Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

R. Angharad Baber, Andrew E. A. Bull, Jonathan P. H. Charmant,* Nicholas C. Norman and
 A. Guy Orpen

School of Chemistry, University of Bristol, Bristol BS8 1TS, England

Correspondence e-mail:
jon.charmant@bris.ac.uk

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.030$
$w R$ factor $=0.070$
Data-to-parameter ratio $=19.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

N-Imidazole-boron trichloride adduct

The crystal structure of the title compound [alternatively called trichloro($1 H$-imidazole- κN^{3})boron], $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}-\mathrm{BCl}_{3}$ or $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{BCl}_{3} \mathrm{~N}_{2}$, consists of a weakly hydrogen-bonded network of BCl_{3}-imidazole adducts. The network formed may be viewed as a cross-linked hydrogen-bonded ribbon polymer.

Comment

The title compound, (I), was obtained as a colourless powder during an attempt to synthesize a product of formula $\mathrm{B}_{2} \mathrm{~S}_{3}$ from the reaction of BCl_{3} with $\left(\mathrm{Me}_{3} \mathrm{Si}_{2}\right)_{2} \mathrm{~S}$ (containing trace amounts of imidazole as a stabiliser). Recrystallization yielded crystals suitable for a diffraction study. The molecular structure of (I) is shown in Fig. 1, and selected bond lengths and angles are presented in Table 1.

(I)

A variety of nitrogen adducts of BCl_{3} have previously been characterized crystallographically. These include amine (Minkwitz, Nass \& Preest, 1987; Minkwitz, Nass, Rieland \& Preest, 1987; Avent et al., 1995, Hess, 1969; Anton et al., 1984; Abram et al., 1997; Voigt et al., 2000), pyridine (Töpel et al., 1981) and acetonitrile (Swanson et al., 1969) adducts. The B N bond length in (I) is shorter than any previously reported, with the exception of adducts with rhenium nitride complexes (Dantona et al., 1984; Abram et al., 1997; Ritter \& Abram, 1996).

The crystal structure of (I) may be viewed as a cross-linked hydrogen-bonded ribbon polymer (see Fig. 2). The N2-H2A donor of the imidazole makes a weak hydrogen bond with atom Cl 1 in a neighbouring molecule. This interaction is supplemented by a weak interaction between $\mathrm{C} 2-\mathrm{H} 2$ and Cl 3 of the same molecule. Although such an interaction might seem dubious, it is possible that C 2 and N 2 are disordered with respect to each other, leading to a disordered hydrogen bond between Cl 1 or Cl 3 and the two chemically feasible NH positions on the imidazole. Attempts to model this disorder were unsuccessful. A slightly stronger interaction between the $\mathrm{N} 2-\mathrm{H} 2 A$ donor and C 2 of another neighbouring molecule cross-links the ribbons to give the overall structure.

Experimental

$\mathrm{BCl}_{3}(1.0 \mathrm{M}$ solution in heptane, $0.2 \mathrm{ml}, 0.2 \mathrm{mmol})$ was added to a solution of $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{~S}(0.57 \mathrm{ml}, 0.3 \mathrm{mmol})$ in hexane $(10 \mathrm{ml})$, resulting in the immediate formation of a colourless precipitate. The solution was stirred for 24 h , whereupon the solvent was removed by syringe

Received 18 January 2005 Accepted 24 January 2005 Online 5 February 2005
and the resultant colourless solid was washed with hexane $(3 \times 10 \mathrm{ml})$ and dried. The solid was then redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$, placed in a fresh Schlenk tube, layered with hexane (7 ml) and refrigerated at 243 K overnight, resulting in the formation of large colourless crystals (yield: $0.0056 \mathrm{~g}, 6 \%)$. NMR $\left(\mathrm{CDCl}_{3}\right):{ }^{11} \mathrm{~B} \delta$ 3.1. Analysis calculated for $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{BCl}_{3} \mathrm{~N}_{2}$: C 19.45, H $2.20, \mathrm{~N} 15.10 \%$; found: C 19.60, H 1.65 , N 14.85%.

Crystal data

$\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{BCl}_{3} \mathrm{~N}_{2}$
$M_{r}=185.24$
Triclinic, $P \overline{1}$
$a=6.0390$ (12) A
$b=7.2210(14) \AA$
$c=8.5610(17) \AA$
$\alpha=84.48$ (3) ${ }^{\circ}$
$\beta=81.33(3)^{\circ}$
$\gamma=71.08$ (3) ${ }^{\circ}$
$V=348.67(14) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.764 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 1476
reflections
$\theta=3.0-27.4^{\circ}$
$\mu=1.21 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Plate, colourless
$0.15 \times 0.15 \times 0.05 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.853, T_{\text {max }}=0.940$
4070 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.070$
$S=1.06$
1597 reflections
82 parameters
H-atom parameters constrained

$$
\begin{aligned}
& 1597 \text { independent reflections } \\
& 1444 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.023 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-7 \rightarrow 7 \\
& k=-9 \rightarrow 9 \\
& l=-11 \rightarrow 11
\end{aligned}
$$

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.037 P)^{2}\right. \\
+0.0819 P] \\
\text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.39 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.30 \mathrm{e}^{-3}
\end{gathered}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{N} 2$	$1.327(3)$	$\mathrm{B} 1-\mathrm{N} 1$	$1.543(3)$
$\mathrm{C} 1-\mathrm{N} 1$	$1.332(2)$	$\mathrm{B} 1-\mathrm{Cl} 1$	$1.847(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.346(3)$	$\mathrm{B} 1-\mathrm{Cl} 3$	$1.848(2)$
$\mathrm{C} 2-\mathrm{N} 2$	$1.378(3)$	$\mathrm{B} 1-\mathrm{Cl} 2$	$1.865(2)$
$\mathrm{C} 3-\mathrm{N} 1$	$1.389(2)$		
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	$108.82(18)$	$\mathrm{Cl} 1-\mathrm{B} 1-\mathrm{Cl} 2$	$109.35(11)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 2$	$106.08(17)$	$\mathrm{Cl} 3-\mathrm{B} 1-\mathrm{Cl} 2$	$109.11(11)$
C2-C3-N1	$108.22(17)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3$	$107.41(16)$
N1-B1-Cl1	$108.73(13)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{B} 1$	$126.94(16)$
N1-B1-Cl3	$109.43(13)$	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{B} 1$	$125.62(16)$
Cl1-B1-Cl3	$110.88(11)$	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2$	$109.46(16)$
$\mathrm{N} 1-\mathrm{B} 1-\mathrm{Cl} 2$	$109.32(14)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{Cl} 2^{\mathrm{i}}$	0.88	2.57	$3.3696(19)$	152
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{Cli}^{\mathrm{ii}}$	0.88	2.86	$3.429(2)$	124
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{Cl}^{\mathrm{iii}}$	0.95	2.87	$3.815(2)$	171

Symmetry codes: (i) $x, y-1, z$; (ii) $1+x, y-1, z$.

H atoms were constrained to ideal geometries ($\mathrm{C}-\mathrm{H}=0.95 \AA$) and refined with displacement parameters equal to 1.2 times $U_{\text {eq }}$ of their parent atom.

The molecular structure of the title compound, showing the atomlabelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
The crystal structure of the title compound, viewed as a series of crosslinked hydrogen-bonded ribbon polymers. [Symmetry codes: (i) $x, y-1$, z; (ii) $1+x, y-1, z$.]

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT and SHELXTL (Bruker, 2002); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: $S H E L X T L$; molecular graphics: $S H E L X T L$; software used to prepare material for publication: SHELXTL.

We thank the EPSRC for financial support.

References

Abram, V., Lang, E. S., Abram, S., Wegmann, J., Dilworth, J. R., Kirmse, R. \& Woollins, J. D. (1997). J. Chem. Soc. Dalton Trans. pp. 623-630.
Anton, K., Noth, H. \& Pommering, H. (1984). Chem. Ber. 117, 2479-2494.
Avent, A. G., Hitchcock, P. B., Lappert, M. F., Liu, D., Mignoni, G., Richard, C. \& Roche, E. (1995). Chem. Commun. pp. 855-856.
Bruker (2002). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Dantona, R., Schreda, E. \& Stralite, J. (1984). Z. Naturforsch. Teil B, 39, 733735.

Hess, H. (1969). Acta Cryst. B25, 2338-2341.
Minkwitz, R., Nass, R. \& Preest, H. (1987). Z. Anorg. Allg. Chem. 546, 99-106.
Minkwitz, R., Nass, R., Rieland, M. \& Preest, H. (1987). Z. Anorg. Allg. Chem. 550, 133-139.
Ritter, S. \& Abram, U. (1996). Z. Anorg. Allg. Chem. 622, 965-973.
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
Swanson, R., Shriver, D. F. \& Ibers, J. A. (1969). Inorg. Chem. 8, 2182-2189.
Töpel, K. H., Hansen, K. \& Tromel, M. (1981). Acta Cryst. B37, 969-971.
Voigt, F., Jacob, K., Seidel, N., Fischer, A., Pietzsch, C. \& Zanello, P. (2000). J. Prakt. Chem. 342, 666-674.

supporting information

N -Imidazole-boron trichloride adduct

R. Angharad Baber, Andrew E. A. Bull, Jonathan P. H. Charmant, Nicholas C. Norman and A.

Guy Orpen

(I)

Crystal data

$\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{BCl}_{3} \mathrm{~N}_{2}$
$M_{r}=185.24$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=6.0390$ (12) \AA
$b=7.2210$ (14) \AA
$c=8.5610(17) \AA$
$\alpha=84.48(3)^{\circ}$
$\beta=81.33(3)^{\circ}$
$\gamma=71.08(3)^{\circ}$
$V=348.67(14) \AA^{3}$

Data collection

Bruker SMART CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 8.366 pixels mm^{-1} frames, each covering 0.3° in ω scans Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.853, T_{\text {max }}=0.940$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.070$
$S=1.06$
1597 reflections
82 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$Z=2$
$F(000)=184$
$D_{\mathrm{x}}=1.764 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1476 reflections
$\theta=3.0-27.4^{\circ}$
$\mu=1.21 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Plate, colourless
$0.15 \times 0.15 \times 0.05 \mathrm{~mm}$

4070 measured reflections
1597 independent reflections
1444 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=-7 \rightarrow 7$
$k=-9 \rightarrow 9$
$l=-11 \rightarrow 11$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.037 P)^{2}+0.0819 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.39 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.30 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.6954(4)$	$0.2644(3)$	$0.2045(2)$	$0.0152(4)$
H1	0.5650	0.2734	0.1512	0.018^{*}
C2	$1.0222(4)$	$0.1432(3)$	$0.3170(2)$	$0.0162(4)$
H2	1.1585	0.0529	0.3554	0.019^{*}
C3	$0.9453(3)$	$0.3391(3)$	$0.3283(2)$	$0.0142(4)$
H3	1.0189	0.4129	0.3765	0.017^{*}
B1	$0.5971(4)$	$0.6339(3)$	$0.2389(3)$	$0.0125(4)$
C11	$0.29565(8)$	$0.65479(7)$	$0.20312(6)$	$0.01703(13)$
C12	$0.74130(8)$	$0.74987(6)$	$0.06673(5)$	$0.01543(13)$
C13	$0.59006(8)$	$0.75682(6)$	$0.42002(5)$	$0.01600(13)$
N1	$0.7401(3)$	$0.4147(2)$	$0.25726(18)$	$0.0123(3)$
N2	$0.8631(3)$	$0.1002(2)$	$0.23866(19)$	$0.0167(4)$
H2A	0.8713	-0.0180	0.2149	0.020^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0168(10)$	$0.0137(9)$	$0.0155(10)$	$-0.0052(8)$	$-0.0020(8)$	$-0.0020(7)$
C2	$0.0149(10)$	$0.0153(9)$	$0.0174(10)$	$-0.0036(8)$	$-0.0036(8)$	$0.0018(7)$
C3	$0.0124(9)$	$0.0151(9)$	$0.0150(9)$	$-0.0039(7)$	$-0.0036(7)$	$0.0006(7)$
B1	$0.0111(10)$	$0.0138(10)$	$0.0137(10)$	$-0.0050(8)$	$-0.0024(8)$	$-0.0013(8)$
C11	$0.0119(2)$	$0.0155(2)$	$0.0243(3)$	$-0.00375(17)$	$-0.00505(18)$	$-0.00161(18)$
C12	$0.0175(3)$	$0.0151(2)$	$0.0151(2)$	$-0.00724(18)$	$-0.00290(18)$	$0.00153(17)$
C13	$0.0188(3)$	$0.0140(2)$	$0.0154(2)$	$-0.00417(18)$	$-0.00315(18)$	$-0.00375(17)$
N1	$0.0129(8)$	$0.0125(7)$	$0.0118(8)$	$-0.0042(6)$	$-0.0023(6)$	$-0.0003(6)$
N2	$0.0203(9)$	$0.0106(8)$	$0.0194(9)$	$-0.0050(6)$	$-0.0022(7)$	$-0.0024(6)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{N} 2$	$1.327(3)$	$\mathrm{C} 3-\mathrm{H} 3$	0.9500
$\mathrm{C} 1-\mathrm{N} 1$	$1.332(2)$	$\mathrm{B} 1-\mathrm{N} 1$	$1.543(3)$
$\mathrm{C} 1-\mathrm{H} 1$	0.9500	$\mathrm{~B} 1-\mathrm{Cl} 1$	$1.847(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.346(3)$	$\mathrm{B} 1-\mathrm{Cl} 3$	$1.848(2)$
$\mathrm{C} 2-\mathrm{N} 2$	$1.378(3)$	$\mathrm{B} 1-\mathrm{Cl} 2$	$1.865(2)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9500	$\mathrm{~N} 2-\mathrm{H} 2 \mathrm{~A}$	0.8800
$\mathrm{C} 3-\mathrm{N} 1$	$1.389(2)$		

$\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	$108.82(18)$	$\mathrm{Cl} 1-\mathrm{B} 1-\mathrm{Cl} 3$	$110.88(11)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{H} 1$	125.6	$\mathrm{~N} 1-\mathrm{B} 1-\mathrm{Cl} 2$	$109.32(14)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1$	125.6	$\mathrm{Cl} 1-\mathrm{B} 1-\mathrm{Cl} 2$	$109.35(11)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 2$	$106.08(17)$	$\mathrm{Cl} 3-\mathrm{B} 1-\mathrm{Cl} 2$	$109.11(11)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	127.0	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3$	$107.41(16)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{H} 2$	127.0	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{B} 1$	$126.94(16)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1$	$108.22(17)$	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{B} 1$	$125.62(16)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	125.9	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2$	$109.46(16)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{H} 3$	125.9	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	125.3
$\mathrm{~N} 1-\mathrm{B} 1-\mathrm{Cl} 1$	$108.73(13)$	$\mathrm{C} 2-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	125.3
$\mathrm{~N} 1-\mathrm{B} 1-\mathrm{Cl} 3$			
		$\mathrm{Cl} 2-\mathrm{B} 1-\mathrm{N} 1-\mathrm{C} 1$	$-97.5(2)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1$	$\mathrm{Cl} 1-\mathrm{B} 1-\mathrm{N} 1-\mathrm{C} 3$	$-160.49(15)$	
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3$	$\mathrm{Cl} 3-\mathrm{B} 1-\mathrm{N} 1-\mathrm{C} 3$	$-39.2(2)$	
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{B} 1$	$\mathrm{C} 2-\mathrm{B} 1-\mathrm{N} 1-\mathrm{C} 3$	$80.2(2)$	
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1$	$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2$	$0.4(2)$	
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1-\mathrm{B} 1$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 1$	$-0.3(2)$	
$\mathrm{Cl} 1-\mathrm{B} 1-\mathrm{N} 1-\mathrm{C} 1$			

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 2 A \cdots \mathrm{Cl} 2^{\mathrm{i}}$	0.88	2.57	$3.3696(19)$	152
$\mathrm{~N} 2 — \mathrm{H} 2 A \cdots \mathrm{Cl} 1^{\mathrm{ii}}$	0.88	2.86	$3.429(2)$	124
$\mathrm{C} 2 — \mathrm{H} 2 \cdots \mathrm{Cl}^{3 i}$	0.95	2.87	$3.815(2)$	171

Symmetry codes: (i) $x, y-1, z$; (ii) $x+1, y-1, z$.

