organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Andrei S. Batsanov,* Alistair J. Reid and Neil Cameron

Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, England

Correspondence e-mail: a.s.batsanov@durham.ac.uk

Key indicators

Single-crystal X-ray study T = 100 KMean σ (C–C) = 0.001 Å R factor = 0.039 wR factor = 0.114 Data-to-parameter ratio = 28.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2-*tert*-Butoxy-1-phenyl-1-(2,2,6,6-tetramethyl-piperidin-1-yloxy)ethane

The title compound, $C_{21}H_{35}NO_2$, contains a piperidine ring in a chair conformation, with a pyramidal N atom and a single (exocyclic) N-O bond in an equatorial orientation.

Received 21 January 2005 Accepted 14 February 2005 Online 19 February 2005

Comment

Nitroxide-mediated polymerization (NMP) has emerged in recent years as a successful controlled or 'living' radical polymerization technique which can be used to prepare polymers of target molecular weight, narrow polydispersity and complex architecture (block and graft copolymers, star polymers, etc.) (Matyjaszewski, 2003). Successful NMP requires the use of a monomolecular initiator, identified as an alkoxyamine, which is derived from a nitroxide. This alkoxyamine should be prepared separately and then added in a known concentration to the monomer to be polymerized. Synthetic routes to alkoxyamines include the trapping of alkyl radicals by free nitroxides at moderate temperatures (Braslau et al., 1997; Miura et al., 1998) and a catalytic route involving Mn-salen complexes [H2salen is bis(salicylidene)ethylenediamine; Dao et al., 1998]. The title compound, (I), has been synthesized in the course of these studies (Cameron et al., 2000).

The molecular structure of (I) (Fig. 1) is similar in its main features to the other *N*-oxy-2,2,6,6-tetramethylpiperidinyl derivatives reported by Ermert & Vasella (1993), Jahn *et al.* (2001, 2002) and Leitich *et al.* (2002). The piperidine ring adopts a chair conformation with the N–O1 bond in an equatorial orientation. The N–O1 distance is typical for a single bond (Allen *et al.*, 1987), while the N atom has pyramidal geometry, corresponding to sp^3 hybridization.

Experimental

A solution of 2,2,6,6-tetramethylpiperidinyloxy (TEMPO; 0.187 g, 1.20 mmol) and di-*tert*-butylperoxalate (0.148 g, 0.63 mmol) in styrene (5 ml) was prepared. The mixture was degassed by three freeze/pump/thaw cycles and backflushed with argon after the final cycle. The resulting solution was sealed, then heated overnight at 313 K. After cooling, the solution was dried *in vacuo* to constant

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved mass. The crude solid product obtained was then purified by flash chromatography on silica gel, eluting with a mixture of 40–60 petroleum ether/ethyl acetate (90:10 ν/ν). After removal of the solvent, a white crystalline solid was obtained in 79% yield. The characterization data of the isolated product were in agreement with those given in the literature (Bon *et al.*, 1999). ¹H NMR (300 MHz): δ 1.04 (*s*, 9H, CH₃ × 3), 0.58, 1.02, 1.19, 1.37 (*br s*, 3H, CH₃), 0.9–1.7 (*br m*, 6H, CH₂ × 3), 3.41 (*m*, 1H, H1), 3.89 (*m*, 1H, H171), 4.74 (*m*, 1H, H172), 7.18–7.35 (*m*, 5H, Ph) p.p.m. (for the H-atom numbering, see Fig. 1).

Mo *Kα* radiation Cell parameters from 902 reflections

7229 independent reflections

 $w = 1/[\sigma^2(F_o^2) + (0.0633P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

+ 0.7171P]

 $\Delta \rho_{\rm max} = 0.52 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.17 \text{ e} \text{ Å}^{-3}$

 $(\Delta/\sigma)_{\rm max} = 0.001$

6298 reflections with $I > 2\sigma(I)$

 $\theta = 12.1-24.3^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 100 (2) KBlock, colourless $1.00 \times 0.66 \times 0.14 \text{ mm}$

 $R_{\rm int} = 0.020$ $\theta_{\rm max} = 32.5^{\circ}$

 $h = -23 \rightarrow 23$

 $\begin{array}{l} k=-16 \rightarrow 16 \\ l=-34 \rightarrow 35 \end{array}$

Crystal data

$C_{21}H_{35}NO_2$
$M_r = 333.50$
Orthorhombic, Pbca
a = 15.532 (4) Å
<i>b</i> = 11.119 (3) Å
c = 23.247 (5) Å
$V = 4014.8 (17) \text{ Å}^3$
Z = 8
$D_{\rm r} = 1.104 {\rm Mg} {\rm m}^{-3}$

Data collection

Bruker SMART 6000 CCD area-
detector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\min} = 0.579, T_{\max} = 1.000$
60196 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.114$ S = 1.067229 reflections 251 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected	geometric	parameters	(A,	°).
----------	-----------	------------	-----	-----

O1-C1	1.4422 (8)	C2-C3	1.5399 (11)
O1-N	1.4595 (7)	C3-C4	1.5198 (14)
O2-C17	1.4158 (8)	C4-C5	1.5153 (13)
O2-C18	1.4446 (8)	C5-C6	1.5312 (10)
N-C6	1.4987 (9)	C6-C10	1.5280 (10)
N-C2	1.5033 (9)	C6-C9	1.5353 (11)
C1-C11	1.5168 (9)	C18-C20	1.5187 (10)
C1-C17	1.5228 (9)	C18-C21	1.5200 (11)
C2-C8	1.5354 (11)	C18-C19	1.5238 (11)
C2-C7	1.5377 (12)		
C1-O1-N	112.33 (5)	C5-C4-C3	108.36 (7)
C17-O2-C18	116.92 (5)	C4-C5-C6	112.78 (6)
O1-N-C6	106.17 (5)	C10-C6-C5	107.62 (6)
O1-N-C2	107.19 (5)	O2-C17-C1	108.48 (5)
C6-N-C2	117.35 (5)	O2-C18-C20	103.38 (6)
O1-C1-C11	114.45 (5)	O2-C18-C21	111.07 (6)
O1-C1-C17	105.37 (5)	C20-C18-C21	110.35 (6)
C11-C1-C17	110.04 (5)	O2-C18-C19	111.02 (6)
N-C2-C3	107.44 (6)	C20-C18-C19	110.12 (7)
C4-C3-C2	114.33 (7)	C21-C18-C19	110.68 (7)

Figure 1

The molecular structure of (I), showing atomic displacement ellipsoids at the 50% probability level.

Methyl groups were treated as threefold symmetrical bodies rotating around C–C bonds, with a refined common U_{iso} for the three H atoms. Other H atoms were treated as riding on the corresponding C atoms, with refined U_{iso} values. C–H distances are 0.95–1.00 Å.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2001); program(s) used to solve structure: *SHELXTL* (Bruker, 2001); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bon, S. A. F., Chambard, G. & German, A. L. (1999). Macromolecules, 32, 8269–8276.
- Braslau, R., Burrill, L. C., Siano, M., Naik, N., Howden, R. K. & Mahal, L. K. (1997). *Macromolecules*, **30**, 6445–6450.
- Bruker (2001). SMART (Version 5.625), SAINT (Version 6.02A), SADABS (Version 2.03) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.
- Cameron, N. R., Reid, A. J., Span, P., Bon, S. A. F., van Es, J. J. G. S. & German, A. L. (2000). *Macromol. Chem. Phys.* 201, 2510–2518.
- Dao, J., Benoit, D. & Hawker, C. J. (1998). J. Polym. Sci. A, 36, 2161-2167.

Ermert, P. & Vasella, A. (1993). Helv. Chim. Acta, 76, 2687-2699.

- Jahn, U., Hartmann, P., Dix, I. & Jones, P. G. (2001). Eur. J. Org. Chem. pp. 3333–3355.
- Jahn, U., Hartmann, P., Dix, I. & Jones, P. G. (2002). Eur. J. Org. Chem. pp. 718–735.
- Leitich, J., Heize, I., Angermund, K. & Rust, J. (2002). Eur. J. Org. Chem. pp. 1803–1825.
- Matyjaszewski, K. (2003). Am. Chem. Soc. Symp. Ser. 854, 2-9.
- Miura, Y., Hirota, K., Moto, H. & Yamada, B. (1998). *Macromolecules*, **31**, 4659–4661.

supporting information

Acta Cryst. (2005). E**61**, o716–o717 [https://doi.org/10.1107/S1600536805004976]

2-tert-Butoxy-1-phenyl-1-(2,2,6,6-tetramethylpiperidin-1-yloxy)ethane

F(000) = 1472

 $\theta = 12.1 - 24.3^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$

Block, colourless

 $1.00 \times 0.66 \times 0.14 \text{ mm}$

 $\theta_{\rm max} = 32.5^{\circ}, \ \theta_{\rm min} = 1.8^{\circ}$

60196 measured reflections

7229 independent reflections

6298 reflections with $I > 2\sigma(I)$

T = 100 K

 $R_{\rm int} = 0.020$

 $h = -23 \rightarrow 23$

 $k = -16 \rightarrow 16$

 $l = -34 \rightarrow 35$

 $D_{\rm x} = 1.104 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 902 reflections

Andrei S. Batsanov, Alistair J. Reid and Neil Cameron

2-tert-Butoxy-1-phenyl-1-(2,2,6,6-tetramethylpiperidin-1-yloxy)ethane

Crystal data

C₂₁H₃₅NO₂ $M_r = 333.50$ Orthorhombic, *Pbca* Hall symbol: -P 2ac 2ab a = 15.532 (4) Å b = 11.119 (3) Å c = 23.247 (5) Å V = 4014.8 (17) Å³ Z = 8

Data collection

Bruker SMART 6000 CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 5.6 pixels mm⁻¹ ω scans Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\min} = 0.579, T_{\max} = 1.000$

Refinement

neginement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.114$	H atoms treated by a mixture of independent
<i>S</i> = 1.06	and constrained refinement
7229 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0633P)^2 + 0.7171P]$
251 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.52 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The data collection nominally covered full sphere of reciprocal space, by a combination of 4 sets of ω scans; each set at different φ and/or 2θ angles and each scan (20 sec exposure) covering 0.3° in ω . Crystal to detector distance 4.85 cm.

Crystals are shattering when cut, therefore a crystal larger than the beam diameter was used and the intensities were corrected by *SADABS* program (actual absorption is negligible).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.50726 (3)	0.34047 (4)	0.41290 (2)	0.01533 (9)	
O2	0.33509 (3)	0.38797 (5)	0.37666 (2)	0.01928 (10)	
Ν	0.56521 (4)	0.25032 (5)	0.38875 (2)	0.01604 (10)	
C1	0.43261 (4)	0.28730 (6)	0.43963 (3)	0.01552 (11)	
H1	0.4152	0.2145	0.4172	0.016 (2)*	
C2	0.55469 (5)	0.25419 (7)	0.32449 (3)	0.02115 (13)	
C3	0.62458 (6)	0.17267 (8)	0.29828 (4)	0.03198 (17)	
H31	0.6109	0.0880	0.3078	0.040 (3)*	
H32	0.6228	0.1808	0.2559	0.044 (3)*	
C4	0.71538 (6)	0.20006 (9)	0.31880 (4)	0.03276 (18)	
H41	0.7564	0.1415	0.3021	0.044 (3)*	
H42	0.7326	0.2818	0.3064	0.038 (3)*	
C5	0.71683 (5)	0.19182 (7)	0.38386 (4)	0.02631 (15)	
H51	0.7755	0.2106	0.3977	0.032 (3)*	
H52	0.7032	0.1083	0.3955	0.035 (3)*	
C6	0.65274 (4)	0.27758 (6)	0.41254 (3)	0.01839 (12)	
C7	0.55652 (6)	0.38093 (8)	0.29805 (3)	0.02855 (16)	
H71	0.5145 (5)	0.4323 (4)	0.3179 (3)	0.0386 (13)*	
H72	0.5418 (5)	0.37606 (12)	0.2570 (3)	0.0386 (13)*	
H73	0.6144 (4)	0.4154 (4)	0.3024 (3)	0.0386 (13)*	
C8	0.46745 (5)	0.19737 (8)	0.30943 (3)	0.02742 (15)	
H81	0.4625 (2)	0.1184 (7)	0.3284 (3)	0.0375 (18)*	
H82	0.4632 (2)	0.1870 (6)	0.2674 (3)	0.0375 (18)*	
H83	0.4207 (3)	0.2502 (5)	0.3228 (3)	0.0375 (18)*	
C9	0.68364 (5)	0.40811 (7)	0.40643 (4)	0.02434 (14)	
H91	0.7018 (5)	0.4226 (2)	0.3668 (3)	0.0405 (19)*	
H92	0.7321 (5)	0.4220 (2)	0.4324 (3)	0.0405 (19)*	
H93	0.6367 (4)	0.4628 (4)	0.4162 (3)	0.0405 (19)*	
C10	0.65061 (5)	0.24755 (8)	0.47666 (3)	0.02721 (15)	
H101	0.6137 (5)	0.3078 (6)	0.49731 (15)	0.0381 (18)*	
H102	0.7106 (4)	0.2503 (7)	0.49259 (14)	0.0381 (18)*	
H103	0.6261 (5)	0.1649 (6)	0.48219 (6)	0.0381 (18)*	
C11	0.44530 (4)	0.25205 (6)	0.50208 (3)	0.01565 (11)	
C12	0.43806 (4)	0.13184 (6)	0.51850 (3)	0.01924 (12)	
H12	0.4270	0.0723	0.4901	0.025 (3)*	
C13	0.44677 (5)	0.09773 (7)	0.57597 (3)	0.02422 (14)	
H13	0.4423	0.0154	0.5865	0.033 (3)*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C14	0.46198 (5)	0.18453 (8)	0.61768 (3)	0.02565 (15)
H14	0.4674	0.1618	0.6569	0.038 (3)*
C15	0.46920 (5)	0.30477 (7)	0.60196 (3)	0.02317 (14)
H15	0.4796	0.3642	0.6305	0.036 (3)*
C16	0.46121 (4)	0.33830 (6)	0.54450 (3)	0.01906 (12)
H16	0.4666	0.4205	0.5340	0.025 (3)*
C17	0.36194 (4)	0.38169 (6)	0.43478 (3)	0.01849 (12)
H171	0.3127	0.3595	0.4596	0.024 (2)*
H172	0.3840	0.4609	0.4475	0.024 (2)*
C18	0.26850 (4)	0.47410 (6)	0.36304 (3)	0.01854 (12)
C19	0.18898 (5)	0.45399 (8)	0.40020 (4)	0.02978 (17)
H191	0.1726 (3)	0.3670 (7)	0.3991 (3)	0.0434 (19)*
H192	0.1403 (4)	0.5037 (6)	0.3852 (2)	0.0434 (19)*
H193	0.20186 (18)	0.4780 (7)	0.4408 (3)	0.0434 (19)*
C20	0.24793 (6)	0.44747 (8)	0.30046 (3)	0.02784 (15)
H201	0.3015 (4)	0.4557 (6)	0.27679 (17)	0.0386 (13)*
H202	0.2035 (4)	0.5057 (6)	0.28632 (14)	0.0386 (13)*
H203	0.2252 (5)	0.3634 (6)	0.29697 (6)	0.0386 (13)*
C21	0.30130 (6)	0.60218 (7)	0.36949 (4)	0.03203 (18)
H211	0.3145 (5)	0.6183 (3)	0.4105 (3)	0.045 (2)*
H212	0.2565 (4)	0.6593 (4)	0.3560 (3)	0.045 (2)*
H213	0.3542 (5)	0.6126 (2)	0.3461 (3)	0.045 (2)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.01407 (19)	0.01375 (19)	0.0182 (2)	0.00091 (15)	0.00335 (15)	0.00001 (15)
O2	0.0180 (2)	0.0243 (2)	0.0155 (2)	0.00446 (17)	-0.00207 (16)	0.00068 (17)
Ν	0.0160 (2)	0.0153 (2)	0.0169 (2)	0.00227 (17)	0.00319 (17)	-0.00101 (17)
C1	0.0140 (2)	0.0174 (3)	0.0151 (2)	-0.00090 (19)	0.00074 (18)	0.0011 (2)
C2	0.0229 (3)	0.0245 (3)	0.0160 (3)	-0.0010 (2)	0.0043 (2)	-0.0023 (2)
C3	0.0312 (4)	0.0365 (4)	0.0283 (4)	0.0017 (3)	0.0104 (3)	-0.0114 (3)
C4	0.0266 (4)	0.0364 (4)	0.0352 (4)	0.0043 (3)	0.0136 (3)	-0.0058 (3)
C5	0.0201 (3)	0.0224 (3)	0.0365 (4)	0.0065 (2)	0.0073 (3)	0.0021 (3)
C6	0.0149 (2)	0.0178 (3)	0.0225 (3)	0.0018 (2)	0.0017 (2)	0.0026 (2)
C7	0.0322 (4)	0.0336 (4)	0.0199 (3)	-0.0027 (3)	0.0016 (3)	0.0078 (3)
C8	0.0280 (3)	0.0342 (4)	0.0200 (3)	-0.0048 (3)	0.0009 (3)	-0.0077 (3)
C9	0.0187 (3)	0.0198 (3)	0.0345 (4)	-0.0017 (2)	0.0003 (3)	-0.0003 (3)
C10	0.0185 (3)	0.0396 (4)	0.0235 (3)	0.0032 (3)	-0.0020 (2)	0.0076 (3)
C11	0.0140 (2)	0.0175 (3)	0.0155 (2)	0.0000 (2)	0.00058 (19)	0.00121 (19)
C12	0.0195 (3)	0.0183 (3)	0.0199 (3)	-0.0009 (2)	-0.0012 (2)	0.0025 (2)
C13	0.0243 (3)	0.0248 (3)	0.0235 (3)	0.0001 (3)	-0.0014 (2)	0.0078 (2)
C14	0.0249 (3)	0.0343 (4)	0.0177 (3)	0.0030 (3)	-0.0017 (2)	0.0053 (3)
C15	0.0228 (3)	0.0299 (3)	0.0169 (3)	0.0027 (3)	-0.0019 (2)	-0.0024 (2)
C16	0.0191 (3)	0.0200 (3)	0.0181 (3)	0.0001 (2)	0.0001 (2)	-0.0011 (2)
C17	0.0157 (3)	0.0247 (3)	0.0151 (3)	0.0034 (2)	-0.0002 (2)	0.0011 (2)
C18	0.0189 (3)	0.0184 (3)	0.0184 (3)	0.0004 (2)	-0.0027 (2)	0.0026 (2)
C19	0.0210 (3)	0.0351 (4)	0.0333 (4)	0.0090 (3)	0.0043 (3)	0.0111 (3)

supporting information

C20	0.0322 (4)	0.0299 (4)	0.0214 (3)	0.0024 (3)	-0.0091 (3)	0.0007 (3)
C21	0.0422 (5)	0.0208 (3)	0.0332 (4)	-0.0059 (3)	-0.0137 (3)	0.0053 (3)

Geometric parameters (Å, °)

01—C1	1.4422 (8)	С9—Н92	0.980
01—N	1.4595 (7)	С9—Н93	0.980
O2—C17	1.4158 (8)	C10—H101	1.000
O2-C18	1.4446 (8)	C10—H102	1.000
N—C6	1.4987 (9)	C10—H103	1.000
N—C2	1.5033 (9)	C11—C12	1.3945 (10)
C1-C11	1.5168 (9)	C11—C16	1.3975 (9)
C1—C17	1.5228 (9)	C12—C13	1.3955 (10)
C1—H1	1.000	C12—H12	0.950
C2—C8	1.5354 (11)	C13—C14	1.3883 (12)
C2—C7	1.5377 (12)	C13—H13	0.950
C2—C3	1.5399 (11)	C14—C15	1.3906 (12)
C3—C4	1.5198 (14)	C14—H14	0.950
C3—H31	0.990	C15—C16	1.3924 (10)
С3—Н32	0.990	C15—H15	0.950
C4—C5	1.5153 (13)	C16—H16	0.950
C4—H41	0.990	C17—H171	0.990
C4—H42	0.990	C17—H172	0.990
C5—C6	1.5312 (10)	C18—C20	1.5187 (10)
C5—H51	0.990	C18—C21	1.5200 (11)
С5—Н52	0.990	C18—C19	1.5238 (11)
C6—C10	1.5280 (10)	C19—H191	1.000
С6—С9	1.5353 (11)	C19—H192	1.000
С7—Н71	0.980	C19—H193	1.000
С7—Н72	0.980	C20—H201	1.000
С7—Н73	0.980	C20—H202	1.000
C8—H81	0.990	C20—H203	1.000
C8—H82	0.990	C21—H211	0.990
С8—Н83	0.990	C21—H212	0.990
С9—Н91	0.980	C21—H213	0.990
C1 O1 N	112 33 (5)	H01 C0 H03	109 5
C1 = 01 = 1 C17 = 02 = C18	112.33(5)	$H_{02} C_0 H_{03}$	109.5
01 - N - C6	110.92(3) 106.17(5)	C6_C10_H101	109.5
01 N C2	100.17(5)	C_{0} C_{10} H_{102}	109.5
C6 N C2	107.19 (5)	$H_{101} = C_{10} = H_{102}$	109.5
01 - 01 - 011	117.35(5) 114.45(5)	C6_C10_H103	109.5
01 - C1 - C17	105 37 (5)	H_{101} $-C_{10}$ $-H_{103}$	109.5
$C_{11} C_{11} C_{11} C_{17}$	105.57(5) 110.04(5)	H102-C10-H103	109.5
01-C1-H1	108.9	C_{12} C_{11} C_{16}	118 62 (6)
C11—C1—H1	108.9	C12 $C11$ $C1$	119.94 (6)
C17 - C1 - H1	108.9	C16-C11-C1	121 40 (6)
$N = C^2 = C^8$	108 10 (5)	C_{11} C_{12} C_{13}	120.97 (7)
11 -02-00	100.10 (3)	011 - 012 - 013	120.97 (7)

$N - C^2 - C^7$	114 93 (6)	C11_C12_H12	119 5
$C_{8} - C_{7} - C_{7}$	107 59 (7)	C13 - C12 - H12	119.5
$N - C^2 - C^3$	107.44 (6)	C_{14} C_{13} C_{12} C_{12}	119.5
C^{8} C^{2} C^{3}	107.44 (0)	$C_{14} = C_{13} = C_{12}$	119.75 (7)
$C_{0} = C_{2} = C_{3}$	100.03(0)	$C_{12} = C_{12} = H_{12}$	120.1
$C/-C_2-C_3$	111.01(0) 114.22(7)		120.1
C4 - C3 - C2	114.33 (7)	C13 - C14 - C15	119.90 (7)
C4—C3—H31	108./	C13—C14—H14	120.0
C2—C3—H31	108.7	С15—С14—Н14	120.1
C4—C3—H32	108.7	C14—C15—C16	120.16 (7)
С2—С3—Н32	108.7	C14—C15—H15	119.9
H31—C3—H32	107.6	C16—C15—H15	119.9
C5—C4—C3	108.36 (7)	C15—C16—C11	120.59 (7)
C5—C4—H41	110.0	C15—C16—H16	119.7
C3—C4—H41	110.0	C11—C16—H16	119.7
C5—C4—H42	110.0	O2—C17—C1	108.48 (5)
C3—C4—H42	110.0	O2—C17—H171	110.0
H41—C4—H42	108.4	C1—C17—H171	110.0
C4—C5—C6	112.78 (6)	O2—C17—H172	110.0
C4—C5—H51	109.0	C1-C17-H172	110.0
C6-C5-H51	109.0	H171_C17_H172	108.4
C4-C5-H52	109.0	02-C18-C20	103.38 (6)
C6 C5 H52	109.1	$02 \ C18 \ C20$	105.50(0) 111.07(6)
151 - 5 - 152	107.0	$C_{2} = C_{18} = C_{21}$	111.07(0)
$n_{31} - c_{3} - n_{32}$	107.0	$C_{20} = C_{10} = C_{21}$	110.33(0)
N	107.23 (5)	02-018-019	111.02 (6)
N	107.65 (6)	C20—C18—C19	110.12 (7)
C10—C6—C5	107.62 (6)	C21—C18—C19	110.68 (7)
N—C6—C9	116.15 (5)	C18—C19—H191	109.5
C10—C6—C9	107.67 (6)	C18—C19—H192	109.5
C5—C6—C9	110.19 (6)	H191—C19—H192	109.5
С2—С7—Н71	109.5	C18—C19—H193	109.5
С2—С7—Н72	109.5	H191—C19—H193	109.5
Н71—С7—Н72	109.5	H192—C19—H193	109.5
С2—С7—Н73	109.5	C18—C20—H201	109.5
H71—C7—H73	109.5	C18—C20—H202	109.5
Н72—С7—Н73	109.5	H201—C20—H202	109.5
C2—C8—H81	109.5	C18—C20—H203	109.5
C2—C8—H82	109.5	H201—C20—H203	109.5
H81 - C8 - H82	109.5	$H_{202} - C_{20} - H_{203}$	109.5
$C_2 = C_8 = H_{83}$	109.5	C_{18} C_{21} H_{211}	109.5
	109.5	$C_{10} = C_{21} = H_{212}$	109.5
	109.5	110 - 021 - 11212	109.5
$\Pi_{02} - U_{0} - \Pi_{03}$	109.3	$\Pi_{211} = U_{21} = \Pi_{212}$	109.5
	109.5	U10—U21—H213	109.5
Со—С9—Н92	109.5	H211—C21—H213	109.5
H91—C9—H92	109.5	H212—C21—H213	109.5
С6—С9—Н93	109.5		
C1—O1—N—C6	-128.03 (5)	01—N—C6—C5	-174.94 (5)
C1—O1—N—C2	105.78 (6)	C2—N—C6—C5	-55.17 (7)

N-01-C1-C11	86.82 (6)	O1—N—C6—C9	-50.91 (7)
N—O1—C1—C17	-152.16 (5)	C2—N—C6—C9	68.86 (8)
O1—N—C2—C8	-72.99 (7)	C4—C5—C6—N	56.34 (8)
C6—N—C2—C8	167.78 (6)	C4-C5-C6-C10	171.63 (7)
O1—N—C2—C7	47.18 (7)	C4—C5—C6—C9	-71.23 (8)
C6—N—C2—C7	-72.05 (8)	O1—C1—C11—C12	-117.89 (6)
O1—N—C2—C3	172.05 (5)	C17—C1—C11—C12	123.70 (7)
C6—N—C2—C3	52.82 (8)	O1—C1—C11—C16	64.45 (8)
N—C2—C3—C4	-52.39 (9)	C17—C1—C11—C16	-53.96 (8)
C8—C2—C3—C4	-168.19 (7)	C18—O2—C17—C1	-179.32 (5)
C7—C2—C3—C4	74.46 (9)	O1—C1—C17—O2	72.26 (6)
C2—C3—C4—C5	56.39 (10)	C11—C1—C17—O2	-163.88 (5)
C3—C4—C5—C6	-57.99 (9)	C17—O2—C18—C20	-173.50 (6)
O1—N—C6—C10	69.52 (6)	C17—O2—C18—C21	68.17 (8)
C2—N—C6—C10	-170.72 (6)	C17—O2—C18—C19	-55.45 (8)