Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Basavegowda Nagaraj,^a Hemmige S. Yathirajan,^a Padmarajaiah Nagaraja^b and Daniel E. Lynch^c*

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, ^bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore - 570 006, India, and ^cSchool of Science and the Environment, Coventry University, Coventry CV1 5FB, England

Correspondence e-mail: apx106@coventry.ac.uk

Key indicators

Single-crystal X-ray study T = 120 KMean $\sigma(\text{C}-\text{C}) = 0.002 \text{ Å}$ R factor = 0.027 wR factor = 0.068 Data-to-parameter ratio = 14.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

6,6,8a-Trimethyl-3a,6,7,8a-tetrahydrobenzo[b]furo[3,2-d]furan-2,4(3H,5H)dione

The structure of the title compound, $C_{13}H_{16}O_4$, comprises a non-planar chiral molecule where the cyclohexene double bond is distinctly shorter [1.335 (2) Å] than the neighbouring C-C single bonds (>1.4 Å).

Received 9 March 2005 Accepted 14 March 2005 Online 18 March 2005

Comment

The title compound, (I), a perhydrofurobenzofuran, exhibits hypoglycemic properties. A search of the Cambridge Structural Database (Version 5.26; Allen, 2002) for related structures reveals that there are 38 compounds containing a sixmembered carbocyclic ring with two linked five-membered furo rings, as in (I). However, in all 38 molecules the C₆ ring is benzene; none are cyclohexane, -ene or -yne variants. The structure of (I) comprises a non-planar chiral molecule where the C5=C10 double bond is distinctly shorter [1.335 (2) Å] than the neighbouring C–C single bonds (>1.4 Å). The two torsion angles that highlight the non-planarity of the molecule are O1-C1-C4-C3 [-127.2 (1)°] and O2-C1-C4-C5 [104.0 (1)°].

Experimental

The title compound was prepared according to the literature procedure of Nagarajan *et al.* (1988). Crystals were grown from ethanol.

Figure 1

The molecular configuration and atom-numbering scheme for (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as spheres of arbitrary radius.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved Crystal data

$C_{13}H_{16}O_4$
$M_r = 236.26$
Orthorhombic, $P2_12_12_1$
a = 9.4853 (3) Å
b = 10.2904 (2) Å
c = 12.2872 (4) Å
V = 1199.32 (6) Å ³
Z = 4
$D_{\rm m} = 1.309 {\rm Mg m}^{-3}$

Data collection

Nonius KappaCCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{min} = 0.953, T_{max} = 0.962$ 8608 measured reflections 2343 independent reflections

Refinement

-	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0353P)^2$
$R[F^2 > 2\sigma(F^2)] = 0.027$	+ 0.2043P]
$wR(F^2) = 0.068$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} < 0.001$
2343 reflections	$\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$
158 parameters	$\Delta \rho_{\rm min} = -0.14 \text{ e} \text{ \AA}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL97
	Extinction coefficient: 0.045 (6)

Mo $K\alpha$ radiation

reflections $\theta = 2.9-27.5^{\circ}$

 $\mu=0.10~\mathrm{mm}^{-1}$

T = 120 (2) K

 $R_{\rm int}=0.021$

 $\begin{array}{l} \theta_{\rm max} = 26.0^{\circ} \\ h = -11 \rightarrow 10 \end{array}$

 $k = -12 \rightarrow 12$

 $l = -14 \rightarrow 15$

Prism, colourless

 $0.50 \times 0.40 \times 0.40 \ \mathrm{mm}$

2235 reflections with $I > 2\sigma(I)$

Cell parameters from 1560

All H atoms were included in the refinement at calculated positions, in the riding-model approximation, with C-H distances of 0.98 (CH₃), 0.99 (CH₂) and 1.00 Å (CH). The isotropic displacement

parameters for all H atoms were set equal to $1.25U_{eq}$ of the carrier atom. In the absence of significant anomalous scattering effects, the 763 Friedel pairs were merged.

Data collection: *COLLECT* (Hooft, 1998); cell refinement: *DENZO* (Otwinowski & Minor, 1997) and *COLLECT*; data reduction: *DENZO* and *COLLECT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97*.

The authors thank the EPSRC National Crystallography Service (Southampton, England) and acknowledge the use of the EPSRC's Chemical Database Service at Daresbury, England (Fletcher *et al.*, 1996).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Fletcher, D. A., McMeeking, R. F. & Parkin, D. J. (1996). J. Chem. Inf. Comput. Sci. 36, 746–749.
- Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Nagarajan, K., Talwalker, P. K., Goud, A. N., Shah, R. K., Shenoy, S. J. & Desai, N. D. (1988). *Indian J. Chem. Sect. B*, **27**, 1113–1123.

Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

- Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supporting information

Acta Cryst. (2005). E61, o1041–o1042 [https://doi.org/10.1107/S1600536805008093]

6,6,8a-Trimethyl-3a,6,7,8a-tetrahydrobenzo[b]furo[3,2-d]furan-2,4(3H,5H)dione

Basavegowda Nagaraj, Hemmige S. Yathirajan, Padmarajaiah Nagaraja and Daniel E. Lynch

6,6,8a-Trimethyl-3a,6,7,8a-tetrahydrobenzo[b]furo[3,2-d]furan-2,4(3H,5H)-dione

Crystal data

C₁₃H₁₆O₄ $M_r = 236.26$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 9.4853 (3) Å b = 10.2904 (2) Å c = 12.2872 (4) Å V = 1199.32 (6) Å³ Z = 4F(000) = 504

Data collection

Nonius KappaCCD diffractometer Radiation source: Bruker Nonius FR591 rotating anode 10 cm confocal mirrors monochromator Detector resolution: 9.091 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 2003)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.068$ S = 1.042343 reflections 158 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map $D_x = 1.309 \text{ Mg m}^{-3}$ Melting point: 434 K Mo *Ka* radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1560 reflections $\theta = 2.9-27.5^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 120 KPrism, colourless $0.50 \times 0.40 \times 0.40 \text{ mm}$

 $T_{\min} = 0.953, T_{\max} = 0.962$ 8608 measured reflections 2343 independent reflections 2235 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 2.9^{\circ}$ $h = -11 \rightarrow 10$ $k = -12 \rightarrow 12$ $l = -14 \rightarrow 15$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0353P)^2 + 0.2043P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.20$ e Å⁻³ $\Delta\rho_{min} = -0.14$ e Å⁻³ Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.045 (6)

Special details

Experimental. The minimum and maximum absorption values stated above are those calculated in *SHELXL97* from the given crystal dimensions. The ratio of minimum to maximum apparent transmission was determined experimentally as 0.884134.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.16781 (9)	0.17367 (8)	-0.01057 (7)	0.0201 (2)
O2	0.10135 (9)	0.36301 (8)	0.07462 (7)	0.0225 (2)
O3	0.03946 (10)	0.44551 (10)	0.23535 (9)	0.0360 (3)
O4	0.46337 (9)	0.08915 (8)	0.27867 (7)	0.0235 (2)
C1	0.21985 (13)	0.29930 (11)	0.02444 (10)	0.0184 (3)
C2	0.12818 (14)	0.39484 (12)	0.18079 (11)	0.0228 (3)
C3	0.27705 (13)	0.36048 (12)	0.20951 (10)	0.0216 (3)
H31	0.2807	0.3129	0.2795	0.027*
H32	0.3358	0.4397	0.2155	0.027*
C4	0.32810 (12)	0.27457 (11)	0.11621 (10)	0.0172 (3)
H4	0.4266	0.2959	0.0934	0.021*
C5	0.30737 (12)	0.13117 (11)	0.13465 (10)	0.0162 (2)
C6	0.37348 (12)	0.04866 (12)	0.21468 (10)	0.0167 (3)
C7	0.32064 (13)	-0.09032 (12)	0.21643 (10)	0.0184 (3)
H71	0.2375	-0.0952	0.2649	0.023*
H72	0.3950	-0.1463	0.2480	0.023*
C8	0.27957 (13)	-0.14482 (11)	0.10420 (10)	0.0175 (3)
C9	0.17135 (13)	-0.05357 (11)	0.04923 (10)	0.0180 (3)
H91	0.1627	-0.0758	-0.0289	0.022*
H92	0.0778	-0.0648	0.0836	0.022*
C10	0.21803 (12)	0.08331 (11)	0.06087 (9)	0.0163 (3)
C11	0.21468 (14)	-0.27965 (12)	0.11981 (12)	0.0252 (3)
H111	0.1899	-0.3162	0.0487	0.032*
H112	0.1297	-0.2725	0.1647	0.032*
H113	0.2830	-0.3366	0.1560	0.032*
C12	0.41107 (14)	-0.15744 (12)	0.03283 (11)	0.0255 (3)
H121	0.3847	-0.1938	-0.0380	0.032*
H122	0.4792	-0.2150	0.0684	0.032*
H123	0.4535	-0.0715	0.0224	0.032*
C13	0.26637 (16)	0.37458 (13)	-0.07371 (11)	0.0273 (3)
H131	0.1876	0.3821	-0.1249	0.034*
H132	0.3449	0.3293	-0.1090	0.034*
H133	0.2970	0.4615	-0.0514	0.034*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0239 (5)	0.0165 (4)	0.0198 (5)	0.0007 (3)	-0.0071 (4)	0.0029 (3)
O2	0.0182 (4)	0.0236 (4)	0.0258 (5)	0.0048 (4)	-0.0010 (4)	-0.0006 (4)
03	0.0276 (5)	0.0399 (6)	0.0405 (6)	0.0016 (5)	0.0124 (5)	-0.0100 (5)

supporting information

O4	0.0222 (5)	0.0247 (5)	0.0235 (5)	-0.0021 (4)	-0.0091 (4)	0.0003 (4)
C1	0.0190 (6)	0.0159 (5)	0.0203 (6)	0.0016 (5)	0.0010 (5)	-0.0002 (5)
C2	0.0232 (7)	0.0187 (6)	0.0264 (7)	-0.0034 (5)	0.0041 (5)	-0.0013 (5)
C3	0.0253 (6)	0.0178 (6)	0.0217 (6)	-0.0012 (5)	-0.0001 (5)	-0.0029 (5)
C4	0.0165 (6)	0.0164 (6)	0.0186 (6)	-0.0005 (4)	0.0003 (5)	0.0018 (5)
C5	0.0151 (6)	0.0167 (5)	0.0167 (5)	0.0007 (4)	0.0008 (5)	-0.0001 (4)
C6	0.0144 (6)	0.0203 (6)	0.0154 (6)	0.0006 (4)	0.0009 (5)	-0.0008 (5)
C7	0.0166 (6)	0.0204 (6)	0.0183 (6)	-0.0008 (5)	-0.0040 (5)	0.0044 (5)
C8	0.0171 (6)	0.0159 (5)	0.0195 (6)	0.0003 (5)	-0.0037 (5)	0.0015 (5)
C9	0.0191 (6)	0.0180 (6)	0.0169 (6)	0.0001 (5)	-0.0037 (5)	-0.0005 (5)
C10	0.0144 (5)	0.0186 (6)	0.0158 (6)	0.0030 (5)	-0.0006 (5)	0.0026 (4)
C11	0.0247 (6)	0.0182 (6)	0.0327 (7)	-0.0016 (5)	-0.0080 (6)	0.0033 (5)
C12	0.0237 (7)	0.0222 (6)	0.0306 (7)	0.0038 (5)	0.0035 (5)	-0.0025 (5)
C13	0.0358 (7)	0.0242 (7)	0.0220 (6)	-0.0015 (5)	0.0007 (6)	0.0057 (5)

Geometric parameters (Å, °)

O1—C10	1.3646 (14)	C7—H71	0.99	
01—C1	1.4492 (14)	С7—Н72	0.99	
O2—C2	1.3689 (16)	C8—C12	1.5303 (17)	
O2—C1	1.4399 (15)	C8—C11	1.5300 (16)	
O3—C2	1.1956 (16)	C8—C9	1.5464 (16)	
O4—C6	1.2324 (15)	C9—C10	1.4835 (17)	
C1—C13	1.4997 (17)	С9—Н91	0.99	
C1—C4	1.5461 (17)	С9—Н92	0.99	
C2—C3	1.4978 (18)	C11—H111	0.98	
C3—C4	1.5265 (16)	C11—H112	0.98	
C3—H31	0.99	C11—H113	0.98	
С3—Н32	0.99	C12—H121	0.98	
C4—C5	1.5059 (16)	C12—H122	0.98	
C4—H4	1.00	C12—H123	0.98	
C5—C10	1.3351 (17)	C13—H131	0.98	
C5—C6	1.4426 (16)	C13—H132	0.98	
С6—С7	1.5156 (16)	C13—H133	0.98	
С7—С8	1.5388 (17)			
C10-01-C1	107.34 (9)	H71—C7—H72	107.6	
$C_{2} = 0_{2} = C_{1}$	111.83 (10)	C12—C8—C11	108.83 (10)	
02—C1—O1	105.50 (9)	C12—C8—C7	109.77 (10)	
O2—C1—C13	109.81 (10)	C11—C8—C7	108.66 (10)	
O1-C1-C13	108.80 (10)	C12—C8—C9	110.02 (10)	
O2—C1—C4	106.33 (9)	C11—C8—C9	109.78 (10)	
01—C1—C4	107.21 (9)	C7—C8—C9	109.76 (9)	
C13—C1—C4	118.43 (11)	C10—C9—C8	109.65 (10)	
O3—C2—O2	120.52 (12)	С10—С9—Н91	109.7	
O3—C2—C3	129.37 (12)	C8—C9—H91	109.7	
O2—C2—C3	110.08 (11)	С10—С9—Н92	109.7	
C2—C3—C4	105.00 (10)	C8—C9—H92	109.7	

С2—С3—Н31	110.7	Н91—С9—Н92	108.2
C4—C3—H31	110.7	C5-C10-O1	114.02 (10)
С2—С3—Н32	110.7	C5—C10—C9	127.24 (11)
C4—C3—H32	110.7	O1—C10—C9	118.74 (10)
H31—C3—H32	108.8	C8—C11—H111	109.5
C5—C4—C3	114.40 (10)	C8—C11—H112	109.5
C5—C4—C1	100.62 (9)	H111—C11—H112	109.5
C3—C4—C1	103.99 (9)	C8—C11—H113	109.5
C5—C4—H4	112.3	H111—C11—H113	109.5
C3—C4—H4	112.3	H112—C11—H113	109.5
C1—C4—H4	112.3	C8—C12—H121	109.5
C10—C5—C6	121.44 (11)	C8—C12—H122	109.5
C10—C5—C4	110.01 (10)	H121—C12—H122	109.5
C6—C5—C4	128.51 (11)	C8—C12—H123	109.5
O4—C6—C5	122.45 (11)	H121—C12—H123	109.5
O4—C6—C7	122.60 (11)	H122—C12—H123	109.5
C5—C6—C7	114.92 (10)	C1—C13—H131	109.5
C6—C7—C8	114.51 (10)	C1—C13—H132	109.5
C6—C7—H71	108.6	H131—C13—H132	109.5
C8—C7—H71	108.6	C1—C13—H133	109.5
С6—С7—Н72	108.6	H131—C13—H133	109.5
С8—С7—Н72	108.6	H132—C13—H133	109.5
C2-O2-C1-O1	120.97 (10)	C1—C4—C5—C6	-176.76 (11)
C2	-121.94 (11)	C10-C5-C6-O4	174.96 (11)
C2—O2—C1—C4	7.32 (12)	C4—C5—C6—O4	-2.42 (19)
C10-01-C1-02	-104.33 (10)	C10—C5—C6—C7	-6.91 (16)
C10-01-C1-C13	137.90 (10)	C4—C5—C6—C7	175.71 (11)
C10—O1—C1—C4	8.71 (12)	O4—C6—C7—C8	-147.51 (11)
C1—O2—C2—O3	-178.12 (11)	C5—C6—C7—C8	34.36 (14)
C1—O2—C2—C3	3.55 (14)	C6—C7—C8—C12	66.75 (13)
O3—C2—C3—C4	168.91 (13)	C6—C7—C8—C11	-174.33 (10)
O2—C2—C3—C4	-12.95 (13)	C6—C7—C8—C9	-54.28 (13)
C2—C3—C4—C5	-92.39 (12)	C12-C8-C9-C10	-75.43 (12)
C2—C3—C4—C1	16.37 (12)	C11—C8—C9—C10	164.83 (10)
O2—C1—C4—C5	103.98 (10)	C7—C8—C9—C10	45.45 (13)
O1—C1—C4—C5	-8.49 (11)	C6-C5-C10-O1	-178.35 (10)
C13—C1—C4—C5	-131.95 (11)	C4—C5—C10—O1	-0.53 (14)
O2—C1—C4—C3	-14.69 (11)	C6-C5-C10-C9	1.03 (19)
O1—C1—C4—C3	-127.17 (10)	C4—C5—C10—C9	178.85 (11)
C13—C1—C4—C3	109.37 (12)	C1-01-C10-C5	-5.33 (13)
C3—C4—C5—C10	116.43 (11)	C1-01-C10-C9	175.23 (10)
C1—C4—C5—C10	5.63 (13)	C8—C9—C10—C5	-21.53 (17)
C3—C4—C5—C6	-65.96 (16)	C8—C9—C10—O1	157.83 (10)