organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hugo Serrano,^a Jairo Quiroga,^a Justo Cobo,^b John N. Low^c and Christopher Glidewell^d*

^aGrupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad de Valle, AA 25360 Cali, Colombia, ^bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, ^cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and ^dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland

Correspondence e-mail: cg@st-andrews.ac.uk

Key indicators

Single-crystal X-ray study T = 120 KMean σ (C–C) = 0.002 Å R factor = 0.041 wR factor = 0.110 Data-to-parameter ratio = 17.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. 11-(4-Chlorophenyl)-10-methyl-8-phenyl-6,8-dihydro-5*H*-benzo[*f*]pyrazolo[3,4-*b*]quinoline

Molecules of the title compound, $C_{27}H_{20}ClN_3$, are linked by two independent $C-H\cdots\pi$ (arene) hydrogen bonds into chains of edge-fused rings.

Comment

Pyrazolo[3,4-*b*]quinolines are of interest as possible antiviral and antimalarial agents, and because of their other biological properties, such as parasiticidic, bactericidal, vasodilator and enzyme-inhibitory activity (Quiroga *et al.*, 2001). We have recently focused on the synthesis of fused heterocyclic systems containing the pyrazolo[3,4-*b*]quinoline moiety using multicomponent cyclocondensation reactions under solvent-free conditions. We describe here the molecular and supramolecular structure of the title compound, (I), prepared using a three-component cyclocondensation involving 5-amino-3methyl-1-phenylpyrazole, 2-tetralone and 4-chlorobenzaldehyde under solvent-free microwave irradiation.

Within the pyridine-type ring, the C-N bond lengths (Table 1) are very close to the mean value of 1.337 Å for bonds of this type (Allen et al., 1987), and there is very strong bond fixation in the five-membered ring. The pyridine ring and the benzene ring containing atom C1 are not coplanar, and their planes make a dihedral angle of $25.5 (2)^{\circ}$. The carbocylic ring containing atoms C5 and C6 accordingly adopts a screw-boat conformation (Evans & Boeyens, 1989), with total puckering amplitude Q = 0.537 (2) Å, and ring-puckering parameters $\theta =$ 70.5 (2)° and $\varphi = 92.5$ (2)° (Cremer & Pople, 1975); the idealized values of the angular parameters for a screw-boat conformer are $\theta = 67.5^{\circ}$ and $\varphi = (60k + 30)^{\circ}$. The dihedral angle between the pyrazole-type ring and aryl ring C81-C86 is 28.1 (2)°, whereas that between the pyridine-type ring and aryl ring C111-C116 is 70.1 (2)°, possibly as a consequence of repulsive interactions between the H atoms bonded to C112 and C116 and those bonded to C101 and C1, respectively.

© 2005 International Union of Crystallography

Printed in Great Britain - all rights reserved

Received 9 March 2005 Accepted 14 March 2005 Online 25 March 2005

Figure 1

The molecule of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

Stereoview of part of the crystal structure of compound (I), showing the formation of a chain of edge-fused rings along [101]. For the sake of clarity, the H atoms not involved in these motifs have been omitted.

The molecules of (I) are linked by two independent C-H... π (arene) hydrogen bonds into a chain of edge-fused rings. Aryl atom C113 in the molecule at (x, y, z) acts as donor to the phenyl ring C81–C86 in the molecule at (-x, 1 - y, -z), so forming a centrosymmetric ring, centred at $(0, \frac{1}{2}, 0)$. In a similar way, atom C115 at (x, y, z) acts as donor to the fused aryl ring, containing C1, in the molecule at (1 - x, 1 - y, 1 - z), so generating a second centrosymmetric ring, centred at $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$. Propagation by inversion of these two interactions then generates a chain of edge-fused centrosymmetric rings running parallel to the [101] direction (Fig. 2). There are no direction-specific interactions between adjacent chains: C-H···N and C-H···Cl hydrogen bonds, and aromatic π - π stacking interactions are all absent from the structure of (I).

Experimental

Equimolar amounts of 5-amino-3-methyl-1-phenylpyrazole (173 mg, 1.0 mmol), 2-tetralone (146 mg, 1.0 mmol) and 4-chlorobenzaldehyde Z = 2

 $D_r = 1.319 \text{ Mg m}^{-3}$

Cell parameters from 4871

Mo $K\alpha$ radiation

reflections

 $\mu=0.20~\mathrm{mm}^{-1}$

T = 120 (2) K

 $R_{\rm int} = 0.037$

 $\theta_{\rm max} = 27.6^{\circ}$ $h = -9 \rightarrow 9$

 $k = -16 \rightarrow 16$

 $l = -17 \rightarrow 17$

Plate, pale green

 $0.53 \times 0.20 \times 0.08 \text{ mm}$

4871 independent reflections

3853 reflections with $I > 2\sigma(I)$

 $+(0.054P)^{2}$

 $+ 2F_c^2)/3$

 $\theta = 3.0-27.6^{\circ}$

Crystal data C27H20ClN3 $M_r = 421.91$ Triclinic, $P\overline{1}$ a = 7.1270(1) Å b = 12.6300 (4) Å c = 13.2847 (4) Å $\alpha = 107.3380(13)^{\circ}$ $\beta = 103.6230 (17)^{\circ}$ $\gamma = 101.4230 (18)^{\circ}$ $V = 1061.98(5) \text{ Å}^{2}$

Data collection

Bruker-Nonius KappaCCD areadetector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{\min} = 0.906, T_{\max} = 0.984$ 21 625 measured reflections

Refinement

$w = 1/[\sigma^2(F_o^2) + (0.0.5)]$
+ 0.2795P]
where $P = (F_o^2 + 2)$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.33 \text{ e } \text{\AA}^{-3}$

Table 1		
Selected	bond lengths	(Å).

C6A-N7	1.3336 (18)	C10-C10A	1.436 (2)
N7-C7A	1.3415 (19)	C10A-C11	1.4055 (19)
C7A-N8	1.3730 (17)	C11-C11A	1.403 (2)
N8-N9	1.3791 (17)	C11A-C6A	1.4324 (19)
N9-C10	1.3190 (19)	C7A-C10A	1.398 (2)

Table 2

Hydrogen-bonding geometry (Å, °).

Cg1 is the centroid of ring C81-C86, and Cg2 is the centroid of ring C1-C4/ C4A/C11B.

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdots A$	$D{\cdots}A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C113-H113\cdots Cg1^{i}$	0.95	2.65	3.5214 (16)	152
$C115 - H115 \cdots Cg2^{ii}$	0.95	2.90	3.6403 (17)	136

Symmetry codes: (i) -x, 1 - y, -z; (ii) 1 - x, 1 - y, 1 - z.

All H atoms were located in difference maps in fully ordered sites; they were then treated as riding atoms, with C-H distances of 0.95 (aromatic), 0.98 (methyl) or 0.99 Å (CH₂), and with $U_{iso}(H) =$ $1.2U_{eq}(C)$, or $1.5U_{eq}(C)$ for the methyl group.

organic papers

Data collection: *COLLECT* (Hooft, 1999); cell refinement: *DENZO* (Otwinowski & Minor, 1997) and *COLLECT*; data reduction: *DENZO* and *COLLECT*; program(s) used to solve structure: *OSCAIL* (McArdle, 2003) and *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *OSCAIL* and *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97* and *PRPKAPPA* (Ferguson, 1999).

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England. JC thanks the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. JQ and HS thank COLCIENCIAS and UNIVALLE (Universidad del Valle, Colombia) for financial support.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.
- Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
- Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.
- McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Quiroga, J., Mejía, D., Insuasty, B., Abonia, R., Nogueras, M., Sánchez, A., Cobo, J. & Low, J. N. (2001). *Tetrahedron*, **57**, 6947–6953.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supporting information

Acta Cryst. (2005). E61, o1058–o1060 [https://doi.org/10.1107/S160053680500797X]

11-(4-Chlorophenyl)-10-methyl-8-phenyl-6,8-dihydro-5*H*-benzo[*f*]pyrazolo[3,4-*b*]quinoline

Hugo Serrano, Jairo Quiroga, Justo Cobo, John N. Low and Christopher Glidewell

11-(4-chlorophenyl)-10-methyl-8-phenyl-6,8-dihydro-5H-benzo[f]pyrazolo[3,4-b]quinoline

Crystal data

 $C_{27}H_{20}CIN_3$ $M_r = 421.91$ Triclinic, *P*1 Hall symbol: -P1 a = 7.1270 (1) Å b = 12.6300 (4) Å c = 13.2847 (4) Å $a = 107.3380 (13)^{\circ}$ $\beta = 103.6230 (17)^{\circ}$ $\gamma = 101.4230 (18)^{\circ}$ $V = 1061.98 (5) \text{ Å}^{3}$

Data collection

Bruker–Nonius 95mm CCD camera on κ goniostat diffractometer Radiation source: Bruker-Nonius FR91 rotating anode Graphite monochromator Detector resolution: 9.091 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 2003)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.110$ S = 1.084871 reflections 281 parameters 0 restraints Primary atom site location: structure-invariant direct methods Z = 2 F(000) = 440 $D_x = 1.319 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4871 reflections $\theta = 3.0-27.6^{\circ}$ $\mu = 0.20 \text{ mm}^{-1}$ T = 120 KPlate, pale green $0.53 \times 0.20 \times 0.08 \text{ mm}$

 $T_{\min} = 0.906, T_{\max} = 0.984$ 21625 measured reflections 4871 independent reflections 3853 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ $\theta_{max} = 27.6^{\circ}, \theta_{min} = 3.0^{\circ}$ $h = -9 \rightarrow 9$ $k = -16 \rightarrow 16$ $l = -17 \rightarrow 17$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.054P)^2 + 0.2795P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.23$ e Å⁻³ $\Delta\rho_{min} = -0.33$ e Å⁻³

supporting information

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl14	0.41830 (6)	0.13253 (3)	0.25576 (3)	0.03150 (13)	
N7	0.28893 (18)	0.82176 (10)	0.27569 (10)	0.0221 (3)	
N8	-0.04974 (18)	0.71127 (11)	0.15444 (10)	0.0230 (3)	
N9	-0.16306 (18)	0.59652 (11)	0.10792 (10)	0.0239 (3)	
C1	0.7802 (2)	0.60892 (13)	0.36213 (13)	0.0230 (3)	
C2	0.9656 (2)	0.61188 (14)	0.42735 (14)	0.0294 (4)	
C3	1.0767 (2)	0.70935 (15)	0.52083 (15)	0.0332 (4)	
C4	1.0043 (2)	0.80434 (14)	0.54597 (14)	0.0294 (4)	
C4A	0.8184 (2)	0.80333 (13)	0.48129 (12)	0.0226 (3)	
C5	0.7424 (2)	0.90812 (13)	0.50638 (13)	0.0263 (3)	
C6	0.6306 (2)	0.91716 (12)	0.39763 (13)	0.0242 (3)	
C6A	0.4606 (2)	0.80831 (12)	0.32939 (12)	0.0204 (3)	
C7A	0.1426 (2)	0.72218 (13)	0.21502 (12)	0.0212 (3)	
C10	-0.0445 (2)	0.53571 (13)	0.13762 (12)	0.0216 (3)	
C10A	0.1534 (2)	0.61046 (12)	0.20561 (12)	0.0198 (3)	
C11	0.3345 (2)	0.59779 (12)	0.26387 (11)	0.0186 (3)	
C11A	0.4943 (2)	0.69932 (12)	0.32585 (11)	0.0187 (3)	
C11B	0.6994 (2)	0.70225 (13)	0.38950 (12)	0.0199 (3)	
C81	-0.1403 (2)	0.79824 (13)	0.13851 (12)	0.0249 (3)	
C82	-0.3462 (2)	0.77830 (15)	0.11958 (13)	0.0289 (4)	
C83	-0.4338 (3)	0.86323 (17)	0.10284 (14)	0.0350 (4)	
C84	-0.3185 (3)	0.96645 (16)	0.10570 (14)	0.0375 (4)	
C85	-0.1139 (3)	0.98489 (16)	0.12430 (16)	0.0425 (5)	
C86	-0.0237 (2)	0.90067 (15)	0.14042 (16)	0.0369 (4)	
C101	-0.1276 (2)	0.40710 (13)	0.09992 (14)	0.0281 (3)	
C111	0.34498 (19)	0.48015 (12)	0.25989 (12)	0.0184 (3)	
C112	0.3473 (2)	0.39855 (13)	0.16309 (12)	0.0225 (3)	
C113	0.3674 (2)	0.29104 (13)	0.16129 (12)	0.0238 (3)	
C114	0.3829 (2)	0.26520 (12)	0.25674 (12)	0.0218 (3)	
C115	0.3725 (2)	0.34275 (13)	0.35236 (12)	0.0221 (3)	
C116	0.3542 (2)	0.45043 (12)	0.35347 (12)	0.0198 (3)	
H1	0.7064	0.5423	0.2976	0.028*	
H2	1.0166	0.5472	0.4080	0.035*	
H3	1.2017	0.7107	0.5672	0.040*	
H4	1.0827	0.8719	0.6087	0.035*	
H5A	0.8572	0.9788	0.5499	0.032*	
H5B	0.6505	0.9014	0.5511	0.032*	
H6A	0.5764	0.9846	0.4137	0.029*	
H6B	0.7252	0.9291	0.3554	0.029*	
H82	-0.4262	0.7077	0.1181	0.035*	
H83	-0.5750	0.8501	0.0892	0.042*	
H84	-0.3796	1.0243	0.0949	0.045*	
H85	-0.0341	1.0557	0.1261	0.051*	
H86	0.1170	0.9134	0.1527	0.044*	
H10A	-0.2733	0.3843	0.0626	0.042*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

H10B	-0.1019	0.3831	0.1643	0.042*	
H10C	-0.0622	0.3696	0.0481	0.042*	
H112	0.3351	0.4167	0.0978	0.027*	
H113	0.3706	0.2358	0.0955	0.029*	
H115	0.3777	0.3227	0.4162	0.027*	
H116	0.3478	0.5046	0.4189	0.024*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C114	0.0414 (2)	0.0201 (2)	0.0309 (2)	0.01009 (16)	0.00622 (17)	0.00961 (16)
N7	0.0202 (6)	0.0235 (6)	0.0227 (6)	0.0084 (5)	0.0051 (5)	0.0085 (5)
N8	0.0184 (6)	0.0253 (7)	0.0238 (7)	0.0079 (5)	0.0025 (5)	0.0090 (5)
N9	0.0201 (6)	0.0271 (7)	0.0226 (7)	0.0059 (5)	0.0046 (5)	0.0083 (6)
C1	0.0193 (7)	0.0253 (8)	0.0259 (8)	0.0066 (6)	0.0080 (6)	0.0106 (6)
C2	0.0217 (8)	0.0319 (9)	0.0398 (10)	0.0126 (6)	0.0098 (7)	0.0169 (8)
C3	0.0189 (7)	0.0374 (10)	0.0402 (10)	0.0069 (7)	-0.0004 (7)	0.0181 (8)
C4	0.0246 (8)	0.0291 (8)	0.0273 (8)	0.0012 (6)	-0.0002 (6)	0.0109 (7)
C4A	0.0212 (7)	0.0250 (8)	0.0222 (7)	0.0051 (6)	0.0058 (6)	0.0112 (6)
C5	0.0264 (8)	0.0243 (8)	0.0223 (8)	0.0059 (6)	0.0023 (6)	0.0052 (6)
C6	0.0239 (7)	0.0201 (7)	0.0253 (8)	0.0065 (6)	0.0036 (6)	0.0071 (6)
C6A	0.0203 (7)	0.0231 (7)	0.0189 (7)	0.0071 (6)	0.0063 (6)	0.0084 (6)
C7A	0.0203 (7)	0.0257 (8)	0.0198 (7)	0.0096 (6)	0.0057 (6)	0.0099 (6)
C10	0.0195 (7)	0.0269 (8)	0.0185 (7)	0.0068 (6)	0.0055 (6)	0.0089 (6)
C10A	0.0203 (7)	0.0221 (7)	0.0180 (7)	0.0070 (6)	0.0066 (6)	0.0078 (6)
C11	0.0207 (7)	0.0226 (7)	0.0152 (7)	0.0079 (6)	0.0074 (5)	0.0082 (6)
C11A	0.0189 (7)	0.0214 (7)	0.0172 (7)	0.0071 (5)	0.0065 (5)	0.0077 (6)
C11B	0.0183 (7)	0.0241 (7)	0.0206 (7)	0.0070 (6)	0.0071 (6)	0.0113 (6)
C81	0.0255 (8)	0.0304 (8)	0.0184 (7)	0.0147 (6)	0.0029 (6)	0.0072 (6)
C82	0.0256 (8)	0.0468 (10)	0.0212 (8)	0.0182 (7)	0.0094 (6)	0.0156 (7)
C83	0.0301 (9)	0.0599 (12)	0.0258 (8)	0.0292 (8)	0.0116 (7)	0.0181 (8)
C84	0.0446 (10)	0.0421 (10)	0.0257 (9)	0.0301 (9)	0.0027 (7)	0.0074 (8)
C85	0.0382 (10)	0.0297 (9)	0.0513 (12)	0.0155 (8)	-0.0027 (8)	0.0126 (9)
C86	0.0247 (8)	0.0295 (9)	0.0507 (11)	0.0116 (7)	-0.0004 (7)	0.0135 (8)
C101	0.0221 (8)	0.0267 (8)	0.0304 (9)	0.0029 (6)	0.0034 (6)	0.0096 (7)
C111	0.0155 (6)	0.0193 (7)	0.0191 (7)	0.0045 (5)	0.0038 (5)	0.0069 (6)
C112	0.0259 (7)	0.0248 (8)	0.0174 (7)	0.0080 (6)	0.0055 (6)	0.0088 (6)
C113	0.0282 (8)	0.0215 (8)	0.0182 (7)	0.0075 (6)	0.0062 (6)	0.0033 (6)
C114	0.0217 (7)	0.0175 (7)	0.0235 (8)	0.0047 (6)	0.0035 (6)	0.0071 (6)
C115	0.0232 (7)	0.0231 (8)	0.0196 (7)	0.0044 (6)	0.0050 (6)	0.0101 (6)
C116	0.0183 (7)	0.0228 (7)	0.0159 (7)	0.0047 (6)	0.0045 (5)	0.0053 (6)

Geometric parameters (Å, °)

C1—C2	1.386 (2)	C81—C86	1.382 (2)
C1—C11B	1.402 (2)	C81—C82	1.386 (2)
C1—H1	0.95	C82—C83	1.390 (2)
C2—C3	1.387 (2)	С82—Н82	0.95

С2—Н2	0.95	C83—C84	1.381 (3)
C3—C4	1.380 (2)	С83—Н83	0.95
С3—Н3	0.95	C84—C85	1.379 (3)
C4—C4A	1.394 (2)	C84—H84	0.95
C4—H4	0.95	C85—C86	1.390 (2)
C4A—C11B	1.411 (2)	С85—Н85	0.95
C4A—C5	1.504 (2)	C86—H86	0.95
C5—C6	1.525 (2)	C10—C101	1.495 (2)
C5—H5A	0.99	C101—H10A	0.98
C5—H5B	0.99	C101—H10B	0.98
C6—C6A	1 503 (2)	C101—H10C	0.98
C6—H6A	0.99	C11—C111	1.4883 (19)
C6—H6B	0.99	C11A—C11B	1 4937 (19)
C6A—N7	1 3336 (18)	C111—C116	1 393 (2)
N7—C7A	1 3415 (19)	C111—C112	1.393(2)
C7A—N8	1 3730 (17)	C112—C113	1.397(2)
N8—N9	1 3791 (17)	C112—H112	0.95
N9-C10	1.3190(19)	C113—C114	1 386 (2)
C10-C10A	1 436 (2)	C113—H113	0.95
C10A - C11	14055(19)	C114—C115	1 382 (2)
C11—C11A	1.403 (2)	C114—C114	1.7399 (14)
C11A—C6A	1.4324 (19)	C115—C116	1.388 (2)
C7A—C10A	1.398 (2)	C115—H115	0.95
N8—C81	1.4225(18)	C116—H116	0.95
	(10)		0150
C2—C1—C11B	121.33 (15)	C83—C84—H84	120.3
C2—C1—H1	119.3	C84—C85—C86	120.47 (18)
C11B—C1—H1	119.3	С84—С85—Н85	119.8
C1—C2—C3	119.97 (15)	С86—С85—Н85	119.8
C1—C2—H2	120.0	C81—C86—C85	119.52 (16)
С3—С2—Н2	120.0	C81—C86—H86	120.2
C4—C3—C2	119.51 (14)	С85—С86—Н86	120.2
С4—С3—Н3	120.2	C10—N9—N8	107.06 (12)
С2—С3—Н3	120.2	N9-C10-C10A	110.55 (13)
C3—C4—C4A	121.42 (15)	N9-C10-C101	119.21 (13)
C3—C4—H4	119.3	C10A—C10—C101	130.24 (13)
C4A—C4—H4	119.3	C10-C101-H10A	109.5
C4—C4A—C11B	119.43 (14)	C10-C101-H10B	109.5
C4—C4A—C5	121.47 (14)	H10A—C101—H10B	109.5
C11B—C4A—C5	119.10 (13)	C10-C101-H10C	109.5
C4A—C5—C6	109.32 (13)	H10A—C101—H10C	109.5
С4А—С5—Н5А	109.8	H10B-C101-H10C	109.5
С6—С5—Н5А	109.8	C7A-C10A-C11	118.41 (13)
C4A—C5—H5B	109.8	C7A-C10A-C10	104.91 (12)
С6—С5—Н5В	109.8	C11—C10A—C10	136.58 (13)
H5A—C5—H5B	108.3	C11A—C11—C10A	117.00 (13)
C6A—C6—C5	110.02 (12)	C11A—C11—C111	123.84 (12)
С6А—С6—Н6А	109.7	C10A—C11—C111	119.12 (12)

С5—С6—Н6А	109.7	C11—C11A—C6A	118 51 (12)
C6A—C6—H6B	109.7	C11-C11A-C11B	124 46 (13)
C5-C6-H6B	109.7	C6A - C11A - C11B	117.03(12)
H6A—C6—H6B	108.2	C1-C11B-C4A	117.03(12) 118 14 (13)
N7-C6A-C11A	125.12 (13)	C1-C11B-C11A	122.97(13)
N7-C6A-C6	11643(12)	C4A - C11B - C11A	118 89 (13)
$C_{11}A - C_{6}A - C_{6}$	118.45(12)	C116-C111-C112	110.05(13) 119.07(13)
C6A - N7 - C7A	114 21 (12)	$C_{116} - C_{111} - C_{11}$	120.28(12)
N7-C7A-N8	126 25 (13)	C_{112} $-C_{111}$ $-C_{111}$	120.20(12) 120.65(12)
N7 - C7A - C10A	126.23 (13)	C_{113} C_{112} C_{111}	120.03(12) 120.52(13)
N8-C74-C104	106.98(12)	C113_C112_H112	110.7
C7A - N8 - N9	110.50(12)	$C_{111} - C_{112} - H_{112}$	119.7
C7A - N8 - C81	129 74 (13)	C114 - C113 - C112	119.7
N9_N8_C81	129.74(13) 119.72(12)	C114 - C113 - H113	119.14 (14)
$C_{86} C_{81} C_{82}$	119.72(12) 120.67(14)	$C_{112} = C_{113} = H_{113}$	120.4
$C_{80} = C_{81} = C_{82}$	120.07(14) 110.08(14)	$C_{112} - C_{113} - C_{113}$	120.4 121.44(13)
C_{82} C_{81} N8	119.30(14) 110.34(14)	$C_{115} = C_{114} = C_{114}$	121.44(13) 110 50(11)
$C_{02} = C_{01} = N_0$	119.34 (14)	$C_{113} = C_{114} = C_{114}$	119.39(11) 118.07(12)
$C_{81} = C_{82} = C_{83}$	118.94 (10)	$C_{113} = C_{114} = C_{114}$	118.97(12) 118.87(14)
$C_{81} = C_{82} = H_{82}$	120.5	$C_{114} = C_{115} = C_{116}$	120.6
$C_{63} = C_{62} = 1162$	120.0 (16)	$C_{114} = C_{115} = H_{115}$	120.0
$C_{84} C_{83} H_{83}$	110.5		120.0
$C_{82} = C_{83} = H_{83}$	119.5	C115 C116 H116	120.88 (15)
$C_{82} = C_{83} = 1183$	119.5		119.0
$C_{85} = C_{84} = C_{85}$	119.49 (10)		119.0
03-084-1184	120.5		
C11B-C1-C2-C3	-11(2)	C101—C10—C10A—C7A	-17883(15)
C1 - C2 - C3 - C4	-2.2(3)	N9-C10-C10A-C11	176 65 (16)
C2-C3-C4-C4A	2.0(3)	C101-C10-C10A-C11	-2.7(3)
$C_3 - C_4 - C_4 A - C_{11B}$	1.4(2)	C7A— $C10A$ — $C11$ — $C11A$	-1.42(19)
C3-C4-C4A-C5	-177.96(15)	C10—C10A—C11—C11A	-177.13(16)
C4-C4A-C5-C6	143.03 (15)	C7A—C10A—C11—C111	176.61 (13)
C11B—C4A—C5—C6	-36.33(19)	C10—C10A—C11—C111	0.9 (2)
C4A-C5-C6-C6A	57.48 (16)	C10A - C11 - C11A - C6A	2.45(19)
C5—C6—C6A—N7	140.28 (13)	C111—C11—C11A—C6A	-175.48(13)
C5—C6—C6A—C11A	-40.26(18)	C10A—C11—C11A—C11B	-177.73(13)
C11A—C6A—N7—C7A	-0.1(2)	C111—C11—C11A—C11B	4.4 (2)
C6—C6A—N7—C7A	179.29 (13)	N7—C6A—C11A—C11	-1.8(2)
C6A—N7—C7A—N8	178.03 (14)	C6—C6A—C11A—C11	178.82 (13)
C6A—N7—C7A—C10A	1.3 (2)	N7—C6A—C11A—C11B	178.38 (13)
N7—C7A—N8—N9	-176.39(14)	C6—C6A—C11A—C11B	-1.02(19)
C10A - C7A - N8 - N9	0.84 (16)	C2-C1-C11B-C4A	4.4 (2)
N7-C7A-N8-C81	1.4 (2)	C_2 C_1 C_{11B} C_{11A}	-175.73(14)
C10A - C7A - N8 - C81	178.62 (14)	C4-C4A-C11B-C1	-4.5 (2)
C7A—N8—C81—C86	30.1 (2)	C5-C4A-C11B-C1	174.84 (13)
N9—N8—C81—C86	-152.28 (15)	C4-C4A-C11B-C11A	175.61 (13)
C7A—N8—C81—C82	-150.81 (15)	C5-C4A-C11B-C11A	-5.0 (2)
N9—N8—C81—C82	26.8 (2)	C_{11} — $C_{11}A$ — $C_{11}B$ — C_{11}	25.6 (2)

C86—C81—C82—C83	-0.2 (2)	C6A-C11A-C11B-C1	-154.57 (14)
N8—C81—C82—C83	-179.27 (14)	C11—C11A—C11B—C4A	-154.55 (14)
C81—C82—C83—C84	-0.5 (2)	C6A—C11A—C11B—C4A	25.28 (19)
C82—C83—C84—C85	0.7 (3)	C11A—C11—C111—C116	68.91 (18)
C83—C84—C85—C86	-0.2 (3)	C10A—C11—C111—C116	-108.97 (15)
C82—C81—C86—C85	0.7 (3)	C11A—C11—C111—C112	-110.59 (16)
N8—C81—C86—C85	179.73 (16)	C10A—C11—C111—C112	71.52 (18)
C84—C85—C86—C81	-0.5 (3)	C116—C111—C112—C113	-2.8 (2)
C7A—N8—N9—C10	-0.49 (16)	C11—C111—C112—C113	176.71 (13)
C81—N8—N9—C10	-178.53 (13)	C111—C112—C113—C114	0.7 (2)
N8—N9—C10—C10A	-0.05 (16)	C112—C113—C114—C115	2.0 (2)
N8—N9—C10—C101	179.41 (13)	C112—C113—C114—C114	-177.44 (11)
N7—C7A—C10A—C11	-0.6 (2)	C113—C114—C115—C116	-2.6 (2)
N8—C7A—C10A—C11	-177.78 (12)	Cl14—C114—C115—C116	176.87 (10)
N7—C7A—C10A—C10	176.39 (14)	C114—C115—C116—C111	0.4 (2)
N8—C7A—C10A—C10	-0.82 (15)	C112—C111—C116—C115	2.2 (2)
N9—C10—C10A—C7A	0.55 (16)	C11—C111—C116—C115	-177.29 (12)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
$\overline{\text{C113}-\text{H113}\cdots\text{Cg1}^{\text{i}}}$	0.95	2.65	3.5214 (16)	152
C115—H115…Cg2 ⁱⁱ	0.95	2.90	3.6403 (17)	136

Symmetry codes: (i) -*x*, -*y*+1, -*z*; (ii) -*x*+1, -*y*+1, -*z*+1.