9)$
N2	$0.2420(3)$	0.25	$0.4360(3)$	$0.0164(9)$
N3	$0.2803(3)$	0.25	$0.1692(3)$	$0.0115(8)$
N4	$0.4864(3)$	0.25	$0.6207(3)$	$0.0115(8)$
C5	$0.1492(4)$	0.25	$0.4031(4)$	$0.0144(9)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sr1	$0.0104(2)$	$0.00829(19)$	$0.0111(2)$	0	$-0.00008(16)$	0
Sr2	$0.0105(2)$	$0.00805(19)$	$0.0112(2)$	0	$0.00027(16)$	0
Sr3	$0.0103(2)$	$0.00786(18)$	$0.0117(2)$	0	$-0.00007(16)$	0
Sr4	$0.0118(2)$	$0.00723(19)$	$0.0128(2)$	0	$-0.00272(17)$	0
N 1	$0.0107(19)$	$0.0163(19)$	$0.026(2)$	0	$0.0005(18)$	0
N2	$0.014(2)$	$0.0161(19)$	$0.019(2)$	0	$0.0015(17)$	0
N3	$0.0130(19)$	$0.0081(17)$	$0.014(2)$	0	$-0.0004(16)$	0
N 4	$0.0109(18)$	$0.0096(17)$	$0.014(2)$	0	$0.0006(15)$	0
C5	$0.020(2)$	$0.0086(19)$	$0.015(2)$	0	$0.005(2)$	0

Geometric parameters (A, ${ }^{\circ}$)

Sr1-N3 ${ }^{\text {i }}$	2.551 (3)	Sr3-Sr4 ${ }^{\text {i }}$	3.7341 (5)
Sr1-N3 ${ }^{\text {ii }}$	2.551 (3)	Sr4-N4 ${ }^{\text {xi }}$	2.500 (2)
Sr1-N2	2.799 (4)	Sr4-N4 ${ }^{\text {xii }}$	2.500 (2)
$\mathrm{Sr} 1-\mathrm{C} 5$	2.807 (5)	Sr4-N3	2.592 (4)
Sr1-N1 $1^{\text {iii }}$	2.837 (3)	Sr4-N2	2.683 (4)
Sr1-N1 $1^{\text {iv }}$	2.837 (3)	$\mathrm{Sr} 4-\mathrm{N} 1^{\text {xiii }}$	3.228 (4)
$\mathrm{Sr} 1-\mathrm{N} 1$	3.279 (5)	Sr4-Sr2 ${ }^{\text {xiii }}$	3.4720 (6)
Sr1—Sr3	3.4699 (6)	$\mathrm{Sr} 4-\mathrm{Sr} 1^{\text {vii }}$	3.6629 (5)
$\mathrm{Sr} 1-\mathrm{Sr} 4^{\text {i }}$	3.6629 (5)	Sr4-Sr1 ${ }^{\text {viii }}$	3.6629 (5)
$\mathrm{Sr} 1-\mathrm{Sr} 4{ }^{\text {ii }}$	3.6629 (5)	$\mathrm{Sr} 4-\mathrm{Sr} 2^{\text {i }}$	3.6893 (5)
$\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {v }}$	3.8261 (1)	$\mathrm{Sr} 4-\mathrm{Sr} 2^{\text {ii }}$	3.6893 (5)
Sr1—Sr1 ${ }^{\text {vi }}$	3.8261 (1)	$\mathrm{Sr} 4-\mathrm{Sr} 3{ }^{\text {vii }}$	3.7341 (5)
$\mathrm{Sr} 2-\mathrm{N} 4{ }^{\text {vii }}$	2.674 (3)	Sr4-Sr3 ${ }^{\text {viii }}$	3.7341 (5)
$\mathrm{Sr} 2-\mathrm{N} 4{ }^{\text {viii }}$	2.674 (3)	N1-C5	1.240 (6)
Sr2-N3	2.740 (4)	N1-Sr1 ${ }^{\text {iii }}$	2.837 (3)
$\mathrm{Sr} 2-\mathrm{N} 4{ }^{\text {ix }}$	2.774 (4)	$\mathrm{N} 1-\mathrm{Sr} 1^{\text {iv }}$	2.837 (3)
$\mathrm{Sr} 2-\mathrm{N} 2^{\text {viii }}$	2.867 (3)	N1—Sr3 ${ }^{\text {vii }}$	2.998 (3)
Sr2-N2 ${ }^{\text {vii }}$	2.867 (3)	N1—Sr3 ${ }^{\text {viii }}$	2.998 (3)
$\mathrm{Sr} 2-\mathrm{Sr} 4{ }^{\text {ix }}$	3.4720 (6)	N1-Sr4 ${ }^{\text {ix }}$	3.228 (4)
$\mathrm{Sr} 2-\mathrm{Sr} 3{ }^{\text {viii }}$	3.5680 (5)	N2-C5	1.235 (6)
$\mathrm{Sr} 2-\mathrm{Sr} 3{ }^{\text {vii }}$	3.5680 (5)	$\mathrm{N} 2-\mathrm{Sr} 2{ }^{\text {i }}$	2.867 (3)
$\mathrm{Sr} 2-\mathrm{Sr} 4{ }^{\text {vii }}$	3.6893 (5)	N2-Sr2ii	2.867 (3)
$\mathrm{Sr} 2-\mathrm{Sr} 4^{\text {viii }}$	3.6893 (5)	N3-Sr1 ${ }^{\text {viii }}$	2.551 (3)
Sr 2 - $\mathrm{Sr}^{2}{ }^{\text {x }}$	3.7358 (7)	N3-Sr1 ${ }^{\text {vii }}$	2.551 (3)
Sr3-N4	2.490 (4)	N3-Sr3 ${ }^{\text {vii }}$	2.616 (3)
$\mathrm{Sr} 3-\mathrm{N} 3{ }^{\text {ii }}$	2.616 (3)	N3-Sr3 ${ }^{\text {viii }}$	2.616 (3)
$\mathrm{Sr} 3-\mathrm{N} 3^{\text {i }}$	2.616 (3)	N4-Sr4 ${ }^{\text {xi }}$	2.500 (2)
Sr3-N1 ${ }^{\text {i }}$	2.998 (3)	N4-Sr4 ${ }^{\text {xii }}$	2.500 (2)
$\mathrm{Sr} 3-\mathrm{N} 1{ }^{\text {ii }}$	2.998 (3)	$\mathrm{N} 4-\mathrm{Sr} 2{ }^{\text {ii }}$	2.674 (3)
$\mathrm{Sr} 3-\mathrm{C} 5{ }^{\text {i }}$	3.024 (4)	$\mathrm{N} 4-\mathrm{Sr} 2{ }^{\text {i }}$	2.674 (3)
Sr3-C5 ${ }^{\text {ii }}$	3.024 (4)	$\mathrm{N} 4-\mathrm{Sr} 2^{\text {xiii }}$	2.774 (4)
$\mathrm{Sr} 3-\mathrm{Sr} 2{ }^{\text {ii }}$	3.5680 (5)	C5-Sr3 ${ }^{\text {vii }}$	3.024 (4)
$\mathrm{Sr} 3-\mathrm{Sr} 2{ }^{\text {i }}$	3.5680 (5)	$\mathrm{C} 5-\mathrm{Sr} 3{ }^{\text {viii }}$	3.024 (4)
$\mathrm{Sr} 3-\mathrm{Sr} 4{ }^{\text {ii }}$	3.7341 (5)		
N3 ${ }^{\text {i }}$ - $\mathrm{Sr} 1-\mathrm{N} 3{ }^{\text {ii }}$	97.16 (13)	N4-Sr3- $\mathrm{Sr} 2^{\text {i }}$	48.48 (6)
N3 ${ }^{\text {i }}$-Sr1-N2	92.24 (10)	N3ii- ${ }^{\text {ii }} 3$ - $\mathrm{Sr}^{2}{ }^{\text {i }}$	97.93 (8)
N3 ${ }^{\text {iii-Sr1-N2 }}$	92.24 (10)	N3 ${ }^{\text {i }}$-Sr3- $\mathrm{Sr}^{2}{ }^{\text {i }}$	49.73 (9)
N3 ${ }^{\text {i }}$ Sr1-C5	108.62 (11)	$\mathrm{N} 1{ }^{\text {i }}$ - $\mathrm{Sr} 3-\mathrm{Sr} 2{ }^{\text {i }}$	97.70 (7)
N3 ${ }^{\text {iii-Sr1- }-551}$	108.62 (11)	$\mathrm{N} 1^{\text {iii }}-\mathrm{Sr} 3-\mathrm{Sr} 2^{\text {i }}$	144.92 (8)
N2-Sr1-C5	25.46 (13)	C5 ${ }^{\text {i }}$ - $\mathrm{Sr} 3-\mathrm{Sr} 2^{\text {i }}$	107.47 (6)
N3 ${ }^{\text {i }}$ - Sr1-N1 ${ }^{\text {iii }}$	144.73 (12)	$\mathrm{C} 5{ }^{\text {ii- }} \mathrm{Sr} 3-\mathrm{Sr} 2^{\text {i }}$	168.16 (9)
N3ii-Srl—N1 ${ }^{\text {iii }}$	78.77 (10)	$\mathrm{Sr} 1-\mathrm{Sr} 3-\mathrm{Sr} 2^{\text {i }}$	66.676 (11)
N2—Sr1—N1 ${ }^{\text {iii }}$	122.75 (10)	$\mathrm{Sr} 2{ }^{\text {ii }}-\mathrm{Sr} 3-\mathrm{Sr} 2{ }^{\text {i }}$	64.846 (11)
C5-Sr1-N1 ${ }^{\text {iii }}$	105.80 (11)	N4-Sr3-Sr4ii	141.62 (5)
N3 ${ }^{\text {i }}$ - $\mathrm{Sr} 1-\mathrm{N} 1^{\text {iv }}$	78.77 (10)	$\mathrm{N} 3{ }^{\text {iii }} \mathrm{Sr} 3-\mathrm{Sr} 4^{\mathrm{ii}}$	43.93 (9)

$\mathrm{N} 3{ }^{\text {ii }}$-Sr1— $\mathrm{N}^{\text {iv }}$	144.73 (12)
N2-Sr1-N1 $1^{\text {iv }}$	122.75 (10)
C5-Sr1-N1 ${ }^{\text {iv }}$	105.80 (11)
N1 ${ }^{\text {iii }}$ - Sr1- ${ }^{\text {i }}{ }^{\text {iv }}$	84.80 (11)
N3i-Sr1-N1	120.76 (9)
N3ii-Sr1-N1	120.76 (9)
N2-Sr1-N1	47.24 (11)
C5-Sr1-N1	21.78 (12)
N1 ${ }^{\text {iii }}$-Sr1-N1	89.89 (11)
N1 ${ }^{\text {iv }}-\mathrm{Sr} 1-\mathrm{N} 1$	89.89 (11)
N3i-Sr1—Sr3	48.61 (7)
N3ii-Sr1-Sr3	48.61 (7)
N2—Sr1-Sr3	91.52 (9)
C5-Sr1-Sr3	116.98 (10)
N1 ${ }^{\text {iiii- }}$ Sr1—Sr3	119.22 (8)
N1 ${ }^{\text {iv }}$ - $\mathrm{Sr} 1-\mathrm{Sr} 3$	119.22 (8)
N1—Sr1-Sr3	138.77 (7)
N3 ${ }^{\text {i }}$ - $\mathrm{Sr} 1-\mathrm{Sr} 4^{\text {i }}$	45.03 (9)
N3 ${ }^{\text {iii-Sr1}}$ - $\mathrm{Sr}^{4}{ }^{\text {i }}$	94.39 (8)
N2—Sr1-Sr4 ${ }^{\text {i }}$	137.25 (6)
C5-Sr1-Sr4 ${ }^{\text {i }}$	148.147 (16)
N1 ${ }^{\text {iii- }}$ - $\mathrm{Sr} 1-\mathrm{Sr} 4^{\text {i }}$	99.96 (8)
N1 ${ }^{\text {iv }}-\mathrm{Sr} 1-\mathrm{Sr} 4{ }^{\text {i }}$	57.90 (9)
N1—Sr1-Sr4 ${ }^{\text {i }}$	144.77 (3)
Sr3-Sr1—Sr4 ${ }^{\text {i }}$	63.069 (11)
N3 ${ }^{\text {i }}$ - Sr1-Sr4ii	94.39 (8)
N3 ${ }^{\text {ii }}$-Sr1—Sr4 ${ }^{\text {ii }}$	45.03 (9)
N2-Sr1-Sr4ii	137.25 (6)
C5-Sr1—Sr4ii	148.147 (16)
$\mathrm{N} 1{ }^{\text {iii- }}$ - $\mathrm{Sr} 1-\mathrm{Sr} 4^{\mathrm{ii}}$	57.90 (9)
N1 ${ }^{\text {iv }}-\mathrm{Sr} 1-\mathrm{Sr} 44^{\text {ii }}$	99.96 (8)
N1—Sr1-Sr4ii	144.77 (3)
$\mathrm{Sr} 3-\mathrm{Sr} 1-\mathrm{Sr} 4{ }^{\text {ii }}$	63.069 (11)
$\mathrm{Sr} 4{ }^{\text {i }} \mathrm{Sr} 1-\mathrm{Sr} 4{ }^{\text {ii }}$	62.969 (10)
N3 ${ }^{\text {i }}$ - $\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {v }}$	41.42 (7)
N3 ${ }^{\text {ii }}$-Sr1—-Sr1 ${ }^{\text {v }}$	138.58 (7)
$\mathrm{N} 2-\mathrm{Sr} 1-\mathrm{Sr}^{\text {v }}$	90
C5-Sr1-Sr1 ${ }^{\text {v }}$	90
N1 ${ }^{\text {iii- }}$ - Sr1-Sr1 ${ }^{\text {v }}$	132.40 (6)
N1 ${ }^{\text {iv }}$ - Sr1- $\mathrm{Sr}^{1}{ }^{\text {v }}$	47.60 (6)
N1-Sr1-Sr1 ${ }^{\text {v }}$	90
$\mathrm{Sr} 3-\mathrm{Sr} 1-\mathrm{Sr} 1^{v}$	90
$\mathrm{Sr} 4{ }^{\text {i }} \mathrm{Sr} 1-\mathrm{Sr}^{\text {v }}$	58.515 (5)
$\mathrm{Sr} 4^{\mathrm{ii}}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {v }}$	121.485 (5)
N3 ${ }^{\text {i }}$ - $\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {vi }}$	138.58 (7)
N3 ${ }^{\text {iii-Sr1}}$ - $\mathrm{Sr}^{1{ }^{\text {vi }}}$	41.42 (7)
N2-Sr1—Sr1 ${ }^{\text {vi }}$	90
C5-Sr1-Sr1 ${ }^{\text {vi }}$	90

$\mathrm{N} 3{ }^{\text {i }}$ - $\mathrm{Sr} 3-\mathrm{Sr} 4^{\mathrm{ii}}$	91.68 (8)
$\mathrm{N} 1{ }^{\mathrm{i}}$ - $\mathrm{Sr} 3-\mathrm{Sr} 4^{\mathrm{ii}}$	120.05 (8)
N1 ${ }^{\text {iii }} \mathrm{Sr} 3-\mathrm{Sr} 4{ }^{\text {ii }}$	81.19 (7)
$\mathrm{C} 5{ }^{\text {i }}$ - $\mathrm{Sr} 3-\mathrm{Sr} 4^{\mathrm{ii}}$	98.30 (9)
$\mathrm{C} 5{ }^{\text {iii }} \mathrm{Sr} 3-\mathrm{Sr} 4{ }^{\text {ii }}$	59.74 (9)
$\mathrm{Sr} 1-\mathrm{Sr} 3-\mathrm{Sr} 4^{\mathrm{ii}}$	60.992 (11)
$\mathrm{Sr} 2{ }^{\text {ii }}-\mathrm{Sr} 3-\mathrm{Sr} 4{ }^{\text {ii }}$	93.538 (10)
$\mathrm{Sr} 2{ }^{\text {i }}$ - $\mathrm{Sr} 3-\mathrm{Sr} 4^{\mathrm{ii}}$	127.667 (15)
N4-Sr3-Sr4 ${ }^{\text {i }}$	141.62 (5)
N3ii ${ }^{\text {ii }} \mathrm{Sr} 3-\mathrm{Sr} 4{ }^{\text {i }}$	91.68 (8)
N3 ${ }^{\text {i }}$ - $\mathrm{Sr} 3-\mathrm{Sr} 4^{\text {i }}$	43.93 (9)
N1 ${ }^{\text {i }}$ - $\mathrm{Sr} 3-\mathrm{Sr} 4^{\mathrm{i}}$	81.19 (7)
$\mathrm{N} 1{ }^{\text {iii }}-\mathrm{Sr} 3-\mathrm{Sr} 4{ }^{\text {i }}$	120.05 (8)
$\mathrm{C} 5{ }^{\text {i }}$ - $\mathrm{Sr} 3-\mathrm{Sr} 4^{\text {i }}$	59.74 (9)
$\mathrm{C} 5{ }^{\text {iii }} \mathrm{Sr} 3-\mathrm{Sr} 4{ }^{\text {i }}$	98.30 (9)
$\mathrm{Sr} 1-\mathrm{Sr} 3-\mathrm{Sr} 4^{\text {i }}$	60.992 (11)
$\mathrm{Sr} 2 \mathrm{ii}-\mathrm{Sr} 3-\mathrm{Sr} 4^{\text {i }}$	127.667 (15)
$\mathrm{Sr} 2^{\text {i }}$ - $\mathrm{Sr} 3-\mathrm{Sr} 4^{\text {i }}$	93.538 (10)
	61.636 (9)
N4 ${ }^{\text {xi }}-\mathrm{Sr} 4-\mathrm{N} 4{ }^{\text {xii }}$	99.84 (13)
N4 ${ }^{\text {xi }}$-Sr4- 3 3	127.95 (7)
N4 ${ }^{\text {xii }}$-Sr4-N3	127.95 (7)
$\mathrm{N} 4{ }^{\text {xi }}$ - $\mathrm{Sr} 4-\mathrm{N} 2$	98.62 (11)
$\mathrm{N} 4{ }^{\text {xii }}-\mathrm{Sr} 4-\mathrm{N} 2$	98.62 (11)
N3-Sr4-N2	93.79 (12)
$\mathrm{N} 4{ }^{\text {xi }}-\mathrm{Sr} 4-\mathrm{N} 1^{\text {xiii }}$	91.02 (10)
N4 ${ }^{\text {xii }}$-Sr4— $1^{1}{ }^{\text {xii }}$	91.02 (10)
N3-Sr4-N1 ${ }^{\text {xiii }}$	71.17 (12)
$\mathrm{N} 2-\mathrm{Sr} 4-\mathrm{N} 1^{\text {xiii }}$	164.96 (12)
N4 ${ }^{\text {xi }}$ - $\mathrm{Sr} 4-\mathrm{Sr} 2^{\text {xiii }}$	50.03 (7)
$\mathrm{N} 4{ }^{\text {xii }}$-Sr4—-Sr2 ${ }^{\text {xiii }}$	50.03 (7)
N3-Sr4-Sr2 ${ }^{\text {xiii }}$	166.57 (9)
N2—Sr4—Sr2 ${ }^{\text {xiii }}$	99.65 (9)
N1 ${ }^{\text {xiii }}$-Sr4—Sr2 ${ }^{\text {xiii }}$	95.39 (8)
N4 ${ }^{\text {xi }}$ - $\mathrm{Sr} 4-\mathrm{Sr} 1^{\text {vii }}$	138.85 (9)
N4 ${ }^{\text {xii }}$-Sr4-Sr1 ${ }^{\text {vii }}$	87.35 (8)
N3-Sr4-Sr1 ${ }^{\text {vii }}$	44.14 (6)
N2—Sr4—Sr1 ${ }^{\text {vii }}$	120.47 (7)
N1 ${ }^{\text {xiii }}$-Sr4-Sr1 ${ }^{\text {vii }}$	48.12 (5)
$\mathrm{Sr} 2^{\text {xiii }}$ - $\mathrm{Sr} 4-\mathrm{Sr} 1^{\text {vii }}$	126.227 (13)
N4 ${ }^{\text {xi }}$ - $\mathrm{Sr} 4-\mathrm{Sr} 1^{\text {viii }}$	87.35 (8)
$\mathrm{N} 4{ }^{\text {xii }}$ —Sr4—-Sr1 ${ }^{\text {viii }}$	138.85 (9)
N3-Sr4-Sr1 ${ }^{\text {viii }}$	44.14 (6)
N2—Sr4—Sr1 ${ }^{\text {viii }}$	120.47 (7)
N1 $1^{\text {xiii }}$-Sr4—Sr1 ${ }^{\text {viii }}$	48.12 (5)
$\mathrm{Sr} 2^{\text {xiii }} \mathrm{Sr} 4-\mathrm{Sr} 1^{\text {viii }}$	126.227 (13)
$\mathrm{Sr} 1^{\text {vii }}$ - $\mathrm{Sr} 4 — \mathrm{Sr} 1^{\text {viii }}$	62.970 (10)
N4 ${ }^{\text {xi }}-\mathrm{Sr} 4-\mathrm{Sr} 2^{\text {i }}$	48.74 (9)

N1ii- ${ }^{\text {iii }}$ Sr1-Sr1 ${ }^{\text {vi }}$	47.60 (6)
N1 ${ }^{\text {iv }}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {vi }}$	132.40 (6)
N1—Sr1—-Sr1 ${ }^{\text {vi }}$	90
$\mathrm{Sr} 3-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {vi }}$	90
$\mathrm{Sr} 4^{\text {i }}$ - $\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {vi }}$	121.485 (5)
$\mathrm{Sr} 4^{\text {iii }} \mathrm{Sr} 1-\mathrm{Sr} 1^{\text {vi }}$	58.515 (5)
$\mathrm{Sr}^{2}-\mathrm{Sr} 1-\mathrm{Sr1}{ }^{\text {vi }}$	180.00 (2)
	91.34 (12)
$\mathrm{N} 4{ }^{\text {vii }} \mathrm{Sr} 2-\mathrm{N} 3$	90.93 (10)
N4 ${ }^{\text {viii- }} \mathrm{Sr} 2$ - N 3	90.93 (10)
$\mathrm{N} 4{ }^{\text {vii }}-\mathrm{Sr} 2-\mathrm{N} 4{ }^{\text {ix }}$	93.45 (10)
N4 ${ }^{\text {viii- }} \mathrm{Sr} 2-\mathrm{N} 4{ }^{\text {ix }}$	93.45 (10)
N3-Sr2-N4 ${ }^{\text {ix }}$	173.73 (11)
$\mathrm{N} 4{ }^{\text {vii }} \mathrm{Sr} 2$ - $2^{\text {viii }}$	175.70 (9)
$\mathrm{N} 4{ }^{\text {viii }}-\mathrm{Sr} 2-\mathrm{N} 2^{\text {viii }}$	92.45 (8)
N3-Sr2-N2 ${ }^{\text {viii }}$	86.98 (10)
$\mathrm{N} 4^{\text {ix }}$ - $\mathrm{Sr} 2-\mathrm{N} 2{ }^{\text {viii }}$	88.36 (10)
$\mathrm{N} 4{ }^{\text {vii }}$ - $\mathrm{Sr} 2-\mathrm{N} 2{ }^{\text {vii }}$	92.45 (8)
$\mathrm{N} 4^{\text {viii- }} \mathrm{Sr} 2-\mathrm{N} 2{ }^{\text {vii }}$	175.70 (9)
N3-Sr2-N2 ${ }^{\text {vii }}$	86.98 (10)
$\mathrm{N} 4{ }^{\text {ix }}$ - $\mathrm{Sr} 2-\mathrm{N} 2^{\text {vii }}$	88.36 (10)
$\mathrm{N} 2{ }^{\text {viii- }} \mathrm{Sr} 2-\mathrm{N} 2{ }^{\text {vii }}$	83.70 (11)
$\mathrm{N} 4{ }^{\text {vii }}$ - $\mathrm{Sr} 2-\mathrm{Sr} 4{ }^{\text {ix }}$	45.76 (6)
$\mathrm{N} 4{ }^{\text {viii }}-\mathrm{Sr} 2-\mathrm{Sr} 4^{\text {ix }}$	45.76 (6)
N3-Sr2-Sr4ix	94.61 (8)
$\mathrm{N} 4{ }^{\mathrm{ix}}$ - $\mathrm{Sr} 2-\mathrm{Sr} 4^{\mathrm{ix}}$	91.65 (8)
$\mathrm{N} 2{ }^{\text {viii- }} \mathrm{Sr} 2-\mathrm{Sr} 4^{\text {ix }}$	138.15 (6)
$\mathrm{N} 2{ }^{\text {vii }}$ - Sr 2 - $\mathrm{Sr} 4^{\text {ix }}$	138.15 (6)
$\mathrm{N} 4{ }^{\text {vii }}$ - Sr 2 - $\mathrm{Sr} 3{ }^{\text {viii }}$	92.88 (7)
$\mathrm{N} 4^{\text {viii- }} \mathrm{Sr} 2-\mathrm{Sr} 3{ }^{\text {viii }}$	44.21 (8)
N3-Sr2-Sr3 ${ }^{\text {viii }}$	46.75 (6)
N4 ${ }^{\text {ix }}$-Sr2—Sr3 ${ }^{\text {viii }}$	137.30 (5)
$\mathrm{N} 2{ }^{\text {viii }} \mathrm{SSr} 2-\mathrm{Sr} 3{ }^{\text {viii }}$	88.43 (7)
$\mathrm{N} 2{ }^{\text {vii }}$ - Sr 2 — $\mathrm{Sr} 3{ }^{\text {viii }}$	133.47 (8)
$\mathrm{Sr} 4^{\text {ix }}$ - Sr 2 - $\mathrm{Sr} 3{ }^{\text {viii }}$	64.129 (11)
N4 ${ }^{\text {vii }}$ - Sr 2 - $\mathrm{Sr} 3^{\text {vii }}$	44.21 (8)
$\mathrm{N} 4{ }^{\text {viii }} \mathrm{Sr} 2-\mathrm{Sr} 3{ }^{\text {vii }}$	92.88 (7)
N3-Sr2—Sr3 ${ }^{\text {vii }}$	46.75 (6)
$\mathrm{N} 4{ }^{\text {ix }}$ - $\mathrm{Sr} 2-\mathrm{Sr} 3{ }^{\text {vii }}$	137.30 (5)
$\mathrm{N} 2{ }^{\text {viii }} \mathrm{SSr} 2-\mathrm{Sr} 3{ }^{\text {vii }}$	133.47 (8)
$\mathrm{N} 2{ }^{\text {vii }}$ - Sr 2 - $\mathrm{Sr} 3{ }^{\text {vii }}$	88.43 (7)
$\mathrm{Sr} 4^{\text {ix }}$ — Sr 2 — $\mathrm{Sr} 3{ }^{\text {vii }}$	64.129 (11)
Sr3 ${ }^{\text {viii }}$ - $\mathrm{Sr} 2-\mathrm{Sr} 3{ }^{\text {vii }}$	64.846 (11)
$\mathrm{N} 4{ }^{\text {vii }}$ - $\mathrm{Sr} 2 — \mathrm{Sr} 4^{\text {vii }}$	88.67 (7)
$\mathrm{N} 4{ }^{\text {viii }}$ - $\mathrm{Sr} 2-\mathrm{Sr} 4{ }^{\text {vii }}$	135.95 (8)
N3-Sr2-Sr4 ${ }^{\text {vii }}$	133.12 (6)
$\mathrm{N} 4{ }^{\text {ix }}$ - $\mathrm{Sr} 2-\mathrm{Sr} 4^{\text {vii }}$	42.65 (5)
$\mathrm{N} 2{ }^{\text {viii }}-\mathrm{Sr} 2-\mathrm{Sr} 4{ }^{\text {vii }}$	90.02 (7)

$\mathrm{N} 4{ }^{\text {xii }}$ - $\mathrm{Sr} 4-\mathrm{Sr} 2^{\text {i }}$	97.70 (8)
N3-Sr4-Sr2 ${ }^{\text {i }}$	127.77 (7)
N2-Sr4-Sr2 ${ }^{\text {i }}$	50.52 (7)
N1 ${ }^{\text {xiii }}$ - $\mathrm{Sr} 4-\mathrm{Sr} 2{ }^{\text {i }}$	139.68 (5)
$\mathrm{Sr} 2^{\text {xiii }}$ - $\mathrm{Sr} 4-\mathrm{Sr} 2^{\text {i }}$	62.802 (12)
$\mathrm{Sr} 1^{\text {vii }}$ - $\mathrm{Sr} 4-\mathrm{Sr} 2{ }^{\text {i }}$	170.134 (16)
Sr1 ${ }^{\text {viii- }} \mathrm{Sr} 4-\mathrm{Sr} 2^{\text {i }}$	116.332 (6)
N4 ${ }^{\text {xi }}-\mathrm{Sr} 4-\mathrm{Sr} 2{ }^{\text {ii }}$	97.70 (8)
N4 ${ }^{\text {xii }}$-Sr4-Sr2 ${ }^{\text {ii }}$	48.74 (9)
N3-Sr4-Sr2 ${ }^{\text {ii }}$	127.77 (7)
N2-Sr4-Sr2ii	50.52 (7)
$\mathrm{N} 1{ }^{\text {xiii }}$ - $\mathrm{Sr} 4-\mathrm{Sr} 2^{\text {ii }}$	139.68 (5)
$\mathrm{Sr} 2^{\text {xiii }}-\mathrm{Sr} 4-\mathrm{Sr} 2{ }^{\text {ii }}$	62.802 (12)
$\mathrm{Sr} 1^{\text {vii }} \mathrm{Sr} 4-\mathrm{Sr} 2{ }^{\text {ii }}$	116.332 (6)
$\mathrm{Sr} 1^{\text {viii }}$ - $\mathrm{Sr} 4-\mathrm{Sr} 2{ }^{\text {ii }}$	170.134 (16)
$\mathrm{Sr} 2{ }^{\text {i }}$ - $\mathrm{Sr} 4-\mathrm{Sr} 2{ }^{\text {ii }}$	62.469 (10)
N4 ${ }^{\text {xi }}$ - $\mathrm{Sr} 4-\mathrm{Sr} 3{ }^{\text {vii }}$	157.24 (8)
$\mathrm{N} 4{ }^{\text {xii }}$-Sr4- $\mathrm{Sr}^{\text {3ii }}$	97.94 (7)
N3-Sr4-Sr3 ${ }^{\text {vii }}$	44.44 (6)
N2-Sr4-Sr3 ${ }^{\text {vii }}$	64.59 (7)
N1 ${ }^{\text {xiii }}$-Sr4—Sr3 ${ }^{\text {vii }}$	102.79 (7)
$\mathrm{Sr} 2^{\text {xiii }} \mathrm{Sr} 4-\mathrm{Sr} 3{ }^{\text {vii }}$	143.640 (9)
Sr1 ${ }^{\text {vii }} \mathrm{Sr} 4-\mathrm{Sr} 3{ }^{\text {vii }}$	55.940 (10)
$\mathrm{Sr} 1^{\text {viii- }} \mathrm{Sr} 4-\mathrm{Sr} 3{ }^{\text {vii }}$	88.571 (12)
$\mathrm{Sr} 2^{\text {i }}$ - $\mathrm{Sr} 4-\mathrm{Sr} 3{ }^{\text {vii }}$	114.717 (14)
$\mathrm{Sr} 2{ }^{\text {iii }}$ - $\mathrm{Sr} 4-\mathrm{Sr} 3^{\text {vii }}$	83.502 (11)
N4 ${ }^{\text {xi }}$ - $\mathrm{Sr} 4-\mathrm{Sr} 3{ }^{\text {viii }}$	97.94 (7)
N4 ${ }^{\text {xii }}$-Sr4—-Sr3 ${ }^{\text {viii }}$	157.24 (8)
N3-Sr4-Sr3 ${ }^{\text {viii }}$	44.44 (6)
N2-Sr4-Sr3 ${ }^{\text {viii }}$	64.59 (7)
N1 ${ }^{\text {xiii }}$-Sr4—Sr3 ${ }^{\text {viii }}$	102.79 (7)
$\mathrm{Sr} 2^{\text {xiii }} \mathrm{Sr} 4-\mathrm{Sr} 3{ }^{\text {viii }}$	143.640 (9)
$\mathrm{Sr} 1^{\text {vii }} \mathrm{Sr} 4 — \mathrm{Sr} 3{ }^{\text {viii }}$	88.571 (12)
$\mathrm{Sr} 1^{\text {viii- }} \mathrm{Sr} 4-\mathrm{Sr} 3{ }^{\text {viii }}$	55.940 (10)
$\mathrm{Sr} 2^{\text {i }}$ - $\mathrm{Sr} 4-\mathrm{Sr} 3{ }^{\text {viii }}$	83.502 (11)
$\mathrm{Sr} 2^{\text {iii }} \mathrm{Sr} 4-\mathrm{Sr} 3{ }^{\text {viii }}$	114.717 (14)
Sr3 ${ }^{\text {vii }} \mathrm{Sr} 4-\mathrm{Sr} 3{ }^{\text {viii }}$	61.636 (9)
C5-N1-Sr1 ${ }^{\text {iii }}$	128.41 (19)
C5-N1-Sr1 ${ }^{\text {iv }}$	128.41 (19)
Sr1 ${ }^{\text {iii }}-\mathrm{N} 1-\mathrm{Sr}^{1{ }^{\text {iv }}}$	84.80 (11)
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{Sr} 3{ }^{\text {vii }}$	79.3 (2)
Sr1 ${ }^{\text {iii- }}$ N1— $\mathrm{Sr}^{\text {3ii }}$	89.04 (5)
$\mathrm{Sr}^{\text {iv }}-\mathrm{N} 1-\mathrm{Sr} 3{ }^{\text {vii }}$	147.56 (17)
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{Sr}^{3}{ }^{\text {vii }}$	79.3 (2)
$\mathrm{Sr} 1^{\text {iii }}$ - $\mathrm{N} 1-\mathrm{Sr} 3{ }^{\text {viii }}$	147.56 (17)
Sr1 ${ }^{\text {iv }}$-N1—Sr3 ${ }^{\text {viii }}$	89.04 (5)
Sr3 ${ }^{\text {vii }}$-N1—Sr3 ${ }^{\text {viii }}$	79.31 (11)
C5-N1-Sr4 ${ }^{\text {ix }}$	144.7 (4)

N2 ${ }^{\text {vii }}$ - Sr 2 — $\mathrm{Sr}^{\text {vii }}$	46.24 (8)
$\mathrm{Sr} 4{ }^{\text {ix }}-\mathrm{Sr} 2-\mathrm{Sr} 4{ }^{\text {vii }}$	117.198 (12)
Sr3 ${ }^{\text {viii }}$-Sr2— $\mathrm{Sr} 4^{\text {vii }}$	178.441 (13)
Sr3 ${ }^{\text {vii }}$ - $\mathrm{Sr} 2-\mathrm{Sr} 4^{\text {vii }}$	116.332 (6)
N4 ${ }^{\text {vii }} \mathrm{Sr} 2-\mathrm{Sr} 4{ }^{\text {viii }}$	135.95 (8)
$\mathrm{N} 4{ }^{\text {viii- }} \mathrm{Sr} 2-\mathrm{Sr} 4^{\text {viii }}$	88.67 (7)
N3-Sr2-Sr4 ${ }^{\text {viii }}$	133.12 (6)
$\mathrm{N} 4{ }^{\text {ix }}$ - Sr 2 - $\mathrm{Sr} 4{ }^{\text {viii }}$	42.65 (5)
$\mathrm{N} 2^{\text {viii }} \mathrm{Sr} 2 — \mathrm{Sr} 4^{\text {viii }}$	46.24 (8)
N2 ${ }^{\text {vii }}$-Sr2-Sr4 ${ }^{\text {viii }}$	90.02 (7)
Sr4 ${ }^{\text {ix }}$ - Sr 2 - $\mathrm{Sr}^{4}{ }^{\text {viii }}$	117.198 (12)
$\mathrm{Sr} 3{ }^{\text {viii- }} \mathrm{Sr} 2-\mathrm{Sr} 4{ }^{\text {viii }}$	116.332 (6)
Sr 3 vii- Sr 2 - $\mathrm{Sr} 4^{\text {viii }}$	178.441 (13)
$\mathrm{Sr} 4{ }^{\text {vii }} \mathrm{Sr} 2-\mathrm{Sr} 4^{\text {viii }}$	62.469 (10)
$\mathrm{N} 4^{\text {vii }}$ - $\mathrm{Sr} 2-\mathrm{Sr} 2^{\text {x }}$	47.84 (8)
$\mathrm{N} 4{ }^{\text {viii }}-\mathrm{Sr} 2-\mathrm{Sr} 2^{\mathrm{x}}$	93.52 (7)
N3-Sr2-Sr2 ${ }^{\text {x }}$	138.57 (5)
$\mathrm{N} 4^{\mathrm{ix}}-\mathrm{Sr} 2-\mathrm{Sr} 2^{\mathrm{x}}$	45.61 (6)
$\mathrm{N} 2{ }^{\text {viii }}-\mathrm{Sr} 2-\mathrm{Sr} 2^{\mathrm{x}}$	133.83 (8)
$\mathrm{N} 2^{\text {vii }}$ - $\mathrm{Sr} 2-\mathrm{Sr} 2^{\text {x }}$	90.53 (7)
$\mathrm{Sr} 4^{\mathrm{ix}}-\mathrm{Sr} 2-\mathrm{Sr} 2^{\mathrm{x}}$	61.445 (13)
$\mathrm{Sr} 3{ }^{\text {viii }}$ - $\mathrm{Sr} 2-\mathrm{Sr} 2^{\text {x }}$	125.567 (19)
$\mathrm{Sr} 3{ }^{\text {vii }}$ - $\mathrm{Sr} 2-\mathrm{Sr} 2^{\mathrm{x}}$	91.864 (12)
$\mathrm{Sr} 4^{\text {vii }} \mathrm{SSr} 2-\mathrm{Sr} 2^{\text {x }}$	55.753 (12)
Sr4 ${ }^{\text {viii }}$ - $\mathrm{Sr} 2-\mathrm{Sr} 2^{\mathrm{x}}$	88.184 (16)
N4-Sr3-N3 ${ }^{\text {ii }}$	98.18 (10)
$\mathrm{N} 4-\mathrm{Sr} 3-\mathrm{N} 3{ }^{\text {i }}$	98.18 (10)
N3ii-Sr3-N3 ${ }^{\text {i }}$	94.01 (13)
$\mathrm{N} 4-\mathrm{Sr} 3-\mathrm{N} 1^{\text {i }}$	96.81 (11)
N3ii-Sr3-N1 ${ }^{\text {i }}$	163.18 (11)
N3 ${ }^{\text {i }}$-Sr3-N1 ${ }^{\text {i }}$	91.36 (9)
$\mathrm{N} 4-\mathrm{Sr} 3-\mathrm{N} 1^{\text {ii }}$	96.81 (11)
$\mathrm{N} 3{ }^{\text {ii }}-\mathrm{Sr} 3-\mathrm{N} 1^{\text {ii }}$	91.36 (9)
N3i-Sr3-N1 ${ }^{\text {ii }}$	163.18 (11)
N1 ${ }^{\text {i }}$ - $\mathrm{Sr} 3-\mathrm{N} 1^{\text {ii }}$	79.31 (11)
N4-Sr3-C5 ${ }^{\text {i }}$	119.71 (11)
N3ii-Sr3-C5 ${ }^{\text {i }}$	142.10 (13)
N3 ${ }^{\text {i }}$-Sr3-C5 ${ }^{\text {i }}$	82.16 (10)
N1 ${ }^{\text {i }}$-Sr3-C5 ${ }^{\text {i }}$	23.76 (12)
N1 ${ }^{\text {iii }}$-Sr3-C5 ${ }^{\text {i }}$	83.82 (9)
N4-Sr3-C5 ${ }^{\text {ii }}$	119.71 (11)
N3ii-Sr3-C5 ${ }^{\text {iii }}$	82.16 (10)
N3i-Sr3-C5 ${ }^{\text {ii }}$	142.10 (13)
$\mathrm{N} 1{ }^{\text {i }}$ - $\mathrm{Sr} 3-\mathrm{C} 5^{\text {ii }}$	83.82 (9)
N1ii-Sr3-C5 ${ }^{\text {iii }}$	23.76 (12)
C5-Sr3-C5 ${ }^{\text {ii }}$	78.50 (12)
N4-Sr3-Sr1	100.28 (9)
N3 ${ }^{\text {iii }}$-Sr3-Sr1	47.03 (6)

Sr1 ${ }^{\text {iiii }}-\mathrm{N} 1-\mathrm{Sr} 4{ }^{\text {ix }}$	73.99 (9)
$\mathrm{Sr} 1^{1 \mathrm{iv}}-\mathrm{N} 1-\mathrm{Sr} 4{ }^{\text {ix }}$	73.99 (9)
Sr3 ${ }^{\text {vii }}$ - N1— $\mathrm{Sr}^{\text {4 }}$ ix	73.70 (9)
Sr 3 viii- $\mathrm{N} 1-\mathrm{Sr} 4^{\text {ix }}$	73.70 (9)
C5-N1-Sr1	57.1 (3)
Sr1 ${ }^{\text {iii }}$-N1—Sr1	90.11 (11)
Sr1 ${ }^{\text {iv }}-\mathrm{N} 1-\mathrm{Sr} 1$	90.11 (11)
Sr3 ${ }^{\text {vii }}$ - $\mathrm{N} 1-\mathrm{Sr} 1$	121.78 (10)
Sr3 ${ }^{\text {viii- }}$ N1—Sr1	121.78 (10)
Sr4 ${ }^{\text {ix }}$ - N1-Sr1	158.21 (14)
C5-N2-Sr4	116.7 (3)
C5-N2-Sr1	77.6 (3)
Sr4-N2-Sr1	165.68 (17)
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{Sr} 2{ }^{\text {i }}$	135.23 (12)
$\mathrm{Sr} 4-\mathrm{N} 2-\mathrm{Sr} 2{ }^{\text {i }}$	83.24 (10)
$\mathrm{Sr} 1-\mathrm{N} 2-\mathrm{Sr} 2{ }^{\text {i }}$	86.11 (10)
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{Sr} 2{ }^{\text {ii }}$	135.23 (12)
$\mathrm{Sr} 4-\mathrm{N} 2-\mathrm{Sr} 2{ }^{\text {ii }}$	83.24 (10)
$\mathrm{Sr} 1-\mathrm{N} 2-\mathrm{Sr} 2{ }^{\text {ii }}$	86.11 (10)
$\mathrm{Sr} 2^{\mathrm{i}}-\mathrm{N} 2-\mathrm{Sr} 2^{\text {ii }}$	83.70 (11)
Sr1 ${ }^{\text {viii }}$-N3-Sr1 ${ }^{\text {vii }}$	97.16 (13)
Sr1 ${ }^{\text {viii- }}$-N3-Sr4	90.83 (11)
Sr1 ${ }^{\text {vii- }}$ N3-Sr4	90.83 (11)
Sr1 ${ }^{\text {viii- }}$ - 3 - $\mathrm{Sr}^{\text {vii }}$	177.10 (16)
Sr1 ${ }^{\text {vii }}$-N3-Sr3 ${ }^{\text {vii }}$	84.366 (11)
$\mathrm{Sr} 4-\mathrm{N} 3-\mathrm{Sr} 3{ }^{\text {vii }}$	91.62 (11)
Sr1 ${ }^{\text {viii- }}$ - 3 - $\mathrm{Sr} 3^{\text {viii }}$	84.366 (11)
Sr1 ${ }^{\text {vii- }}$ N3-Sr3 ${ }^{\text {viii }}$	177.10 (16)
Sr4-N3-Sr3 ${ }^{\text {viii }}$	91.62 (11)
Sr3 ${ }^{\text {vii }}$ - $\mathrm{N} 3-\mathrm{Sr} 3{ }^{\text {viii }}$	94.01 (13)
Sr1 ${ }^{\text {viii- }}$ - 3 - Sr 2	93.90 (11)
Sr1 ${ }^{\text {vii- }}$ N3-Sr2	93.90 (11)
$\mathrm{Sr} 4-\mathrm{N} 3-\mathrm{Sr} 2$	172.85 (17)
Sr3 ${ }^{\text {vii- }}$ - 3 - Sr 2	83.52 (10)
$\mathrm{Sr} 3{ }^{\text {viii- }}$ - 3 - Sr 2	83.52 (10)
Sr3-N4-Sr4 ${ }^{\text {xi }}$	97.01 (11)
$\mathrm{Sr} 3-\mathrm{N} 4-\mathrm{Sr} 4^{\text {xii }}$	97.01 (11)
Sr4 ${ }^{\text {xi }}-\mathrm{N} 4-\mathrm{Sr} 4^{\text {xii }}$	99.84 (13)
$\mathrm{Sr} 3-\mathrm{N} 4-\mathrm{Sr} 2{ }^{\text {ii }}$	87.32 (10)
$\mathrm{Sr} 4^{\text {xi }}-\mathrm{N} 4-\mathrm{Sr} 2{ }^{\text {ii }}$	173.62 (16)
$\mathrm{Sr} 4 \times{ }^{\text {xii }}-\mathrm{N} 4-\mathrm{Sr} 2^{\text {ii }}$	84.211 (15)
$\mathrm{Sr} 3-\mathrm{N} 4-\mathrm{Sr} 2^{\text {i }}$	87.32 (10)
$\mathrm{Sr} 4^{\mathrm{xi}}-\mathrm{N} 4-\mathrm{Sr} 2^{\text {i }}$	84.211 (15)
$\mathrm{Sr} 4{ }^{\text {xii }}-\mathrm{N} 4-\mathrm{Sr} 2^{\text {i }}$	173.62 (16)
$\mathrm{Sr} 2{ }^{\text {ii }}-\mathrm{N} 4-\mathrm{Sr} 2^{\text {i }}$	91.34 (12)
$\mathrm{Sr} 3-\mathrm{N} 4-\mathrm{Sr} 2^{\text {xiii }}$	171.22 (17)
$\mathrm{Sr} 4^{\mathrm{xi}}$ - $\mathrm{N} 4-\mathrm{Sr} 2^{\text {xiii }}$	88.61 (10)
$\mathrm{Sr} 4{ }^{\text {xii }} \mathrm{-N} 4-\mathrm{Sr} 2^{\text {xiii }}$	88.61 (10)

N3 ${ }^{\text {i }}$-Sr3-Sr1	47.03 (6)	$\mathrm{Sr} 2 \mathrm{ii}-\mathrm{N} 4-\mathrm{Sr} 2^{\text {xiii }}$	86.55 (10)
N1 ${ }^{\text {i }}$-Sr3-Sr1	136.66 (6)	$\mathrm{Sr} 2^{\text {i }}$ - $\mathrm{N} 4-\mathrm{Sr}^{\text {2xii }}$	86.55 (10)
N1i- ${ }^{\text {ii }}$ Sr3-Sr1	136.66 (6)	N2-C5-N1	178.0 (5)
C5i-Sr3-Sr1	119.81 (9)	N2-C5-Sr1	76.9 (3)
C5ii- ${ }^{\text {ii }} 3-\mathrm{Sr} 1$	119.81 (9)	N1-C5-Sr1	101.1 (3)
N4-Sr3-Sr2 ${ }^{\text {ii }}$	48.48 (6)	N2-C5-Sr3 ${ }^{\text {vii }}$	104.6 (3)
N3i--Sr3-Sr2ii	49.73 (9)	N1-C5-Sr3 ${ }^{\text {vii }}$	76.9 (2)
N3 ${ }^{\text {i }}$ - $\mathrm{Sr} 3-\mathrm{Sr}^{2 i}$	97.93 (8)	Sr1-C5-Sr3 ${ }^{\text {vii }}$	140.38 (6)
$\mathrm{N} 1{ }^{\text {i }}$ - $\mathrm{Sr} 3-\mathrm{Sr} 2{ }^{2 i}$	144.92 (8)	N2-C5-Sr3 ${ }^{\text {viii }}$	104.6 (3)
$\mathrm{N} 1{ }^{\text {ii }}-\mathrm{Sr} 3-\mathrm{Sr} 2^{\text {ii }}$	97.70 (7)	N1-C5-Sr3 ${ }^{\text {viii }}$	76.9 (2)
C 5 - $\mathrm{Sr} 3-\mathrm{Sr}{ }^{\text {ii }}$	168.16 (9)	Sr1-C5-Sr3 ${ }^{\text {viii }}$	140.38 (6)
$\mathrm{C} 5{ }^{\text {ii- }} \mathrm{Sr} 3-\mathrm{Sr} 2{ }^{\text {ii }}$	107.47 (6)	$\mathrm{Sr} 3{ }^{\text {vii }}-\mathrm{C} 5-\mathrm{Sr}^{\text {viii }}$	78.50 (12)
Sr1—Sr3—Sr2 ${ }^{\text {ii }}$	66.676 (11)		

Symmetry codes: (i) $-x+1 / 2,-y+1, z+1 / 2$; (ii) $-x+1 / 2,-y, z+1 / 2$; (iii) $-x,-y,-z+1$; (iv) $-x,-y+1,-z+1$; (v) $x, y+1, z$; (vi) $x, y-1, z$; (vii) $-x+1 / 2,-y$, $z-1 / 2$; (viii) $-x+1 / 2,-y+1, z-1 / 2$; (ix) $x-1 / 2, y,-z+1 / 2$; (x) $-x,-y,-z$; (xi) $-x+1,-y+1,-z+1$; (xii) $-x+1,-y,-z+1$; (xiii) $x+1 / 2, y,-z+1 / 2$.

