organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Steven Humphreys,^a David J. Watkin,^a* Gangadharar J. Sanjayan,^b George E. Tranter,^c Alison A. Edwards^c and George W. J. Fleet^b

^aDepartment of Chemical Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, ^bDepartment of Organic Chemistry, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, and ^cBiological Chemistry, Division of Biomedical Sciences, Imperial College, London SW7 2AZ, England

Correspondence e-mail: david.watkin@chem.ox.ac.uk

Key indicators

Single-crystal X-ray study T = 190 KMean $\sigma(\text{C}-\text{C}) = 0.006 \text{ Å}$ Disorder in main residue R factor = 0.085 wR factor = 0.119 Data-to-parameter ratio = 12.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Isopropyl 2,5-anhydro-4-(2,5-anhydro-4-azido-3-O-tert-butyldiphenylsilyl-4-deoxy-L-ribonylamino)-3-O-tert-butyldiphenylsilyl-4-deoxy-L-ribonate

The crystal structure of the title compound, $C_{45}H_{56}N_4O_7Si_2$, shows a γ -turn conformation which is stabilized by an intramolecular hydrogen bond.

Received 24 February 2005 Accepted 3 March 2005 Online 11 March 2005

Comment

Tetrahydrofuran (THF)-derived sugar amino acids (SAA) have been extensively investigated as dipeptide isosteres (Chakraborty *et al.*, 2004; Grotenberg *et al.*, 2004). A multitude of peptidomimetics, including a number of δ -THF SAA scaffolds, induce β -turn-like structures (Smith *et al.*, 2003). However, there are relatively few examples of γ -turn conformations (Etzkorn *et al.*, 1999; Lindvall *et al.*, 1999; Belvisi *et al.*, 1999). In contrast to the extensive studies on β peptides built from residues containing five- or six-membered rings (Wang *et al.*, 2000), there are only limited reports of γ peptides based on cyclic templates (Curran *et al.*, 1996; Crisma *et al.*, 2001; Goswami & Moloney, 1999).

This paper reports the structure of the γ -THF SAA compound, (1). The γ -turn conformation (Fig. 1) is stabilized by bifurcated intramolecular N14-H14...O39 and N14-H14...O5 hydrogen bonds. There is no intermolecular

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved The central section of the molecule, showing the γ -turn stabilized by the bifurcated internal hydrogen bond (dashed lines.

hydrogen bonding, thus leading to an open structure (calculated density = 1.219 Mg m^{-3}) with a substantial opportunity for disorder and large atomic displacements (Fig. 2).

Experimental

Compound (1) was prepared by conventional peptide coupling procedures from the dipeptidomimetic compound (2) (Sanjayan et al., 2003), and was crystallized from methanol.

Crystal data

C45H56N4O7Si2	$D_x = 1.219 \text{ Mg m}^{-3}$
$M_r = 821.13$	Mo K α radiation
Monoclinic, P2 ₁	Cell parameters from 4658
a = 15.4548 (4) Å	reflections
b = 9.0111 (2) Å	$\theta = 5-30^{\circ}$
c = 16.4767 (5) Å	$\mu = 0.13 \text{ mm}^{-1}$
$\beta = 102.7868 \ (10)^{\circ}$	$T = 190 { m K}$
$V = 2237.72 (10) \text{ Å}^3$	Prism, colourless
<i>Z</i> = 2	$0.80 \times 0.30 \times 0.20 \mbox{ mm}$
Data collection	

Nonius KappaCCD diffractometer	6788 independent reflections
ωscans	6788 reflections with $I > -3\sigma(I)$
Absorption correction: multi-scan	$R_{\rm int} = 0.057$
(DENZO/SCALEPACK;	$\theta_{\rm max} = 30.0^{\circ}$
Otwinowski & Minor, 1997)	$h = -21 \rightarrow 21$
$T_{\min} = 0.96, T_{\max} = 0.97$	$k = -12 \rightarrow 8$
23431 measured reflections	$l = -23 \rightarrow 23$

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.085$	$w = 1/[\sigma^2(F^2) + 0.03 + 1.13P]$
$wR(F^2) = 0.119$	where $P = [\max(F_o^2, 0) + 2F_c^2]/3$
S = 0.99	$(\Delta/\sigma)_{\rm max} = 0.001$
6788 reflections	$\Delta \rho_{\rm max} = 0.57 \ {\rm e} \ {\rm \AA}^{-3}$
550 parameters	$\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N14—H14· · ·O39	0.84	2.39	3.057 (5)	137
N14—H14· · ·O5	0.84	2.21	2.624 (5)	110

The disordered azide group could only be refined satisfactorily with distance and anisotropic displacement parameter (adp) similarity restraints. The small angle C3-C7-N801 [93.1 (4) $^{\circ}$] and the large angle C3-C7-N901 [123.7 (5)°] suggests that the disorder probably extends into the ring system, but is accommodated by the adps. Atom H71 should also be represented by two partial atoms, but they could not be resolved. The other H atoms were all located in a difference map. Those attached to C atoms were repositioned geometrically. All H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C-H =0.93-0.98, O-N = 0.86-0.89 and O-H = 0.82 Å) and U_{iso} values (in the range 1.2–1.5 times $U_{\rm eq}$ of the parent atom), after which they were refined with riding constraints. The large adps in the phenyl groups are consistent with rigid-body librations (R_{TLS} in the range 2.5–5.0%). The large adps in the tert-butyl groups are not amenable to TLS analysis, but look consistent with simple libration. Both the large displacement parameters and the disorder in the azide are not unexpected, because there are no intermolecular hydrogen bonds to consolidate the crystal packing.

Figure 2

The complete molecule with displacement ellipsoids drawn at the 50% probability level. The cavity containing the disordered azide is evident, as are the large displacements of the atoms in the periphery. Some labels have been omitted for clarity.

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Financial support to AAE for a post-doctoral fellowship from EPSRC (grant No. GR/S44105/01) and to GJS from DST, New Delhi, for a BOYCAST Fellowship, is gratefully acknowledged.

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Belvisi, L., Gennari, C., Mieglo, A., Potenza, D. & Scolastico, C. (1999). Eur. J. Org. Chem. pp. 389-400.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Chakraborty, T. K., Srinivasi, P., Tapadar, S. & Mohan, B. K. (2004). J. Chem. Sci. 116, 187-207.
- Crisma, M., Moretto, A., Toniolo, C., Kaczmarek, K. & Zabrocki, J. (2001). Macromolecules, 34, 5048-5052.
- Curran, T. P., Chandler, N. M., Kennedy, R. J. & Keaney, M. T. (1996). Tetrahedron Lett. 37, 1933-1936.
- Etzkorn, F. A., Travins, J. M. & Hart, S. A. (1999). Adv. Amino Acid Mimetics Peptidomimetics, 2, 125-163.
- Goswami, R. & Moloney, M. G. (1999). Chem. Commun. pp. 2333-2334.
- Grotenberg, G. M., Timmerj, M. S. M., Llamas-Saiz, A. L., Verdoes, M., van der Marel, G. A., van Raaij, M. J., Overkleeft, H. S. & Overhand, M. (2004). J. Am. Chem. Soc. 126, 3444-3446.
- Lindvall, M. K., Rissanen, K., Hakala, J. M. L. & Koskinen, A. M. P. (1999). Tetrahedron Lett. 40, 7427-7430.
- Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sanjayan, G. J., Stewart, A. J., Hachisu, S., Gonzalez, R., Watterson, M. P. & Fleet, G. W. J. (2003). Tetrahedron Lett. 44, 5847-5852.
- Smith, M. D., Claridge, T. D. W., Sansom, M. P. & Fleet, G. W. J. (2003). Org. Biomol. Chem. 1, 3647-3655.
- Wang, X., Espinosa, J. F. & Gellman, S. H. (2000). J. Am. Chem. Soc. 122, 4821-4822
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

Acta Cryst. (2005). E**61**, o918–o919 [https://doi.org/10.1107/S1600536805006689]

Isopropyl 2,5-anhydro-4-(2,5-anhydro-4-azido-3-*O-tert*-butyldiphenylsilyl-4-deoxy-L-ribonylamino)-3-*O-tert*-butyldiphenylsilyl-4-deoxy-L-ribonate

Steven Humphreys, David J. Watkin, Gangadharar J. Sanjayan, George E. Tranter, Alison A. Edwards and George W. J. Fleet

(1)

Crystal data	
$C_{45}H_{56}N_4O_7Si_2$	F(000) = 876
$M_r = 821.13$	$D_{\rm x} = 1.219 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1$	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
a = 15.4548 (4) Å	Cell parameters from 4658 reflections
b = 9.0111 (2) Å	$\theta = 5-30^{\circ}$
c = 16.4767 (5) Å	$\mu = 0.13 \text{ mm}^{-1}$
$\beta = 102.7868 \ (10)^{\circ}$	T = 190 K
$V = 2237.72 (10) Å^3$	Prism, colourless
Z = 2	$0.80\times0.30\times0.20\ mm$
Data collection	
Nonius KappaCCD	23431 measured reflections
diffractometer	6788 independent reflections
Graphite monochromator	6788 reflections with $I > -3\sigma(I)$
ωscans	$R_{\rm int} = 0.057$
Absorption correction: multi-scan	$\theta_{\rm max} = 30.0^\circ, \ \theta_{\rm min} = 5.1^\circ$
(DENZO/SCALEPACK; Otwinowski & Minor,	$h = -21 \rightarrow 21$
1997)	$k = -12 \rightarrow 8$
$T_{\min} = 0.96, \ T_{\max} = 0.97$	<i>l</i> = −23→23
Refinement	
Refinement on F^2	Primary atom site location: structure-invariant
Least-squares matrix: full	direct methods

Least-squares matrix: fu $R[F^2 > 2\sigma(F^2)] = 0.085$ $wR(F^2) = 0.119$ S = 0.996788 reflections 550 parameters 44 restraints Primary atom site location: structure-invaria direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F^2) + 0.03 + 1.13P]$ where $P = [\max(F_o^2, 0) + 2F_c^2]/3$ $(\Delta/\sigma)_{\max} = 0.001$ $\Delta\rho_{\max} = 0.57$ e Å⁻³ $\Delta\rho_{\min} = -0.48$ e Å⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Si1	0.14482 (6)	0.36845 (13)	0.25970 (5)	0.0362	

Si18	0.28747 (5)	0.47285 (12)	0.84360 (5)	0.0307
C3	0.2651 (2)	0.4364 (5)	0.40455 (19)	0.0467
C4	0.3032 (2)	0.5867 (5)	0.4362 (2)	0.0430
C6	0.4197 (3)	0.4315 (8)	0.4285 (3)	0.0948
C7	0.3418 (4)	0.3372 (7)	0.4321 (3)	0.0865
C13	0.2785 (2)	0.6316 (5)	0.5169 (2)	0.0446
C15	0.3333 (2)	0.7119 (4)	0.66015 (18)	0.0336
C16	0.36860 (18)	0.5938 (3)	0.72532 (17)	0.0289
C19	0.1894 (2)	0.5551 (4)	0.87813 (19)	0.0349
C20	0.1216 (2)	0.6032 (5)	0.7992 (2)	0.0490
C21	0.1462(2)	0.4374(5)	0.9232(2)	0.0478
C22	0.2133(2)	0 6925 (4)	0.9332(2)	0.0457
C23	0.2496(2)	0.3135(4)	0.7724(2)	0.0365
C24	0.2190(2) 0.2086(2)	0.3349(4)	0.6880(2)	0.0454
C25	0.2000(2) 0.1747(3)	0.3319(1) 0.2164(5)	0.6373(3)	0.0627
C26	0.1747(3) 0.1804(3)	0.2104(5) 0.0739(6)	0.0575(3)	0.0027
C27	0.1004(3) 0.2187(3)	0.0799(0)	0.0008(4) 0.7508(4)	0.0759
C27	0.2187(3) 0.2530(3)	0.0508(3) 0.1678(4)	0.7508(4)	0.0759
C28	0.2330(3)	0.1078(4) 0.4158(4)	0.8019(3)	0.0370
C29	0.3823(2) 0.3861(3)	0.4138(4)	0.9299(2)	0.0415
C30	0.3601(3)	0.4411(3)	1.0132(2) 1.0747(2)	0.0393
C31	0.4027(3)	0.4085(0)	1.0747(3)	0.0/14
C32	0.5350(5) 0.5217(2)	0.3520(0)	1.0510(3)	0.0077
C33	0.5317(3)	0.3236 (8)	0.9700 (3)	0.0955
C34	0.4561 (3)	0.3576(7)	0.9103 (3)	0.0764
C35	0.4674 (2)	0.6379 (4)	0.7527 (2)	0.0349
C37	0.3888 (2)	0.8455 (4)	0.6941 (2)	0.0433
C38	0.5238 (2)	0.5435 (4)	0.7081 (2)	0.0391
C41	0.6082 (3)	0.3190 (5)	0.7176 (3)	0.0688
C42	0.7008 (3)	0.3848 (7)	0.7285 (3)	0.0835
C43	0.6078 (5)	0.1813 (7)	0.7669 (5)	0.1347
C45	0.0883 (2)	0.2542 (4)	0.3279 (2)	0.0371
C46	0.0226 (2)	0.3088 (4)	0.3664 (2)	0.0442
C47	-0.0166 (2)	0.2214 (5)	0.4169 (2)	0.0461
C48	0.0097 (3)	0.0756 (5)	0.4313 (2)	0.0504
C49	0.0742 (3)	0.0193 (5)	0.3963 (3)	0.0606
C50	0.1126 (3)	0.1068 (5)	0.3437 (2)	0.0526
C51	0.1797 (2)	0.2446 (4)	0.18129 (19)	0.0401
C52	0.2645 (2)	0.2492 (5)	0.1659 (2)	0.0462
C53	0.2874 (3)	0.1602 (5)	0.1050 (2)	0.0587
C54	0.2272 (3)	0.0654 (5)	0.0587 (2)	0.0628
C55	0.1428 (3)	0.0575 (6)	0.0725 (2)	0.0629
C56	0.1200 (3)	0.1459 (5)	0.1330 (2)	0.0562
C57	0.0774 (2)	0.5299 (4)	0.2059 (2)	0.0433
C58	-0.0142 (3)	0.4788 (5)	0.1571 (3)	0.0600
C59	0.0653 (3)	0.6531 (5)	0.2669 (2)	0.0562
C60	0.1279 (3)	0.5981 (5)	0.1436 (3)	0.0672
O2	0.23825 (14)	0.4387 (3)	0.31647 (13)	0.0472
O5	0.39594 (17)	0.5793 (4)	0.44477 (16)	0.0661

O17	0.32402 (13)	0.6086 (2)	0.79167 (12)	0.0306	
O36	0.47512 (16)	0.7875 (3)	0.72919 (16)	0.0468	
O39	0.53825 (16)	0.5705 (3)	0.64113 (15)	0.0547	
O40	0.55231 (18)	0.4244 (3)	0.75264 (17)	0.0572	
O44	0.20056 (16)	0.6364 (5)	0.52043 (17)	0.0807	
N14	0.34587 (18)	0.6699 (3)	0.57860 (15)	0.0389	
N801	0.3204 (6)	0.3119 (13)	0.5206 (5)	0.0860	0.4308
N802	0.3745 (7)	0.2480 (12)	0.5756 (6)	0.0846	0.4321
N803	0.4213 (7)	0.2048 (14)	0.6321 (7)	0.1022	0.4321
N901	0.3658 (5)	0.2755 (9)	0.5127 (4)	0.0871	0.5692
N902	0.3353 (5)	0.1546 (9)	0.5120 (5)	0.0871	0.5679
N903	0.3137 (10)	0.0369 (10)	0.5186 (7)	0.1484	0.5679
H14	0.3979	0.6662	0.5705	0.0567*	
H31	0.2156	0.4073	0.4288	0.0666*	
H41	0.2805	0.6638	0.3945	0.0610*	
H61	0.4713	0.4017	0.4697	0.1317*	
H62	0.4323	0 4229	0.3736	0.1319*	
H71	0.3373	0.2510	0.3954	0.1191*	
H151	0.2710	0.7334	0.6569	0.0473*	
H161	0.3617	0 4943	0.7021	0.0408*	
H201	0.0704	0.6479	0.8153	0.0851*	
H202	0.1478	0.6748	0.7672	0.0853*	
H203	0.1016	0.5166	0.7650	0.0859*	
H211	0.0944	0.3708	0.9381	0.0897*	
H212	0.1877	0.4758	0.9743	0.0897	
H212	0.1284	0.3527	0.8884	0.0894	
H2213	0.1607	0.7317	0.9477	0.0816*	
H221	0.2555	0.6685	0.9835	0.0818*	
H223	0.2376	0.7701	0.9029	0.0812*	
H241	0.2047	0.4306	0.6659	0.0643*	
H251	0.1484	0.2331	0.5815	0.0886*	
H261	0.1583	-0.0070	0.6345	0.1158*	
H271	0.1303	-0.0460	0.0345	0.1167*	
H281	0.2784	0.1516	0.8574	0.0871*	
H301	0.3350	0.4798	1.0327	0.0857*	
H311	0.4638	0.4238	1.0327	0.0998*	
H321	0.5882	0.3324	1.0900	0.0997*	
H331	0.5817	0.2813	0.9535	0.1379*	
H341	0.4551	0.3396	0.8523	0.1103*	
H351	0.4878	0.6242	0.8124	0.0492*	
H371	0.3643	0.8964	0.7368	0.0617*	
H372	0 3917	0.9152	0.6489	0.0621*	
H411	0.5820	0.3007	0.6581	0.1025*	
H421	0.7387	0.3125	0.7081	0.1025	
H422	0.7337	0.3123	0.7882	0.1400*	
H423	0.7237	0.4034	0.7882	0.1490*	
нт <u>г</u> 23	0.6791	0.1108	0.0975	0.1492	
11 4 31 11/20	0.0471	0.1100	0.7525	0.2040*	
П 4 32	0.0234	0.2031	0.0202	0.2049"	

H433	0.5473	0.1415	0.7523	0.2648*
H461	0.0048	0.4084	0.3561	0.0645*
H471	-0.0600	0.2605	0.4414	0.0677*
H481	-0.0176	0.0162	0.4647	0.0749*
H491	0.0917	-0.0796	0.4055	0.0899*
H501	0.1562	0.0655	0.3196	0.0781*
H521	0.3068	0.3167	0.1961	0.0669*
H531	0.3451	0.1673	0.0961	0.0887*
H541	0.2435	0.0030	0.0176	0.0914*
H551	0.1011	-0.0076	0.0423	0.0898*
H561	0.0628	0.1369	0.1429	0.0810*
H581	-0.0436	0.5629	0.1266	0.1018*
H582	-0.0492	0.4426	0.1953	0.1016*
H583	-0.0064	0.4024	0.1172	0.1012*
H591	0.0374	0.7392	0.2382	0.1018*
H592	0.1215	0.6831	0.3018	0.1015*
H593	0.0290	0.6155	0.3020	0.1015*
H601	0.0962	0.6844	0.1176	0.1247*
H602	0.1862	0.6269	0.1726	0.1244*
H603	0.1321	0.5240	0.1025	0.1246*

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	U^{23}
Si1	0.0301 (4)	0.0519 (5)	0.0278 (4)	-0.0106 (4)	0.0094 (3)	-0.0050 (4)
Si18	0.0261 (4)	0.0375 (4)	0.0287 (4)	0.0061 (4)	0.0064 (3)	0.0041 (4)
C3	0.0413 (18)	0.074 (3)	0.0255 (16)	-0.0136 (18)	0.0085 (14)	-0.0082 (17)
C4	0.0309 (16)	0.072 (2)	0.0262 (16)	-0.0068 (18)	0.0072 (13)	-0.0059 (17)
C6	0.047 (3)	0.154 (6)	0.077 (3)	0.026 (3)	-0.001 (2)	-0.034 (4)
C7	0.086 (3)	0.088 (3)	0.071 (2)	0.021 (2)	-0.013 (2)	0.005 (2)
C13	0.0343 (17)	0.068 (2)	0.0309 (17)	0.0036 (18)	0.0071 (14)	-0.0052 (17)
C15	0.0327 (16)	0.0425 (17)	0.0262 (15)	0.0021 (14)	0.0077 (12)	-0.0025 (13)
C16	0.0273 (14)	0.0320 (15)	0.0273 (14)	0.0003 (13)	0.0062 (11)	-0.0046 (12)
C19	0.0257 (14)	0.0460 (18)	0.0335 (16)	0.0061 (14)	0.0076 (12)	0.0022 (14)
C20	0.0342 (17)	0.066 (2)	0.0439 (19)	0.0204 (18)	0.0034 (15)	0.0020 (19)
C21	0.0384 (18)	0.060 (2)	0.050 (2)	-0.0010 (17)	0.0196 (16)	0.0018 (18)
C22	0.0429 (19)	0.051 (2)	0.046 (2)	0.0071 (17)	0.0144 (16)	-0.0057 (17)
C23	0.0319 (16)	0.0374 (16)	0.0434 (19)	0.0022 (14)	0.0154 (14)	-0.0011 (14)
C24	0.0378 (18)	0.047 (2)	0.052 (2)	-0.0059 (16)	0.0108 (16)	-0.0085 (17)
C25	0.042 (2)	0.071 (3)	0.074 (3)	-0.015 (2)	0.010 (2)	-0.028 (2)
C26	0.058 (3)	0.056 (3)	0.124 (5)	-0.018 (2)	0.041 (3)	-0.036 (3)
C27	0.076 (3)	0.034 (2)	0.133 (5)	-0.008 (2)	0.056 (3)	-0.007 (3)
C28	0.061 (3)	0.042 (2)	0.080 (3)	0.0063 (19)	0.038 (2)	0.008 (2)
C29	0.0333 (17)	0.054 (2)	0.0372 (18)	0.0125 (15)	0.0083 (13)	0.0156 (16)
C30	0.049 (2)	0.081 (3)	0.046 (2)	0.019 (2)	0.0052 (17)	0.005 (2)
C31	0.066 (3)	0.100 (4)	0.041 (2)	0.025 (3)	-0.0049 (19)	0.007 (2)
C32	0.042 (2)	0.108 (4)	0.047 (2)	0.021 (3)	-0.0032 (17)	0.023 (3)
C33	0.060 (3)	0.161 (6)	0.062 (3)	0.062 (4)	0.005 (2)	0.021 (3)

C34	0.054(2)	0.123(4)	0.051(2)	0.043(3)	0.010(2)	0.017(3)
C35	0.034(2)	0.123(4) 0.0374(17)	0.031(2) 0.0359(17)	0.043(3)	0.010(2) 0.0072(13)	-0.0033(14)
C37	0.0513(10)	0.03/4(17)	0.0337(17)	0.0025(17)	0.0072(15)	-0.0013(14)
C38	0.032(2)	0.0348(18)	0.0410(19)	-0.0010(15)	0.0008(10)	-0.0013(15)
C38	0.0239(13)	0.0484(19)	0.044(2)	0.0010(13)	0.0091(14)	0.0041(10)
C_{41}	0.078(3)	0.039(3)	0.080(3)	0.031(2)	0.041(3)	-0.022(2)
C42	0.000(3) 0.183(7)	0.098(4)	0.094(4) 0.180(7)	0.050(3)	0.020(2)	-0.023(3)
C45	0.103(7)	0.078(4)	0.100(7)	0.003(3)	0.118(0)	0.047(3)
C45	0.0293(10)	0.030(2)	0.0520(17)	-0.0049(13)	0.0070(13)	-0.0029(13)
C40	0.0388(18)	0.032(2)	0.0434(19)	-0.0007(10)	0.0151(15)	0.0021(10)
C47	0.0303(18)	0.064(2)	0.042(2)	-0.00/9(18)	0.0167(15)	-0.0026(18)
C48	0.056(2)	0.059 (2)	0.0397(19)	-0.01/(2)	0.01/5(1/)	0.0032(18)
C49	0.079(3)	0.047(2)	0.061(3)	0.005(2)	0.029(2)	0.0085(19)
C50	0.052(2)	0.056(2)	0.055(2)	0.009(2)	0.0238(18)	0.0039 (19)
C51	0.0392 (18)	0.056 (2)	0.0262 (16)	-0.0044 (17)	0.0105 (13)	-0.0029 (15)
C52	0.0410 (19)	0.062 (2)	0.0381 (19)	-0.0062(18)	0.0140 (15)	-0.0016 (17)
C53	0.056 (2)	0.078 (3)	0.051 (2)	0.006 (2)	0.0302 (19)	0.001 (2)
C54	0.089 (3)	0.063 (3)	0.040 (2)	0.009 (3)	0.023(2)	-0.007 (2)
C55	0.070 (3)	0.077 (3)	0.041 (2)	-0.006 (2)	0.0107 (19)	-0.020 (2)
C56	0.049 (2)	0.077 (3)	0.043 (2)	-0.009 (2)	0.0116 (17)	-0.016 (2)
C57	0.0455 (19)	0.050 (2)	0.0340 (17)	-0.0123 (17)	0.0081 (15)	-0.0013 (16)
C58	0.058 (2)	0.053 (2)	0.059 (2)	-0.005(2)	-0.0074 (19)	0.002 (2)
C59	0.062 (2)	0.054 (2)	0.055 (2)	-0.004(2)	0.017 (2)	-0.009(2)
C60	0.086 (3)	0.066 (3)	0.056 (3)	-0.019 (3)	0.029 (2)	0.007 (2)
O2	0.0366 (12)	0.0813 (19)	0.0247 (11)	-0.0217 (13)	0.0086 (9)	-0.0097 (12)
05	0.0412 (14)	0.119 (3)	0.0437 (15)	-0.0256 (17)	0.0210 (12)	-0.0300 (17)
017	0.0340 (11)	0.0350 (11)	0.0245 (10)	0.0047 (9)	0.0098 (8)	0.0008 (9)
O36	0.0402 (13)	0.0353 (12)	0.0605 (16)	-0.0061 (11)	0.0018 (11)	-0.0033 (11)
O39	0.0489 (14)	0.0752 (19)	0.0448 (14)	0.0122 (15)	0.0206 (12)	0.0038 (14)
O40	0.0635 (17)	0.0518 (15)	0.0650 (17)	0.0255 (14)	0.0327 (14)	0.0109 (13)
O44	0.0306 (13)	0.160 (4)	0.0494 (16)	0.0069 (18)	0.0052 (11)	-0.038 (2)
N14	0.0339 (14)	0.0620 (18)	0.0219 (13)	-0.0014 (13)	0.0082 (11)	-0.0049 (12)
N801	0.085 (3)	0.087 (3)	0.071 (2)	0.020 (2)	-0.013 (2)	0.007 (2)
N802	0.084 (3)	0.086 (3)	0.070 (2)	0.020 (3)	-0.012 (2)	0.008 (2)
N803	0.085 (7)	0.119 (10)	0.106 (8)	-0.027 (7)	0.028 (6)	0.016 (8)
N901	0.087 (3)	0.089 (3)	0.071 (2)	0.021 (2)	-0.013 (2)	0.006 (2)
N902	0.087 (3)	0.089 (3)	0.071 (2)	0.021 (2)	-0.013 (2)	0.006 (2)
N903	0.245 (15)	0.071 (6)	0.118 (8)	0.006 (8)	0.018 (8)	0.032 (6)

Geometric parameters (Å, °)

Sil—C45	1.876 (3)	С32—Н321	0.934
Si1-C51	1.874 (3)	C33—C34	1.385 (6)
Sil—C57	1.892 (4)	C33—H331	0.953
Si1—O2	1.662 (2)	C34—H341	0.966
Si18—C19	1.884 (3)	C35—C38	1.520 (4)
Si18—C23	1.865 (3)	C35—O36	1.415 (4)
Si18—C29	1.874 (3)	C35—H351	0.972
Si18—O17	1.662 (2)	C37—O36	1.430 (4)

C3—C4	1.522 (5)	С37—Н371	0.984
C3—C7	1.473 (6)	С37—Н372	0.983
C3—O2	1.419 (4)	C38—O39	1.198 (4)
C3—H31	0.975	C38—O40	1.320 (4)
C4—C13	1.517 (4)	C41—C42	1.523 (7)
C4—O5	1.411 (4)	C41—C43	1.484 (7)
C4—H41	0.986	C41—O40	1.483 (4)
C6—C7	1.486 (8)	C41—H411	0.989
C6—O5	1.422 (7)	C42—H421	0.985
C6—H61	0.964	C42—H422	0.983
C6—H62	0.970	C42—H423	0.982
C7—N801	1 582 (8)	C43—H431	0.968
C7—H71	0.978	C43—H432	0.976
C7—N901	1 411 (7)	C43—H433	0.980
C7H71	0.978	C45-C46	1.402(5)
$C_{13} - 0.44$	1 220 (4)	C45 - C50	1.402(5) 1 389(5)
C_{13} N_{14}	1.220(4) 1.320(4)	$C_{45} - C_{50}$	1.389(5)
C_{13} C_{14}	1.529 (4)	$C_{40} = C_{47}$	1.380(3)
C_{15} C_{27}	1.524 (4)	C40 - H401	0.945
C15 - C37	1.312(3)	C47 - C48	1.380 (0)
CI5—NI4	1.450 (4)	C4/H4/1	0.925
C15—H151	0.973	C48 - C49	1.357 (6)
C16-C35	1.545 (4)	C48—H481	0.933
	1.422 (3)	C49 - C50	1.397 (5)
C16—H161	0.972	C49—H491	0.934
C19—C20	1.541 (4)	C50—H501	0.932
C19—C21	1.530 (5)	C51—C52	1.390 (4)
C19—C22	1.531 (5)	C51—C56	1.396 (5)
C20—H201	0.976	C52—C53	1.390 (5)
C20—H202	0.975	С52—Н521	0.949
C20—H203	0.972	C53—C54	1.364 (6)
C21—H211	0.967	С53—Н531	0.938
C21—H212	0.980	C54—C55	1.376 (6)
C21—H213	0.957	C54—H541	0.956
C22—H221	0.964	C55—C56	1.381 (6)
C22—H222	0.960	C55—H551	0.930
С22—Н223	0.981	C56—H561	0.938
C23—C24	1.407 (5)	C57—C58	1.536 (5)
C23—C28	1.397 (5)	C57—C59	1.537 (5)
C24—C25	1.386 (5)	C57—C60	1.547 (5)
C24—H241	0.933	C58—H581	0.965
C25—C26	1.380(7)	C58—H582	0.973
C25—H251	0.931	С58—Н583	0.977
C26—C27	1.366 (7)	С59—Н591	0.960
C26—H261	0.939	С59—Н592	0.968
C27—C28	1.380 (6)	С59—Н593	0.953
C27—H271	0.935	C60—H601	0.967
C28—H281	0.923	C60—H602	0.957
C29—C30	1.412 (5)	С60—Н603	0.964
			J.J V I

C29—C34	1.357 (5)	N14—H14	0.844
C30—C31	1.393 (5)	N801—N802	1.231 (8)
C30—H301	0.965	N802—N803	1.116 (8)
C31—C32	1.369 (6)	N901—N902	1.186 (8)
C31—H311	0.970	N902—N903	1.125 (8)
C32—C33	1.347 (6)		
C45—Si1—C51	109.19 (16)	C32—C33—C34	120.5 (4)
C45—Si1—C57	114.94 (15)	С32—С33—Н331	119.8
C51—Si1—C57	110.32 (15)	С34—С33—Н331	119.7
C45—Si1—O2	109.50 (13)	C33—C34—C29	122.5 (4)
C51—Si1—O2	105.56 (13)	C33—C34—H341	119.4
C57—Si1—O2	106.89 (15)	C29—C34—H341	118.1
C19—Si18—C23	109.35 (15)	C16—C35—C38	110.5 (3)
C19—Si18—C29	115.16 (14)	C16—C35—O36	107.6 (3)
C23—Si18—C29	110.50 (16)	C38—C35—O36	108.0 (3)
C19—Si18—O17	104.69 (13)	C16—C35—H351	110.0
C23—Si18—O17	109.76 (13)	C38—C35—H351	109.1
C29—Si18—O17	107.13 (13)	O36—C35—H351	111.7
C4—C3—C7	102.2 (3)	C15—C37—O36	105.1 (3)
C4—C3—O2	109.9 (3)	С15—С37—Н371	111.0
C7—C3—O2	110.9 (3)	O36—C37—H371	110.7
C4—C3—H31	112.2	С15—С37—Н372	110.2
С7—С3—Н31	111.2	O36—C37—H372	110.3
O2—C3—H31	110.1	Н371—С37—Н372	109.5
C3—C4—C13	112.6 (3)	C35—C38—O39	125.1 (3)
C3—C4—O5	107.4 (3)	C35—C38—O40	110.0 (3)
C13—C4—O5	111.8 (3)	O39—C38—O40	124.8 (3)
C3—C4—H41	109.7	C42—C41—C43	112.3 (5)
C13—C4—H41	107.7	C42—C41—O40	108.5 (4)
O5—C4—H41	107.4	C43—C41—O40	104.5 (3)
C7—C6—O5	106.4 (4)	C42—C41—H411	110.4
С7—С6—Н61	111.4	C43—C41—H411	110.7
O5—C6—H61	109.7	O40—C41—H411	110.3
С7—С6—Н62	108.8	C41—C42—H421	108.5
O5—C6—H62	111.3	C41—C42—H422	107.8
H61—C6—H62	109.2	H421—C42—H422	110.1
C6—C7—C3	104.2 (5)	C41—C42—H423	110.8
C6—C7—N801	117.1 (6)	H421—C42—H423	109.7
C3—C7—N801	93.1 (4)	H422—C42—H423	109.9
С6—С7—Н71	112.2	C41—C43—H431	109.3
С3—С7—Н71	110.5	C41—C43—H432	109.5
N801—C7—H71	117.0	H431—C43—H432	111.3
C6—C7—C3	104.2 (5)	C41—C43—H433	106.9
C6—C7—N901	102.5 (5)	H431—C43—H433	110.1
C3—C7—N901	123.7 (5)	H432—C43—H433	109.8
С6—С7—Н71	112.2	Si1—C45—C46	124.0 (3)
С3—С7—Н71	110.5	Si1—C45—C50	119.7 (3)

N901—C7—H71	103.6	C46—C45—C50	116.3 (3)
C4—C13—O44	119.6 (3)	C45—C46—C47	122.1 (4)
C4—C13—N14	115.7 (3)	C45—C46—H461	117.7
O44—C13—N14	124.7 (3)	C47—C46—H461	120.1
C16—C15—C37	102.1 (2)	C46—C47—C48	119.7 (3)
C16—C15—N14	111.7 (3)	C46—C47—H471	120.1
C37—C15—N14	111.7 (3)	C48—C47—H471	120.2
C16—C15—H151	112.0	C47—C48—C49	120.0 (3)
С37—С15—Н151	109.6	C47—C48—H481	119.6
N14—C15—H151	109.6	C49—C48—H481	120.5
C15—C16—C35	101.7 (2)	C48—C49—C50	120.4 (4)
C15—C16—O17	108.5 (2)	C48—C49—H491	120.0
C35—C16—O17	111.5 (2)	C50—C49—H491	119.5
C15—C16—H161	112.1	C49—C50—C45	121.5 (4)
C35—C16—H161	111.6	C49—C50—H501	119.0
017-016-1161	111.1	C45—C50—H501	119.5
Si18-C19-C20	107 3 (2)	Si1-C51-C52	122.3 (3)
Si18-C19-C21	109.9(2)	Si1-C51-C56	122.3(3) 121.2(3)
C_{20} C_{19} C_{21}	109.9(2) 108.4(3)	511 - 651 - 650	121.2(3) 1164(3)
Si18-C19-C22	1131(2)	$C_{51} - C_{52} - C_{53}$	1210(4)
C_{20} C_{19} C_{22}	107.6(3)	$C_{51} = C_{52} = H_{521}$	1193
$C_{21} - C_{19} - C_{22}$	107.0(3) 110.3(3)	C_{53} C_{52} H_{521}	119.5
C19 - C20 - H201	109.1	$C_{52} - C_{53} - C_{54}$	117.0 121.0 (4)
C19 - C20 - H202	110.9	$C_{52} = C_{53} = C_{53} = C_{53}$	118.4
H_{201} C_{20} H_{202}	109.4	C52 = C53 = H531 C54 = C53 = H531	120.7
C19-C20-H203	109.5	$C_{54} = C_{55} = H_{551}$	120.7 1196(4)
H_{201} C_{20} H_{203}	108.4	C_{53} C_{54} C_{55}	120.8
$H_{201} = C_{20} = H_{203}$	109.7	$C_{55} - C_{54} - H_{541}$	110.6
$C_{10} C_{21} H_{211}$	109.7	$C_{55} = C_{54} = H_{541}$	119.0 110 5 (A)
C19 - C21 - H212	110.1	C54 - C55 - H551	119.5 (4)
$H_{211} = C_{21} = H_{212}$	108.4	C56 C55 H551	110.6
$C_{10} C_{21} H_{213}$	111.2	$C_{50} = C_{55} = H_{551}$	117.0 122.5(4)
H211_C21_H213	108.8	$C_{51} = C_{50} = C_{55}$	122.3 (4)
$H_{211} - C_{21} - H_{213}$	100.3	C55 C56 H561	119.0
11212 - C21 - 11213 C10 C22 H221	109.5	Sil C57 C58	110.3 111.3(3)
$C_{19} = C_{22} = H_{221}$	111.0	Sil_C57_C50	111.5(3) 112.5(2)
$H_{221} = C_{22} = H_{222}$	108.5	$511 - C_{57} - C_{59}$	112.3(2) 100.2(3)
11221 - C22 - 11222	110.5	$C_{30} = C_{37} = C_{37}$	109.2(3) 108.0(3)
$H_{221} = C_{22} = H_{223}$	110.1	$511 - C_57 - C_{60}$	108.0(3) 108.2(3)
$H_{221} = C_{22} = H_{223}$	107.8	$C_{50} = C_{57} = C_{60}$	106.5(3) 107.4(2)
$\Pi_{222} = C_{22} = \Pi_{223}$	109.7	$C_{57} = C_{57} = C_{60}$	107.4 (5)
$5118 - C_{23} - C_{24}$	121.7(3)	$C_{57} = C_{58} = H_{581}$	108.1
$5118 - C_{23} - C_{28}$	121.5(3)	C57-C58-H582	109.9
$C_{24} = C_{23} = C_{28}$	116.0(3)	H581 - C58 - H582	109.6
$C_{23} = C_{24} = C_{23}$	121.2 (4)	$U_3 / - U_3 \delta - H_3 \delta_3$	109.1
$C_{23} - C_{24} - H_{241}$	119.2	$H_{2} \otimes 1 \longrightarrow 0 $	108.0
$C_{23} - C_{24} - H_{241}$	119.0	$H_{2\delta} = -C_{2\delta} = H_{2\delta}$	111.0
$C_{24} = C_{25} = C_{26}$	120.4 (5)	C3/-C39-H391	111.5
U24—U25—H251	119.6	US/USYHS92	111.6

C26—C25—H251	120.0	Н591—С59—Н592	108.2
C25—C26—C27	119.4 (4)	С57—С59—Н593	108.2
C25—C26—H261	120.8	Н591—С59—Н593	109.0
C27—C26—H261	119.8	Н592—С59—Н593	108.2
C26—C27—C28	120.8 (4)	С57—С60—Н601	109.5
С26—С27—Н271	118.4	С57—С60—Н602	109.6
C28—C27—H271	120.9	H601—C60—H602	109.4
C23—C28—C27	121.7 (4)	С57—С60—Н603	108.2
C23—C28—H281	118.0	H601—C60—H603	110.6
C27—C28—H281	120.3	Н602—С60—Н603	109.5
Si18—C29—C30	124.3 (3)	C3—O2—Si1	126.2 (2)
Si18—C29—C34	118.9 (3)	C6—O5—C4	109.0 (3)
C30—C29—C34	116.6 (3)	C16—O17—Si18	127.19 (19)
C29—C30—C31	120.6 (4)	C37—O36—C35	109.4 (2)
С29—С30—Н301	120.0	C41—O40—C38	117.1 (3)
C31—C30—H301	119.4	C15—N14—C13	122.2 (3)
C30—C31—C32	120.1 (4)	C15—N14—H14	119.0
С30—С31—Н311	119.6	C13—N14—H14	118.7
С32—С31—Н311	120.2	C7—N801—N802	119.9 (7)
C31—C32—C33	119.6 (4)	N801—N802—N803	170.7 (14)
C31—C32—H321	121.2	C7—N901—N902	109.4 (6)
С33—С32—Н321	119.1	N901—N902—N903	172.5 (11)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N14—H14…O39	0.84	2.39	3.057 (5)	137
N14—H14…O5	0.84	2.21	2.624 (5)	110