organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Mark E. Light,* Philip A. Gale, Korakot Navakhun and Michael Maynard-Smith

School of Chemistry, University of Southampton, Highfield, Southampton, England SO17 1BJ

Correspondence e-mail: light@soton.ac.uk

Key indicators

Single-crystal X-ray study T = 120 KMean σ (C–C) = 0.008 Å R factor = 0.101 wR factor = 0.192 Data-to-parameter ratio = 15.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4-Aminomethyl-phenylamino-bis-(3,4dichloro-5-phenylcarbamoyl-1*H*-pyrrole-2-carboxamide) tetrabutylammonium salt

The crystal structure of the tetrabutylammonium salt of doubly deprotonated 4-aminomethyl(phenylamino)bis-(3,4-dichloro-5-phenylcarbamoyl-1*H*-pyrrole-2-carboxamide), $2C_{16}H_{36}N^+ \cdot C_{32}H_{22}C_{14}N_6O_4^{\ 2^-}$, has been elucidated. The anion lies on an inversion centre and adopts a twisted S shape. Received 22 March 2005 Accepted 6 April 2005 Online 9 April 2005

Comment

4-Aminomethyl(phenylamino)bis-(3,4-dichloro-5-phenylcarbamoyl-1*H*-pyrrole-2-carboxamide) crystallizes as the tetrabutylammonium salt, (I), from an acetonitrile solution of the compound in the presence of excess tetrabutylammonium fluoride. The anion adopts a twisted S shape around a centre of inversion. The pyrrole and terminal benzene ring pairs are coplanar and the angle between the central and terminal benzene ring is 73.01 (5)°.

Experimental

p-Xylenediamine (68 mg, 0.5 mmol, 1 equiv.) was added to a solution of 3,4-dichloro-5-phenylcarbamoyl-1H-pyrrole-2-carboxylic acid (300 mg, 1 mmol, 2 equiv.) in DMF (30 ml) under a nitrogen atmosphere. Triethyamine (104 mg, 1 mmol, 2 equiv.), benzotriazol-1yloxy)tripyrrolidinophosphonium hexafluorophosphate (572 mg, 1.1 mmol, 2.2 equiv.) and 5 mg (0.04 mmol, 0.04 equiv.) of N-hydroxybenzotriazole were added and the reaction was stirred for 72 h. The solvent was then removed and water (50 ml) was added. The product was extracted with dichloromethane (DCM, 3 50 ml). The organic phase was collected and the solvent was removed. The product was washed with diethyl ether (75 ml) and a small quantity of 10% MeOH

 $\ensuremath{\mathbb{C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

in DCM (v/v). The product was obtained as a white solid (132 mg, 0.19 mmol, 38%).

M.p. 590 K (decomp.). ¹H NMR 300 MHz in DMSO- $d_6 \delta$ (p.p.m.): 4.50 ($d, J = 5.4, 4H, CH_2$), 7.00–7.70 (m, 14H, ArH), 8.50 (t, 2H, J = 5.4, central–CONH), 10.04 (s, 2H, outer–CONH), 12.79 (s, 2H, NHpyrrole). ¹³C NMR 75 MHz in DMSO- $d_6 \delta$ (p.p.m.): 42.3, 112.0, 113.6, 119.8, 122.9, 123.1, 123.9, 127.4, 128.7, 137.6, 138.3, 156.5, 158.1. TOF LD⁺ mass spectrum: m/z (%): 472 (100) [$C_{23}H_{22}Cl_2N_4O_3$]⁺. Elemental analysis: Calc. for $C_{32}H_{24}Cl_4N_6O_4$.H₂O: C 53.65, H 3.66, N 11.73%; found: C 53.28, H 3.73, N 12.03%.

Crystals of the title compound were obtained by slow evaporation of an acetonitrile solution in the presence of excess tetrabutylammonium fluoride.

Z = 1

 $D_x = 1.208 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 58835

reflections $\theta = 2.9-27.5^{\circ}$

 $\mu = 0.23 \text{ mm}^{-1}$

T = 120 (2) K

Block, colourless $0.20 \times 0.10 \times 0.07 \text{ mm}$

Crystal data

$2C_{16}H_{36}N^{+} \cdot C_{32}H_{22}Cl_{4}N_{6}O_{4}{}^{2-}$
$M_r = 1181.27$
Triclinic, P1
a = 9.524 (2) Å
b = 10.363 (3) Å
c = 17.056 (4) Å
$\alpha = 78.293 \ (11)^{\circ}$
$\beta = 88.733 \ (14)^{\circ}$
$\gamma = 80.136 \ (14)^{\circ}$
V = 1623.9 (7) Å ³

Data collection

Bruker-Nonius KappaCCD area-	5757 independent reflections
detector diffractometer	2777 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.111$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.1^{\circ}$
(SORTAV; Blessing, 1997)	$h = -11 \rightarrow 11$
$T_{\min} = 0.732, T_{\max} = 0.984$	$k = -12 \rightarrow 12$
16494 measured reflections	$l = -20 \rightarrow 20$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.101$ $wR(F^2) = 0.192$ S = 1.045757 reflections 361 parameters H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0424P)^{2} + 2.4189P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.019$ $\Delta\rho_{max} = 0.25 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.24 \text{ e} \text{ Å}^{-3}$

H atoms were identified in a difference map and then placed in calculated positions (N-H 0.88, aromatic C-H 0.95, methylene C-H 0.99, methyl C-H 0.98) and refined using a riding model [U_{iso} (H) = 1.2 or 1.5 times U_{eq} (C,N)].

Data collection: *DENZO* (Otwinowski & Minor, 1997) and *COLLECT* (Hooft, 1998); cell refinement: *DENZO* and *COLLECT*;

Figure 1

Structure of the title compound, with displacement ellipsoids drawn at the 50% probability level and non-acidic H atoms omitted for clarity.

data reduction: *DENZO* and *COLLECT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *CAMERON* (Watkin *et al.*, 1993); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors thank the EPSRC for funding the crystallographic facilities. PAG thanks the Royal Society for a University Research Fellowship and Universities UK for an ORS studentship to KN.

References

- Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hooft, R. (1998). COLLECT. Nonius BV, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

Acta Cryst. (2005). E**61**, o1302–o1303 [https://doi.org/10.1107/S160053680501069X]

4-Aminomethyl-phenylamino-bis-(3,4-dichloro-5-phenylcarbamoyl-1*H*-pyrrole-2-carboxamide) tetrabutylammonium salt

Mark E. Light, Philip A. Gale, Korakot Navakhun and Michael Maynard-Smith

(I)

Crystal data

 $C_{32}H_{22}Cl_4N_6O_4 \cdot 2(C_{16}H_{36}N)$ $M_r = 1181.27$ Triclinic, $P\overline{1}$ a = 9.524 (2) Å b = 10.363 (3) Å c = 17.056 (4) Å a = 78.293 (11)° $\beta = 88.733$ (14)° $\gamma = 80.136$ (14)° V = 1623.9 (7) Å³

Data collection

Bruker Nonius Kappa CCD Area detector diffractometer Radiation source: Rotating Anode, Bruker Nonius FR591 Graphite monochromator Detector resolution: 9.091 pixels mm⁻¹ φ and ω scans to fill the asymmetric unit Absorption correction: multi-scan SORTAV (Blessing, 1997)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.101$ $wR(F^2) = 0.192$ S = 1.045757 reflections 361 parameters 0 restraints Primary atom site location: structure-invariant direct methods Z = 1 F(000) = 634 $D_x = 1.208 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 58835 reflections $\theta = 2.9-27.5^{\circ}$ $\mu = 0.23 \text{ mm}^{-1}$ T = 120 KBlock, colourless $0.20 \times 0.10 \times 0.07 \text{ mm}$

 $T_{\min} = 0.732, T_{\max} = 0.984$ 16494 measured reflections 5757 independent reflections 2777 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.111$ $\theta_{\text{max}} = 26.1^{\circ}, \theta_{\text{min}} = 3.1^{\circ}$ $h = -11 \rightarrow 11$ $k = -12 \rightarrow 12$ $l = -20 \rightarrow 20$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0424P)^2 + 2.4189P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.25$ e Å⁻³ $\Delta\rho_{min} = -0.24$ e Å⁻³

Special details

Experimental. The higher angle reflections were very diffuse and weak and data above 26.09 θ theta were omitted from the refinement. As a result the _diffrn_reflns_theta_full is low (26.09) and the data are only 89% complete to this value **Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	1.03523 (16)	0.79277 (16)	0.44484 (8)	0.0620 (5)	
Cl2	0.75939 (16)	1.05446 (16)	0.41527 (8)	0.0592 (5)	
01	1.1698 (4)	0.6453 (4)	0.3030 (2)	0.0566 (11)	
O2	0.5971 (4)	1.1745 (4)	0.2402 (2)	0.0538 (11)	
N1	1.0803 (5)	0.7269 (5)	0.1767 (3)	0.0487 (13)	
H91	1.0146	0.7881	0.1488	0.058*	
N2	0.8929 (5)	0.9176 (5)	0.2225 (3)	0.0428 (12)	
N3	0.7274 (5)	1.1256 (5)	0.1331 (3)	0.0509 (13)	
H93	0.8143	1.0972	0.1182	0.061*	
C1	1.3027 (7)	0.5813 (6)	0.1559 (3)	0.0487 (16)	
H1	1.3438	0.5951	0.2031	0.058*	
C2	1.3809 (6)	0.5006 (6)	0.1103 (4)	0.0499 (16)	
H2	1.4759	0.4599	0.1260	0.060*	
C3	1.3233 (7)	0.4776 (6)	0.0415 (4)	0.0517 (16)	
H3	1.3772	0.4204	0.0107	0.062*	
C4	1.1854 (7)	0.5396 (6)	0.0183 (3)	0.0500 (16)	
H4	1.1449	0.5266	-0.0293	0.060*	
C5	1.1074 (6)	0.6196 (6)	0.0642 (4)	0.0510 (16)	
H5	1.0124	0.6601	0.0483	0.061*	
C6	1.1644 (6)	0.6427 (6)	0.1337 (4)	0.0464 (15)	
C7	1.0864 (6)	0.7269 (6)	0.2570 (4)	0.0448 (15)	
C8	0.9809 (6)	0.8328 (6)	0.2795 (3)	0.0392 (14)	
C9	0.9494 (6)	0.8649 (6)	0.3541 (3)	0.0464 (15)	
C10	0.8383 (6)	0.9723 (6)	0.3426 (3)	0.0472 (16)	
C11	0.8045 (6)	1.0043 (6)	0.2588 (3)	0.0433 (15)	
C12	0.6989 (7)	1.1095 (6)	0.2119 (4)	0.0445 (15)	
C13	0.6200 (6)	1.1883 (6)	0.0721 (3)	0.0532 (16)	
H13A	0.6622	1.2501	0.0298	0.064*	
H13B	0.5414	1.2421	0.0964	0.064*	
C14	0.5600 (6)	1.0907 (6)	0.0344 (3)	0.0447 (15)	
C15	0.5075 (6)	1.1251 (6)	-0.0432 (3)	0.0480 (15)	
H15	0.5137	1.2114	-0.0738	0.058*	
C16	0.5528 (6)	0.9608 (6)	0.0775 (3)	0.0457 (15)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H16	0.5903	0.9328	0.1305	0.055*
N4	0.1867 (5)	0.2167 (4)	0.3108 (3)	0.0469 (12)
C17	0.2262 (6)	0.0766 (6)	0.3622 (3)	0.0512 (16)
H17A	0.1752	0.0738	0.4135	0.061*
H17B	0.1920	0.0123	0.3346	0.061*
C18	0.3849 (6)	0.0302 (6)	0.3803 (4)	0.0601 (18)
H18A	0.4115	0.0657	0.4266	0.072*
H18B	0.4401	0.0665	0.3336	0.072*
C19	0.4236 (7)	-0.1235 (6)	0.3994 (4)	0.0638 (18)
H19A	0.5150	-0.1498	0.4297	0.077*
H19B	0.3494	-0.1605	0.4341	0.077*
C20	0.4372 (7)	-0.1837(7)	0.3263 (4)	0.083(2)
H20A	0.3461	-0.1609	0.2970	0.125*
H20B	0.4630	-0.2811	0.3422	0.125*
H20C	0.5113	-0.1484	0.2919	0.125*
C21	0.2295 (6)	0.2154 (5)	0.2238(3)	0.0476(15)
H21A	0.2134	0.3087	0.1932	0.057*
H21B	0.3329	0.1808	0.2229	0.057*
C22	0.1520 (6)	0.1335 (6)	0.1811(3)	0.057
H22A	0.1787	0.0376	0.2060	0.068*
H22R	0.0479	0.1595	0.1869	0.068*
C23	0.1877 (6)	0.1538 (6)	0.0943(3)	0.0530 (16)
H23A	0.2923	0.1317	0.0945 (5)	0.064*
H23R	0.1581	0.2495	0.0696	0.064*
C24	0.1181 (6)	0.2499	0.0090	0.004 0.0577(17)
H24A	0.1469	-0.0242	0.0720	0.087*
H24R	0.1481	0.0242	-0.0077	0.087*
H24C	0.0143	0.0000	0.0507	0.087*
C25	0.0143	0.0552	0.3169 (3)	0.0482 (16)
H25A	-0.0203(3)	0.2387 (0)	0.3109 (3)	0.058*
H25R	0.0215	0.1500	0.3737	0.058*
C26	-0.0351(6)	0.2399	0.3737 0.2662 (3)	0.058
U20	0.0331 (0)	0.3940 (0)	0.2002 (3)	0.0577 (17)
H26R	-0.0122	0.4040	0.2828	0.009*
C27	-0.1040(6)	0.3343 0.4260(7)	0.2093 0.2750 (4)	0.009°
	-0.2386	0.4200 (7)	0.2730 (4)	0.0004 (19)
H27A	-0.2380	0.3333	0.2383	0.080*
1127B	-0.2616(7)	0.4243	0.3321 0.2262 (4)	0.080°
U20	-0.2010(7)	0.3399 (7)	0.2203 (4)	0.062 (2)
H20A	-0.2233	0.0312	0.2434	0.123*
П20D	-0.3033	0.5710	0.2320	0.123*
H28C	-0.2374	0.3038	0.1098	0.125°
C29	0.2000 (0)	0.3149(3)	0.3360 (3)	0.0478 (10)
П29А 1120D	0.3702	0.2818	0.3300	0.057*
1129D C20	0.2432	0.4019	0.3000	0.037
U20A	0.2328 (0)	0.3360 (0)	0.4224 (3)	0.0522 (16)
HJUA HJOD	0.2505	0.2000	0.4398	0.003*
ПЭЛВ С51	0.1330	0.3889	0.4230	0.005 (10)
U31	0.33//(/)	0.4151 (6)	0.4504 (3)	0.0605 (18)

H31A	0.3415	0.4980	0.4101	0.073*
H31B	0.4341	0.3600	0.4554	0.073*
C32	0.2938 (7)	0.4511 (7)	0.5310 (4)	0.079 (2)
H32A	0.2018	0.5115	0.5250	0.118*
H32B	0.3661	0.4953	0.5496	0.118*
H32C	0.2854	0.3694	0.5702	0.118*

Atomic displacement parameters $(Å^2)$

	1 /11	I /22	I 733	1/12	1/13	I /23
<u></u>	0.0002 (10)	0.0784 (12)	0.044((0)	0.0210 (0)	0.0027 (8)	0,0022 (8)
	0.0602(10)	0.0784(12)	0.0446(9)	-0.0219(9)	-0.0037(8)	0.0032(8)
01	0.0646(11)	0.0723(12) 0.051(2)	0.0455(9)	-0.0220(9)	0.0084(8)	-0.0148(8)
	0.056(3)	0.051(3)	0.055(3)	-0.001(2)	=0.010(2)	0.002(2)
02 N1	0.047(3)	0.059(3)	0.055(3)	-0.010(2)	0.010(2)	-0.010(2)
NI	0.04/(3)	0.047(3)	0.044 (3)	0.006 (3)	-0.005(2)	-0.003(3)
N2	0.041 (3)	0.042 (3)	0.044 (3)	-0.012 (3)	0.004 (2)	-0.002 (3)
N3	0.045 (3)	0.063 (4)	0.040 (3)	-0.013 (3)	0.003 (2)	0.002 (3)
C1	0.051 (4)	0.045 (4)	0.046 (4)	-0.011 (4)	0.003 (3)	0.002 (3)
C2	0.042 (4)	0.039 (4)	0.062 (4)	-0.011 (3)	0.005 (3)	0.008 (3)
C3	0.062 (5)	0.035 (4)	0.057 (4)	-0.016 (4)	0.011 (3)	-0.002(3)
C4	0.051 (4)	0.049 (4)	0.044 (4)	-0.008(4)	-0.003(3)	0.005 (3)
C5	0.041 (4)	0.047 (4)	0.059 (4)	0.000 (3)	0.007 (3)	-0.003 (3)
C6	0.046 (4)	0.040 (4)	0.049 (4)	-0.005 (3)	0.003 (3)	0.000 (3)
C7	0.041 (4)	0.045 (4)	0.047 (4)	-0.012 (3)	-0.001 (3)	-0.003 (3)
C8	0.036 (3)	0.037 (4)	0.045 (4)	-0.010 (3)	0.001 (3)	-0.005 (3)
C9	0.049 (4)	0.043 (4)	0.048 (4)	-0.016 (3)	-0.001 (3)	-0.004 (3)
C10	0.060 (4)	0.045 (4)	0.046 (4)	-0.030 (4)	0.006 (3)	-0.012 (3)
C11	0.043 (4)	0.044 (4)	0.046 (4)	-0.018 (3)	0.003 (3)	-0.008 (3)
C12	0.046 (4)	0.044 (4)	0.047 (4)	-0.019 (4)	0.005 (3)	-0.009 (3)
C13	0.057 (4)	0.048 (4)	0.050 (4)	-0.008 (3)	0.001 (3)	0.000 (3)
C14	0.043 (4)	0.043 (4)	0.047 (4)	-0.006(3)	0.010 (3)	-0.007(3)
C15	0.059 (4)	0.038 (4)	0.041 (4)	-0.010 (3)	0.007 (3)	0.005 (3)
C16	0.043 (4)	0.048 (4)	0.042 (3)	-0.005(3)	0.004 (3)	-0.001(3)
N4	0.049 (3)	0.047 (3)	0.044 (3)	-0.023 (3)	-0.001(2)	0.004 (2)
C17	0.061 (4)	0.052 (4)	0.043 (3)	-0.028 (3)	0.004 (3)	0.001 (3)
C18	0.056 (4)	0.059 (5)	0.060 (4)	-0.015 (4)	0.002 (3)	0.005 (3)
C19	0.066 (4)	0.065 (5)	0.056 (4)	-0.017 (4)	0.007 (3)	0.004 (4)
C20	0.092 (6)	0.075 (5)	0.083 (5)	-0.016 (5)	-0.003 (4)	-0.012 (4)
C21	0.049 (4)	0.046 (4)	0.047 (4)	-0.015 (3)	-0.001(3)	-0.001(3)
C22	0.061 (4)	0.066 (4)	0.046 (4)	-0.030 (4)	0.001 (3)	-0.002(3)
C23	0.048 (4)	0.059 (4)	0.054 (4)	-0.017(3)	0.003 (3)	-0.011 (3)
C24	0.062 (4)	0.058 (4)	0.050 (4)	-0.013 (4)	0.008 (3)	-0.002(3)
C25	0.042 (4)	0.063 (4)	0.045 (4)	-0.025(3)	0.004 (3)	-0.010(3)
C26	0.046 (4)	0.070 (5)	0.055 (4)	-0.016(4)	0.000 (3)	-0.002(3)
C27	0.053 (4)	0.070 (5)	0.080 (5)	-0.012(4)	0.004 (4)	-0.023 (4)
C28	0.049 (4)	0.098 (6)	0.096 (6)	-0.001(4)	-0.011 (4)	-0.022 (5)
C29	0.047 (4)	0.051 (4)	0.046 (4)	-0.023(3)	-0.007(3)	0.003 (3)
C30	0.058 (4)	0.053 (4)	0.046 (4)	-0.023 (3)	-0.007(3)	0.001 (3)

C31	0.071 (4)	0.055 (4)	0.055 (4)	-0.022 (4)	-0.016 (3)	0.003 (3)
C32	0.082 (5)	0.079 (5)	0.078 (5)	-0.017 (4)	-0.015 (4)	-0.019 (4)

Geometric parameters (Å, °)

C11—C9	1.732 (6)	С2—Н2	0.9500
Cl2—C10	1.730 (6)	С3—Н3	0.9500
O1—C7	1.220 (6)	C4—H4	0.9500
O2—C12	1.231 (6)	С5—Н5	0.9500
N1—C7	1.373 (7)	C13—H13A	0.9901
N1—C6	1.391 (7)	C13—H13B	0.9900
N2—C11	1.358 (7)	C15—H15	0.9499
N2—C8	1.362 (6)	C16—H16	0.9499
N3—C12	1.348 (7)	C17—H17A	0.9899
N3—C13	1.447 (6)	C17—H17B	0.9900
C1—C2	1.373 (8)	C18—H18A	0.9901
C1—C6	1.386 (7)	C18—H18B	0.9900
C2—C3	1.385 (8)	C19—H19A	0.9900
C3—C4	1.387 (7)	C19—H19B	0.9900
C4—C5	1.371 (7)	C20—H20A	0.9800
C5—C6	1.394 (8)	C20—H20B	0.9799
C7—C8	1.462 (8)	C20—H20C	0.9800
C8—C9	1.393 (7)	C21—H21A	0.9899
C9—C10	1.384 (7)	C21—H21B	0.9900
C10—C11	1.431 (7)	C22—H22A	0.9900
C11—C12	1.465 (8)	C22—H22B	0.9900
C13—C14	1.498 (7)	С23—Н23А	0.9900
C14—C15	1.381 (7)	С23—Н23В	0.9899
C14—C16	1.408 (7)	C24—H24A	0.9800
C15—C16 ⁱ	1.366 (7)	C24—H24B	0.9799
C16-C15 ⁱ	1.366 (7)	C24—H24C	0.9801
N4—C25	1.522 (7)	C25—H25A	0.9900
N4—C29	1.523 (6)	С25—Н25В	0.9900
N4—C17	1.526 (6)	C26—H26A	0.9900
N4—C21	1.533 (6)	C26—H26B	0.9901
C17—C18	1.524 (7)	С27—Н27А	0.9900
C18—C19	1.540 (8)	С27—Н27В	0.9900
C19—C20	1.497 (8)	C28—H28A	0.9800
C21—C22	1.512 (7)	C28—H28B	0.9800
C22—C23	1.492 (7)	C28—H28C	0.9800
C23—C24	1.511 (7)	С29—Н29А	0.9900
C25—C26	1.519 (7)	С29—Н29В	0.9900
C26—C27	1.512 (7)	С30—Н30А	0.9900
C27—C28	1.508 (8)	С30—Н30В	0.9900
C29—C30	1.516 (7)	C31—H31A	0.9899
C30—C31	1.521 (7)	C31—H31B	0.9899
C31—C32	1.528 (8)	С32—Н32А	0.9800
N1—H91	0.8800	C32—H32B	0.9800

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N3—H93	0.8801	C32—H32C	0.9799
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—H1	0.9500		
$\begin{array}{llllllllllllllllllllllllllllllllllll$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—N1—C6	128.4 (5)	C17—C18—H18A	109.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—N2—C8	108.2 (5)	C19—C18—H18A	109.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12—N3—C13	122.2 (5)	C17—C18—H18B	109.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C1—C6	120.6 (6)	C19—C18—H18B	109.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C2—C3	121.0 (6)	H18A—C18—H18B	108.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C3—C4	119.0 (6)	С20—С19—Н19А	108.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C4—C3	119.9 (6)	C18—C19—H19A	108.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C5—C6	121.5 (6)	C20-C19-H19B	108.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C6—N1	123.4 (6)	C18—C19—H19B	108.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C1—C6—C5	118.1 (6)	H19A—C19—H19B	107.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C6—C5	118.5 (5)	C19—C20—H20A	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—C7—N1	122.6 (6)	С19—С20—Н20В	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—C7—C8	125.4 (6)	H20A—C20—H20B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C7—C8	112.0 (5)	C19—C20—H20C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2—C8—C9	109.8 (5)	H20A—C20—H20C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2—C8—C7	119.9 (5)	H20B—C20—H20C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C8—C7	130.3 (6)	C22—C21—H21A	108.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-C9-C8	107.1 (5)	N4—C21—H21A	108.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10—C9—C11	124.9 (5)	C22—C21—H21B	108.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—C9—C11	128.0 (5)	N4—C21—H21B	108.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C9-C10-C11	106.6 (5)	$H_{21}A - C_{21} - H_{21}B$	107.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C9-C10-C12	126 4 (5)	C_{23} C_{22} H_{22} A	109.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{11} - C_{10} - C_{12}$	126.9(5)	C_{21} C_{22} H_{22A}	109.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N_{2} C11 - C10	120.9(5) 108.3(5)	C^{23} C^{22} H^{22B}	109.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N_{2} C11 C12	120.5(5)	C_{21} C_{22} H_{22B}	109.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-C11-C12	131.1 (6)	H22A - C22 - H22B	108.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02-C12-N3	124 2 (6)	C^{22} C^{23} H^{23} H^{23}	108.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02 - C12 - C11	124.8 (5)	C24—C23—H23A	108.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N3-C12-C11	1110(5)	C22—C23—H23B	108.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N3-C13-C14	113.6 (5)	C24—C23—H23B	108.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15-C14-C16	117.5 (5)	H23A—C23—H23B	107.6
C16C14C13121.0 (5)C23C24H24B109.5C16C15C14122.2 (5)H24AC24H24B109.5C15C16C14120.3 (5)C23C24H24B109.5C25N4C29111.0 (4)H24AC24H24C109.5C25N4C17107.3 (4)H24BC24H24C109.5C29N4C17111.2 (4)C26C25H25A108.4C29N4C21110.8 (4)N4C25H25B108.4C29N4C21106.6 (4)C26C25H25B108.5C17N4C21110.0 (4)N4C25H25B108.5C18C17N4115.1 (4)H25AC25H25B107.5C17C18C19111.6 (5)C27C26H26A109.3C20C19C18113.3 (5)C25C26H26A109.2C22C21N4115.8 (4)C27C26H26B109.4	C15—C14—C13	121.4 (5)	C23—C24—H24A	109.5
C16C17C14122.2 (5)H24AC24H24B109.5C15C15C16C14120.3 (5)C23C24H24C109.5C25N4C29111.0 (4)H24AC24H24C109.5C25N4C17107.3 (4)H24BC24H24C109.5C29N4C17111.2 (4)C26C25H25A108.4C29N4C17110.8 (4)N4C25H25B108.4C29N4C21106.6 (4)C26C25H25B108.6C17N4C21110.0 (4)N4C25H25B108.5C18C17N4115.1 (4)H25AC25H25B107.5C17C18C19111.6 (5)C27C26H26A109.3C20C19C18113.3 (5)C25C26H26B109.4	C16—C14—C13	121.0 (5)	C23—C24—H24B	109.5
C15C16C14120.3 (5)C23C24H24C109.5C25N4C29111.0 (4)H24AC24H24C109.5C25N4C17107.3 (4)H24BC24H24C109.5C29N4C17111.2 (4)C26C25H25A108.4C25N4C21110.8 (4)N4C25H25A108.4C29N4C21106.6 (4)C26C25H25B108.6C17N4C21100.0 (4)N4C25H25B108.5C18C17N4115.1 (4)H25AC25H25B107.5C17C18C19111.6 (5)C27C26H26A109.3C20C19C18113.3 (5)C25C25H26B109.4	$C16^{i}$ — $C15$ — $C14$	122.2 (5)	H24A—C24—H24B	109.5
C25-N4-C29111.0 (4)H24A-C24-H24C109.5C25-N4-C17107.3 (4)H24B-C24-H24C109.5C29-N4-C17111.2 (4)C26-C25-H25A108.4C25-N4-C21110.8 (4)N4-C25-H25A108.4C29-N4-C21106.6 (4)C26-C25-H25B108.6C17-N4-C21110.0 (4)N4-C25-H25B108.5C18-C17-N4115.1 (4)H25A-C25-H25B107.5C17-C18-C19111.6 (5)C27-C26-H26A109.3C20-C19-C18113.3 (5)C25-C26-H26A109.2C22-C21-N4115.8 (4)C27-C26-H26B109.4	$C15^{i}$ — $C16$ — $C14$	120.3 (5)	C23—C24—H24C	109.5
C25—N4—C17 107.3 (4) $H24B$ —C24—H24C 109.5 C29—N4—C17 111.2 (4)C26—C25—H25A 108.4 C25—N4—C21 110.8 (4)N4—C25—H25A 108.4 C29—N4—C21 106.6 (4)C26—C25—H25B 108.6 C17—N4—C21 110.0 (4)N4—C25—H25B 108.5 C18—C17—N4 115.1 (4)H25A—C25—H25B 107.5 C17—C18—C19 111.6 (5)C27—C26—H26A 109.3 C20—C19—C18 113.3 (5)C25—C26—H26A 109.2 C22—C21—N4 115.8 (4)C27—C26—H26B 109.4	C25—N4—C29	111.0 (4)	H24A—C24—H24C	109.5
C29—N4—C17 111.2 (4) C26—C25—H25A 108.4 C25—N4—C21 110.8 (4) N4—C25—H25A 108.4 C29—N4—C21 106.6 (4) C26—C25—H25B 108.6 C17—N4—C21 106.6 (4) C26—C25—H25B 108.5 C18—C17—N4 115.1 (4) H25A—C25—H25B 107.5 C17—C18—C19 111.6 (5) C27—C26—H26A 109.3 C20—C19—C18 113.3 (5) C25—C26—H26B 109.2 C22—C21—N4 115 8 (4) C27—C26—H26B 109.4	C25—N4—C17	107.3 (4)	H24B—C24—H24C	109.5
C25—N4—C21 110.8 (4) N4—C25—H25A 108.4 C29—N4—C21 106.6 (4) C26—C25—H25B 108.6 C17—N4—C21 110.0 (4) N4—C25—H25B 108.5 C18—C17—N4 115.1 (4) H25A—C25—H25B 107.5 C17—C18—C19 111.6 (5) C27—C26—H26A 109.3 C20—C19—C18 113.3 (5) C25—C26—H26B 109.2 C22—C21—N4 115.8 (4) C27—C26—H26B 109.4	C29—N4—C17	111.2 (4)	C26—C25—H25A	108.4
C29—N4—C21 106.6 (4) C26—C25—H25B 108.6 C17—N4—C21 110.0 (4) N4—C25—H25B 108.5 C18—C17—N4 115.1 (4) H25A—C25—H25B 107.5 C17—C18—C19 111.6 (5) C27—C26—H26A 109.3 C20—C19—C18 113.3 (5) C25—C26—H26A 109.2 C22—C21—N4 115 8 (4) C27—C26—H26B 109.4	C25—N4—C21	110.8 (4)	N4—C25—H25A	108.4
C17—N4—C21 110.0 (4) N4—C25—H25B 108.5 C18—C17—N4 115.1 (4) H25A—C25—H25B 107.5 C17—C18—C19 111.6 (5) C27—C26—H26A 109.3 C20—C19—C18 113.3 (5) C25—C26—H26A 109.2 C22—C21—N4 115 8 (4) C27—C26—H26B 109.4	C29—N4—C21	106.6 (4)	C26—C25—H25B	108.6
C18—C17—N4 115.1 (4) H25A—C25—H25B 107.5 C17—C18—C19 111.6 (5) C27—C26—H26A 109.3 C20—C19—C18 113.3 (5) C25—C26—H26A 109.2 C22—C21—N4 115.8 (4) C27—C26—H26B 109.4	C17—N4—C21	110.0 (4)	N4—C25—H25B	108.5
C17—C18—C19 111.6 (5) C27—C26—H26A 109.3 C20—C19—C18 113.3 (5) C25—C26—H26A 109.2 C22—C21—N4 115.8 (4) C27—C26—H26B 109.4	C18—C17—N4	115.1 (4)	H25A—C25—H25B	107.5
C20—C19—C18 113.3 (5) C25—C26—H26A 109.2 C22—C21—N4 115.8 (4) C27—C26—H26B 109.4	C17—C18—C19	111.6 (5)	C27—C26—H26A	109.3
C22_C21_N4 1158(4) C27_C26_H26B 1004	C20—C19—C18	113.3 (5)	C25—C26—H26A	109.2
022 021 117 1100(7) 027 020 11200 109.4	C22—C21—N4	115.8 (4)	C27—C26—H26B	109.4

C23—C22—C21	111.2 (4)	C25—C26—H26B	109.4
C22—C23—C24	114.1 (4)	H26A—C26—H26B	108.0
C26-C25-N4	115.2 (4)	C28—C27—H27A	108.9
C27—C26—C25	111.4 (5)	C26—C27—H27A	108.8
C28—C27—C26	113.7 (5)	C28—C27—H27B	108.8
C30-C29-N4	115.4 (4)	C26—C27—H27B	108.9
C29—C30—C31	111.1 (4)	H27A—C27—H27B	107.7
C30—C31—C32	110.9 (5)	C27—C28—H28A	109.5
C7—N1—H91	115.7	C27—C28—H28B	109.4
C6—N1—H91	115.8	H28A—C28—H28B	109.5
C12—N3—H93	118.9	C27—C28—H28C	109.4
C13—N3—H93	118.8	H28A—C28—H28C	109.5
С2—С1—Н1	119.7	H28B—C28—H28C	109.5
C6—C1—H1	119.7	C30—C29—H29A	108.4
С1—С2—Н2	119.5	N4—C29—H29A	108.4
С3—С2—Н2	119.5	С30—С29—Н29В	108.5
С2—С3—Н3	120.6	N4—C29—H29B	108.4
С5—С4—Н4	120.0	H29A—C29—H29B	107.5
С3—С4—Н4	120.1	С29—С30—Н30А	109.5
С4—С5—Н5	119.2	C31—C30—H30A	109.5
С6—С5—Н5	119.3	C29—C30—H30B	109.4
N3—C13—H13A	108.9	C31—C30—H30B	109.3
C14—C13—H13A	108.8	H30A—C30—H30B	108.0
N3—C13—H13B	108.8	C30—C31—H31A	109.6
C14—C13—H13B	108.9	C32—C31—H31A	109.4
H13A—C13—H13B	107.7	C30—C31—H31B	109.4
C16 ⁱ —C15—H15	118.9	C32—C31—H31B	109.5
C14—C15—H15	118.9	H31A—C31—H31B	108.1
C15 ⁱ —C16—H16	119.9	C31—C32—H32A	109.5
C14—C16—H16	119.9	C31—C32—H32B	109.5
C18—C17—H17A	108.5	H32A—C32—H32B	109.5
N4—C17—H17A	108.5	C31—C32—H32C	109.4
C18—C17—H17B	108.4	H32A—C32—H32C	109.5
N4—C17—H17B	108.5	H32B—C32—H32C	109.5
H17A—C17—H17B	107.5		

Symmetry code: (i) -x+1, -y+2, -z.