organic papers

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Christopher C. Harding,^a* David J. Watkin,^a J. S. Shane Rountree,^{b,c} Terry D. Butters,^c Mark R. Wormald,^c Raymond A. Dwek^c and George W. I. Fleet^b

^aDepartment of Chemical Crystallography, Chemical Research Laboratory, Oxford University Mansfield Road Oxford OX1 3TA, England, ^bDepartment of Organic Chemistry, Chemical Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA, England, and ^cGlycobiology Institute, Department of Biochemistry, Oxford University, South Parks Road, Oxford OX1 3QU, England

Correspondence e-mail: christopher.harding@seh.ox.ac.uk

Key indicators

Single-crystal X-ray study T = 190 K Mean σ (C–C) = 0.003 Å R factor = 0.034 wR factor = 0.086 Data-to-parameter ratio = 9.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2-Acetamido-N-benzyl-1,4-imino-1,2,4trideoxy-L-ribitol

The relative configuration of the stereocentres in a potential hexosaminidase inhibitor, C₁₄H₂₀N₂O₃, prepared from p-lyxonolactone, has been established using X-ray crystallographic techniques.

Received 28 February 2005 Accepted 4 March 2005 Online 11 March 2005

Comment

Imino sugars, analogues of carbohydrates with the O atom of the ring replaced by an N atom, are a family of both natural products and synthetic materials which inhibit glycosidases; several such compounds have considerable therapeutic potential (Watson et al., 2001; Asano et al., 2000; Winchester & Fleet, 2000). For example, the natural product deoxynojirimycin, (1), is an inhibitor of a range of α -glucosidases and its derivatives have been shown to possess antiviral activity (Stütz, 1999); several related pyrrolidines, (2), are also potent inhibitors of α -glucosidases, although structure-activity relationships are not easily predictable (Asano et al., 2005; Yu et al., 2004; Scofield et al., 1986). The synthetic N-acetylglucosamine analogue, (3), is a powerful hexosaminidase inhibitor (Fleet et al., 1986; Boshagen et al., 1987); such inhibitors have potential as anticancer agents (Woynarowska et al., 1992) and for the treatment of other diseases (Liu et al., 2004). By analogy with the glucosidase inhibitors, (2), a synthetic programme towards a series of diastereomeric pyrrolidines, (4), has led to the preparation of the potential hexosaminidase inhibitor, (5). While the absolute configuration of (5) is established by the use of D-lyxonolactone, (6), as the starting material, ambiguity in the relative configuration of the nitrogen substituent was removed by X-ray crystallographic analysis.

 \times 0.10 mm

Experimental

The title compound was crystallized by cooling a warm solution in acetonitrile, forming clear block-like crystals.

Crystal data

$C_{14}H_{20}N_2O_3$	$D_x = 1.267 \text{ Mg m}^{-3}$
$M_r = 264.32$	Mo $K\alpha$ radiation
Monoclinic, $P2_1$	Cell parameters from 1415
a = 6.8912 (3) Å	reflections
p = 7.3504 (3) Å	$\theta = 1-27^{\circ}$
= 13.6824 (6) Å	$\mu = 0.09 \text{ mm}^{-1}$
3 = 90.822 (2)°	T = 190 K
V = 692.98 (5) Å ³	Block, colourless
Z = 2	$0.20 \times 0.20 \times 0.10$ mm

© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1681 independent reflections

 $R_{\rm int} = 0.020$

 $\theta_{\rm max} = 27.5^{\circ}$

 $h = -8 \rightarrow 8$

 $k = -9 \rightarrow 8$

 $l = -17 \rightarrow 17$

1499 reflections with $I > 2\sigma(I)$

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Figure 2

Packing diagram, viewed down the b axis. The crystal structure consists of strongly hydrogen-bonded ribbons of molecules along the b axis, held together by a mixture of hydrogen bonding along the *a* axis and weaker intermolecular interactions. Hydrogen bonds are represented as dotted lines.

Figure 3

View of the strong hydrogen-bonding network in one of the ribbons running parallel to the b axis. Hydrogen bonds are represented as dotted lines.

Data collection

Nonius KappaCCD diffractometer ω scans Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) $T_{\min} = 0.98, \ T_{\max} = 0.99$ 2636 measured reflections Refinement

Refinement on F^2 $+ 30.8T_2(x) + 12.9T_3(x)$ $R[F^2 > 2\sigma(F^2)] = 0.034$ wR(F²) = 0.086 + $3.03T_4(x)$], where $x = F_c/F_{max}$ and $T_i(x)$ are Chebychev poly-S = 0.89nomials (Watkin, 1994; Prince, 1673 reflections 1982) $(\Delta/\sigma)_{\rm max} < 0.001$ 172 parameters $\Delta \rho_{\rm max} = 0.23 \text{ e } \text{\AA}^{-3}$ H-atom parameters constrained $\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$ $w = [1 - (F_{\rm o} - F_{\rm c})^2 / 36\sigma^2 (F_{\rm o})]^2 /$ $[33.1T_0(x) + 52.7T_1(x)]$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N7–H8···O19 ⁱ	0.84	2.14	2.958 (2)	167
$O19-H15\cdots O6^{ii}$	0.93	1.85	2.708 (2)	153
$O6-H17\cdots O9^{iii}$	0.80	1.89	2.685 (2)	168

Symmetry codes: (i) x, y - 1, z; (ii) $-x + 1, y + \frac{1}{2}, -z + 1$; (iii) x - 1, y, z.

All H atoms were observed in a difference electron-density map. The hydroxy and amide H atoms were refined freely, whilst the others were refined with slack restraints to optimize the geometry. They were all then made to ride on their parent atoms, with C-H distances of 0.96–1.00 Å and $U_{iso}(H) = 1.2U_{eq}(parent)$. In the absence of significant anomalous scattering effects, Friedel pairs were merged; the absolute configuration is known from the synthesis. Eight lowangle reflections were omitted from the refinement because they appeared to be obscured by the beamstop.

Data collection: COLLECT (Nonius, 1997); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

References

- Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Asano, N., Ikeda, K., Yu, L., Kato, A., Takebayashi, K., Adachi, I., Kato, I., Ouchi, H., Takahata, H. & Fleet, G. W. J. (2005). Tetrahedron Asymmetry, 16, 223-229.
- Asano, N., Nash, R. J, Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645-1680.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Boshagen, H., Heiker, F. & Schuller, A. (1987). Carbohydr. Res. 164, 141-148.

Fleet, G. W. J., Smith, P. W., Nash, R. J., Fellows, L. E., Parekh, R. B. & Rademacher, T. W. (1986). Chem. Lett. pp. 1051-1054.

- Liu, J. J., Numa, M. M. D., Liu, H. T., Huang, S. J., Sears, P., Shikhman, A. R. & Wong, C. H. (2004). J. Org. Chem. 69, 6273-6283.
- Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.

- Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.
- Scofield, A. M., Fellows, L. E., Nash, R. J. & Fleet, G. W. J. (1986). *Life Sci.* 39, 645–651.
- Stütz, A. E. (1999). Iminosugars as Glycosidase Inhibitors: Nojirimycin and Beyond. Weinheim: Wiley-VCH.
- Watkin, D. J. (1994). Acta Cryst. A50, 411-437.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). *CAMERON*. Chemical Crystallography Laboratory, Oxford, England.
- Watson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). *Phytochemistry*, 56, 265–295.
- Winchester, B. & Fleet, G. W. J. (2000). J. Carbohydr. Chem. 19, 471-483.
- Woynarowska, B., Wilkiel, H., Sharma, M., Carpenter, N., Fleet, G. W. J & Bernacki, R. J. (1992). Anticancer Res. 12, 161–166.
- Yu, C.-Y., Asano, N., Ikeda, K., Wang, M.-X., Butters, T. D., Wormald, M. R., Dwek, R. A., Winters, A. L., Nash, R. J. & Fleet, G. W. J. (2004). *Chem. Commun.* pp. 1936–1937.

supporting information

Acta Cryst. (2005). E**61**, o930–o932 [https://doi.org/10.1107/S1600536805006926]

2-Acetamido-N-benzyl-1,4-imino-1,2,4-trideoxy-L-ribitol

Christopher C. Harding, David J. Watkin, J. S. Shane Rountree, Terry D. Butters, Mark R. Wormald, Raymond A. Dwek and George W. J. Fleet

F(000) = 284

 $\theta = 1 - 27^{\circ}$

T = 190 K

 $\mu = 0.09 \text{ mm}^{-1}$

Block, colourless

 $0.20 \times 0.20 \times 0.10 \text{ mm}$

 $D_{\rm x} = 1.267 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1415 reflections

2-Acetamido-N-benzyl-1,4-imino-1,2,4-trideoxy-L-ribitol

Crystal data

 $C_{14}H_{20}N_2O_3$ $M_r = 264.32$ Monoclinic, P2₁ Hall symbol: P 2yb a = 6.8912 (3) Å b = 7.3504 (3) Å c = 13.6824 (6) Å $\beta = 90.822$ (2)° V = 692.98 (5) Å³ Z = 2

Data collection

Dulu concerion	
Nonius KappaCCD	2636 measured reflections
diffractometer	1681 independent reflections
Graphite monochromator	1499 reflections with $I > 2\sigma(I)$
ωscans	$R_{\rm int} = 0.020$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 1.5^{\circ}$
(DENZO/SCALEPACK; Otwinowski & Minor,	$h = -8 \rightarrow 8$
1997)	$k = -9 \rightarrow 8$
$T_{\min} = 0.98, \ T_{\max} = 0.99$	$l = -17 \rightarrow 17$
Refinement	
Refinement on F^2	Hydrogen site location: inferre

ed from neighbouring sites Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.034$ H-atom parameters constrained $wR(F^2) = 0.086$ $w = [1 - (F_0 - F_c)^2 / 36\sigma^2(F_0)]^2 / [33.1T_0(x) +$ S = 0.89 $52.7T_1(x) + 30.8T_2(x) + 12.9T_3(x) + 3.03T_4(x)],$ where $x = F_c/F_{max}$ and $T_i(x)$ are Chebychev 1673 reflections polynomials (Watkin, 1994; Prince, 1982) 172 parameters $(\Delta/\sigma)_{\rm max} = 0.000293$ 1 restraint $\Delta \rho_{\rm max} = 0.23 \text{ e } \text{\AA}^{-3}$ Primary atom site location: structure-invariant direct methods $\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.4242 (3)	0.6215 (3)	0.69450 (14)	0.0199	
N2	0.4490 (3)	0.5333 (2)	0.79181 (12)	0.0222	

supporting information

C3	0.5356 (3)	0.3527 (3)	0.77759 (15)	0.0262
C4	0.6657 (3)	0.3880 (3)	0.69059 (14)	0.0217
C5	0.5299 (3)	0.4963 (3)	0.62235 (14)	0.0195
O6	0.40451 (19)	0.3757 (2)	0.56955 (10)	0.0235
N7	0.7464 (2)	0.2265 (3)	0.64659 (13)	0.0238
C8	0.9353 (3)	0.2105 (3)	0.62727 (14)	0.0231
O9	1.0531 (2)	0.3314 (3)	0.64842 (13)	0.0350
C10	0.9973 (3)	0.0385 (4)	0.57773 (18)	0.0353
C11	0.2725 (3)	0.5279 (3)	0.85049 (15)	0.0271
C12	0.2036 (3)	0.7160 (3)	0.87761 (14)	0.0244
C13	0.0365 (4)	0.7877 (4)	0.83651 (18)	0.0377
C14	-0.0277 (4)	0.9605 (4)	0.8619 (2)	0.0460
C15	0.0746 (4)	1.0630 (4)	0.92943 (19)	0.0392
C16	0.2405 (4)	0.9911 (4)	0.9721 (2)	0.0401
C17	0.3054 (3)	0.8199 (4)	0.94605 (18)	0.0341
C18	0.5168 (3)	0.8102 (3)	0.69904 (14)	0.0231
O19	0.4740 (2)	0.9199 (2)	0.61627 (11)	0.0260
H11	0.2843	0.6306	0.6748	0.0234*
H31	0.4369	0.2583	0.7617	0.0301*
H32	0.6081	0.3157	0.8355	0.0296*
H41	0.7736	0.4659	0.7110	0.0263*
H51	0.6045	0.5678	0.5745	0.0223*
H101	1.1185	-0.0062	0.6045	0.0424*
H102	1.0191	0.0636	0.5097	0.0433*
H103	0.9008	-0.0577	0.5807	0.0425*
H111	0.1680	0.4661	0.8139	0.0314*
H112	0.3003	0.4585	0.9100	0.0306*
H131	-0.0382	0.7154	0.7899	0.0452*
H141	-0.1480	1.0100	0.8313	0.0545*
H151	0.0289	1.1840	0.9480	0.0462*
H161	0.3130	1.0614	1.0212	0.0478*
H171	0.4252	0.7699	0.9749	0.0416*
H181	0.4672	0.8727	0.7581	0.0277*
H182	0.6578	0.7973	0.7054	0.0276*
H8	0.6680	0.1454	0.6289	0.0246*
H15	0.5200	0.8675	0.5597	0.0596*
H17	0.3069	0.3522	0.5983	0.0425*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0200 (9)	0.0199 (10)	0.0198 (9)	-0.0007 (8)	0.0015 (7)	0.0013 (8)
N2	0.0270 (8)	0.0193 (8)	0.0203 (8)	0.0014 (7)	0.0035 (6)	0.0004 (7)
C3	0.0337 (11)	0.0211 (11)	0.0238 (9)	0.0053 (9)	0.0015 (8)	-0.0009 (8)
C4	0.0189 (9)	0.0188 (10)	0.0274 (9)	0.0003 (8)	-0.0004 (7)	-0.0040(8)
C5	0.0181 (8)	0.0193 (10)	0.0211 (9)	-0.0023 (8)	0.0016 (7)	-0.0021 (8)
06	0.0199 (7)	0.0264 (8)	0.0243 (7)	-0.0044 (6)	0.0020 (5)	-0.0070 (6)
N7	0.0172 (8)	0.0195 (8)	0.0348 (9)	-0.0011 (7)	0.0004 (6)	-0.0052 (8)

supporting information

C8	0.0184 (9)	0.0259 (10)	0.0249 (9)	0.0006 (8)	0.0006 (7)	-0.0016 (9)
09	0.0223 (7)	0.0384 (10)	0.0445 (9)	-0.0081 (7)	0.0049 (6)	-0.0110 (8)
C10	0.0229 (10)	0.0357 (13)	0.0474 (13)	0.0049 (10)	0.0051 (9)	-0.0145 (12)
C11	0.0337 (11)	0.0248 (11)	0.0230 (9)	-0.0006 (9)	0.0074 (8)	-0.0002 (9)
C12	0.0265 (10)	0.0269 (10)	0.0200 (8)	0.0000 (9)	0.0072 (7)	-0.0008 (9)
C13	0.0404 (13)	0.0400 (14)	0.0325 (12)	0.0081 (12)	-0.0079 (10)	-0.0066 (11)
C14	0.0498 (15)	0.0455 (17)	0.0424 (14)	0.0198 (13)	-0.0066 (12)	-0.0015 (13)
C15	0.0488 (14)	0.0281 (13)	0.0413 (13)	0.0058 (12)	0.0158 (11)	-0.0026 (11)
C16	0.0353 (12)	0.0386 (14)	0.0466 (14)	-0.0049 (12)	0.0061 (11)	-0.0150 (12)
C17	0.0282 (10)	0.0369 (13)	0.0372 (12)	0.0021 (11)	-0.0006 (9)	-0.0113 (11)
C18	0.0281 (10)	0.0176 (10)	0.0236 (9)	-0.0020 (8)	0.0012 (7)	0.0001 (8)
O19	0.0322 (8)	0.0176 (7)	0.0284 (7)	0.0028 (6)	0.0031 (6)	0.0046 (6)

Geometric parameters (Å, °)

C1—N2	1.489 (2)	C10—H102	0.963	
C1—C5	1.540 (3)	C10—H103	0.972	
C1-C18	1.527 (3)	C11—C12	1.510 (3)	
C1—H11	1.000	C11—H111	0.983	
N2—C3	1.470 (3)	C11—H112	0.978	
N2-C11	1.467 (3)	C12—C13	1.379 (3)	
C3—C4	1.523 (3)	C12—C17	1.391 (3)	
C3—H31	0.993	C13—C14	1.391 (4)	
С3—Н32	0.970	C13—H131	0.972	
C4—C5	1.535 (3)	C14—C15	1.378 (4)	
C4—N7	1.446 (3)	C14—H141	0.993	
C4—H41	0.976	C15—C16	1.382 (4)	
C5—O6	1.427 (2)	C15—H151	0.979	
C5—H51	0.989	C16—C17	1.384 (4)	
O6—H17	0.803	C16—H161	0.978	
N7—C8	1.337 (2)	C17—H171	0.981	
N7—H8	0.838	C18—O19	1.418 (2)	
C8—O9	1.235 (3)	C18—H181	0.995	
C8—C10	1.500 (3)	C18—H182	0.979	
C10—H101	0.965	O19—H15	0.925	
N2—C1—C5	105.3 (2)	H101—C10—H102	106.6	
N2-C1-C18	108.5 (2)	C8—C10—H103	113.3	
C5-C1-C18	111.6 (2)	H101—C10—H103	109.0	
N2-C1-H11	111.50	H102—C10—H103	107.3	
C5-C1-H11	109.3	N2-C11-C12	112.1 (2)	
C18—C1—H11	110.6	N2-C11-H111	109.9	
C1—N2—C3	108.5 (2)	C12—C11—H111	108.6	
C1—N2—C11	114.6 (2)	N2-C11-H112	108.4	
C3—N2—C11	112.9 (2)	C12—C11—H112	109.4	
N2-C3-C4	101.2 (2)	H111—C11—H112	108.4	
N2-C3-H31	112.5	C11—C12—C13	120.9 (2)	
C4—C3—H31	110.9	C11—C12—C17	120.7 (2)	

N2—C3—H32	110.5	C13—C12—C17	118.4 (2)
С4—С3—Н32	112.6	C12—C13—C14	120.9 (2)
H31—C3—H32	109.0	C12—C13—H131	119.3
C3—C4—C5	101.7 (2)	C14—C13—H131	119.8
C3—C4—N7	114.8 (2)	C13—C14—C15	120.3 (2)
C5—C4—N7	114.0 (2)	C13—C14—H141	119.7
C3—C4—H41	109.3	C15—C14—H141	119.9
C5—C4—H41	109.0	C14—C15—C16	119.1 (2)
N7—C4—H41	107.8	C14—C15—H151	120.5
C1—C5—C4	102.1 (2)	C16—C15—H151	120.4
C1—C5—O6	114.0 (2)	C15—C16—C17	120.5 (2)
C4—C5—O6	110.2 (2)	C15—C16—H161	119.9
C1—C5—H51	111.2	C17—C16—H161	119.6
C4—C5—H51	111.1	C12—C17—C16	120.7 (2)
O6—C5—H51	108.2	C12—C17—H171	118.6
С5—О6—Н17	113.1	C16—C17—H171	120.7
C4—N7—C8	122.4 (2)	C1—C18—O19	113.7 (2)
C4—N7—H8	117.0	C1-C18-H181	107.7
C8—N7—H8	120.4	O19—C18—H181	108.5
N7—C8—O9	121.9 (2)	C1-C18-H182	109.2
N7—C8—C10	116.6 (2)	O19—C18—H182	108.7
O9—C8—C10	121.5 (2)	H181—C18—H182	108.9
C8—C10—H101	111.5	C18—O19—H15	111.2
C8—C10—H102	108.9		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	$D \cdots A$	D—H··· A	
N7—H8…O19 ⁱ	0.84	2.14	2.958 (2)	167	
O19—H15…O6 ⁱⁱ	0.93	1.85	2.708 (2)	153	
O6—H17…O9 ⁱⁱⁱ	0.80	1.89	2.685 (2)	168	

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) -*x*+1, *y*+1/2, -*z*+1; (iii) *x*-1, *y*, *z*.