Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

William Clegs* and Stephen T. Liddle \ddagger

School of Natural Sciences (Chemistry), University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, England
\# Current address: School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, England

Correspondence e-mail: w.clegg@ncl.ac.uk

Key indicators

Single-crystal X-ray study
$T=160 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.040$
$w R$ factor $=0.102$
Data-to-parameter ratio $=13.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis[μ-2-(phenylamido)pyridine]bis\{[2-(phenylamino)pyridine]lithium(I)\}

The title complex, $\left[\mathrm{Li}\left(\mathrm{PhN}-2-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\left(\mathrm{PhNH}-2-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right]_{2}$ or $\left[\mathrm{Li}_{2}\left(\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2}\right)_{2}\right]$, is centrosymmetric with a central $\mathrm{Li}_{2} \mathrm{~N}_{2}$ ring formed by two amide ligands bridging the two Li^{+} centres. Each amide ligand also coordinates through its pyridine N atom to one of the Li^{+}cations, giving LiNCN chelate four-membered rings. Each neutral amine ligand coordinates terminally to one Li^{+}cation and forms an intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond by donation from its amine group to the bridging amido N atom of one of the amide ligands. The coordination of Li is distorted tetrahedral by two bridging amido and two pyridyl N atoms. The complex is the product of partial deprotonation of 2-phenylaminopyridine by alkyllithium reagents, the remaining amine NH groups being sterically inaccessible even to strong bases.

Comment

The anion L^{-}of 2-phenylaminopyridine ($\mathrm{H} L$) has been extensively used as a ligand in transition metal chemistry. Its two N atoms can be used to bridge pairs of metal ions or to chelate a single metal ion. The Cambridge Structural Database (CSD, Version 5.25, with updates to April 2004; Allen, 2002) contains over 30 examples of the former type of complex and ten of the latter. Its use in complexes of main-group metals has been more restricted. The 20 structures in the CSD include three with aluminium, nine with alkali metals, and the others contain two metals (Li and Zn , or Li and Al). In these complexes, the ligand displays a variety of chelating and bridging modes, with attachment to as many as four metal centres. Some of the lithium complexes are fascinating clusters encapsulating hydride anions (Armstrong et al., 1999). We have recently reported some structures in which the anion remains uncoordinated to alkali metal cations, which are sandwiched by crown ethers to generate separated ion-pair complexes (Liddle et al., 2004).

(I)

In our previous work with this ligand, we found that it was surprisingly difficult to deprotonate it fully by treatment with

Received 29 September 2004
Accepted 1 October 2004
Online 9 October 2004

Figure 1
The molecular structure of (I) with atom labels and 50% probability ellipsoids. H atoms, except for those involved in hydrogen bonding, have been omitted. Hydrogen bonds are shown as dashed lines. Unlabelled atoms are related to the labelled atoms by the symmetry code ($1-x$, $1-y, 1 z-z$.
alkyllithium reagents. In many reactions, the product contained equal amounts of the desired anion and the parent amine, often linked together by an $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond. Various attempts to overcome this reluctance of the amine to full stoichiometric deprotonation included metathesis reactions in which a complex of the fully deprotonated ligand with a different alkali metal was treated with a compound of lithium. In order to generate the complex [(15-crown$\left.5)_{2} \mathrm{Li}\right]^{+} \cdot L^{-}$, the corresponding potassium salt was treated with lithium iodide in THF solution. The title complex was the unexpected solid product, in low yield (ca 20%), indicating that other unidentified products remained in solution.

After determining its crystal structure, we discovered that the same complex had been prepared previously by Polamo \& Leskelä (1996), who also determined its structure. It is of interest that their synthesis was also unintentional (in an attempt to produce a zirconium complex), and that it represents another half-deprotonation of $\mathrm{H} L$ by butyllithium. We report the results of our work here because the structure is of significantly higher precision and in order to compare the structure with those of related compounds, some of which have only recently been published.

The title complex, (I), is dimeric and centrosymmetric (Fig. 1). Two L^{-}ligands act as bridges between two Li^{+} cations, through their amido N atoms, to give a central fourmembered $\mathrm{Li}_{2} \mathrm{~N}_{2}$ ring, a common feature in structural lithium amide chemistry. The pyridine N atom of each bridging ligand coordinates to one lithium centre, generating a fourmembered LiNCN chelate ring. Distorted tetrahedral coordination of each Li^{+}is completed by terminal attachment of the

Figure 2
Space-filling representation of (I), including H atoms. The amine H atom is barely visible, next to its N atom and an Li atom.
pyridine N atoms of a neutral LH molecule, the NH group of which is hydrogen bonded to one of the bridging amido N atoms (Tables 1 and 2).

The combined chelating and bridging functions of the anionic ligand L^{-}and the combination of coordination and hydrogen bonding for the neutral ligand $\mathrm{H} L$ bring both of these ligands into a syn arrangement of the two N atoms, in contrast to the preferred anti arrangement for the uncomplexed anion (Liddle et al., 2004). The syn arrangement, unlike the anti arrangement, does not permit coplanarity of the two rings, because of unfavourable steric interaction of H atoms, so the phenyl ring is twisted around the $\mathrm{N}-\mathrm{C}$ bond, well out of the mean plane of the rest of the ligand [dihedral angles are 51.39 (3) and $53.45(4)^{\circ}$ for L^{-}and $H L$, respectively, in the title complex]. A similar effect has been seen for other chelate complexes of L^{-}(Liddle et al., 2004) and for uncomplexed HL (Polamo et al., 1997), which forms a hydrogen-bonded dimer.

A relatively strong hydrogen bond between $\mathrm{H} L$ and L^{-} occurs also in the complexes $\left[(12 \text {-crown- } 4)_{2} M\right]^{+}[L \cdot \mathrm{H} L]^{-}$, with $M=\mathrm{Li}, \mathrm{Na}, \mathrm{K}$ (Liddle \& Clegg, 2003). The lithium complex in this series was also obtained as an unexpected product of partial lithiation of $\mathrm{H} L$ and has the hydrogen-bonded $[L \cdot \mathrm{H} L]^{-}$unit as an uncoordinated anion; the sodium and potassium complexes were generated from it by metathesis reactions. The same behaviour was observed 20 years ago by Barr et al. (1984a), also in a lithium complex, $\left[\left\{\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{3} \mathrm{PO}\right\}\right.$ $\mathrm{Li}(L)(\mathrm{H} L)$], which was first obtained as a minor product in the synthesis of $\left[\left\{\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{3} \mathrm{PO}\right\} \mathrm{Li}(L)\right]_{2}$ (Barr et al., 1984b) and subsequently in a targeted synthesis with reagents in the appropriate stoichiometry. As in the title complex, the hydrogen-bonded combination of coordinated L^{-}and $\mathrm{H} L$ ligands here necessarily involves a short $\mathrm{Li} \cdots \mathrm{H}$ contact, but
this should probably not be regarded as a direct interaction, of the agostic kind or otherwise. The apparent tendency of $\mathrm{H} L$ and L^{-}to associate by hydrogen bonding does, however, seem to be linked to the failure of organolithium reagents to deprotonate $\mathrm{H} L$ completely in these reactions, and may be the cause rather than a result of this, the $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ proton being thereby shielded from attack by the base. The inaccessibility of this site is demonstrated by the space-filling representation in Fig. 2, where the amine H atom is barely visible; this is true in all directions of view.

Experimental

A solution of $\left[(15-\text { crown-5) })_{2} \mathrm{~K}\right] L$ (Liddle et al., 2004) (0.89 g , 1.38 mmol) in THF (50 ml) was added to solid LiI $(0.18 \mathrm{~g}$, 1.38 mmol), giving a turbid yellow solution, which was stirred for one day. The solution was filtered and volatile materials removed in vacuo, to give a dark orange oil. Recrystallization from toluene yielded crystals of the title compound $(0.05 \mathrm{~g}, 21 \%)$.

Crystal data

$\left[\mathrm{Li}_{2}\left(\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2}\right)_{2}\right]$

$$
\begin{aligned}
& Z=1 \\
& D_{x}=1.240 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

$M_{r}=692.70$
Triclinic, $P \overline{1}$
$a=8.7031$ (8) \AA
$b=10.3718$ (10) \AA
$c=11.5289(11) \AA$
$\alpha=116.715$ (2) ${ }^{\circ}$
$\beta=92.739$ (2) ${ }^{\circ}$
$\gamma=91.216(2)^{\circ}$
$V=927.46(15) \AA^{3}$
Mo $K \alpha$ radiation
Cell parameters from 3543 reflections
$\theta=2.2-28.5^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=160$ (2) K
Plate, yellow
$0.70 \times 0.52 \times 0.08 \mathrm{~mm}$

Data collection

Bruker SMART 1 K CCD
diffractometer
Thin-slice ω scans
Absorption correction: none
5683 measured reflections
4165 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.102$
$S=0.92$
4165 reflections
321 parameters
All H -atom parameters refined

Table 1
Selected geometric parameters ($\AA{ }^{\circ},{ }^{\circ}$).

$\mathrm{Li}-\mathrm{N} 1$	$2.036(3)$	$\mathrm{Li}-\mathrm{N} 2^{\mathrm{i}}$	$2.022(3)$
$\mathrm{Li}-\mathrm{N} 2$	$2.187(3)$	$\mathrm{Li}-\mathrm{N} 3$	$2.002(3)$
$\mathrm{N} 1-\mathrm{Li}-\mathrm{N} 2$	$65.19(8)$	$\mathrm{N} 2-\mathrm{Li}-\mathrm{N} 2^{\mathrm{i}}$	$110.67(12)$
$\mathrm{N} 1-\mathrm{Li}-\mathrm{N} 2^{\mathrm{i}}$	$118.30(13)$	$\mathrm{N} 2-\mathrm{Li}-\mathrm{N} 3$	$120.85(13)$
$\mathrm{N} 1-\mathrm{Li}-\mathrm{N} 3$	$112.43(13)$	$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Li}-\mathrm{N} 3$	$118.54(12)$

Symmetry code: (i) $1-x, 1-y, 1-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 4-\mathrm{H} 4 \mathrm{~N} \cdots \mathrm{~N} 2^{\mathrm{i}}$	$0.900(16)$	$2.288(17)$	$3.1763(16)$	$169.1(13)$

Symmetry code: (i) $1-x, 1-y, 1-z$.
All H atoms were located in a difference Fourier synthesis and refined with individual isotropic displacement parameters. $\mathrm{C}-\mathrm{H}$ distances are in the range 0.916 (17)-0.992 (17) \AA, and the unique $\mathrm{N}-\mathrm{H}$ distance is $0.900(16) \AA$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

We thank the EPSRC for financial support.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Armstrong, D. R., Clegg, W., Davies, R. P., Liddle, S. T., Linton, D. J., Raithby, P. R., Snaith, R. \& Wheatley, A. E. H. (1999). Angew. Chem. Int. Ed. Engl. 38, 3367-3370.
Barr, D., Clegg, W., Mulvey, R. E. \& Snaith, R. (1984a). J. Chem. Soc. Chem. Commun. pp. 469-470.
Barr, D., Clegg, W., Mulvey, R. E. \& Snaith, R. (1984b). J. Chem. Soc. Chem. Commun. pp. 700-701.
Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Liddle, S. T. \& Clegg, W. (2003). Polyhedron, 22, 3507-3513.
Liddle, S. T., Clegg, W. \& Morrison, C. A. (2004). Dalton Trans. pp. 2514-2525.
Polamo, M. \& Leskelä, M. (1996). J. Chem. Soc. Dalton Trans. pp. 4345-4349.
Polamo, M., Repo, T. \& Leskelä, M. (1997). Acta Chem. Scand. 51, 325-329.
Sheldrick, G. M. (2001). SHELXTL. Version 5. Bruker AXS Inc., Madison, Wisconsin, USA.

supporting information

Acta Cryst. (2004). E60, m1587-m1589 [https://doi.org/10.1107/S1600536804024766]
Bis[μ-2-(phenylamido)pyridine]bis\{[2-(phenylamino)pyridine]lithium(I)\}

William Clegg and Stephen T. Liddle

Bis[μ-2-(phenylamido)pyridine]bis\{[2-(phenylamino)pyridine]lithium(I)\}

Crystal data

$\left[\mathrm{Li}_{2}\left(\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2}\right)_{2}\right]$
$M_{r}=692.70$
Triclinic, $P \overline{1}$
$a=8.7031$ (8) \AA
$b=10.3718(10) \AA$
$c=11.5289(11) \AA$
$\alpha=116.715(2)^{\circ}$
$\beta=92.739$ (2) ${ }^{\circ}$
$\gamma=91.216(2)^{\circ}$
$V=927.46(15) \AA^{3}$

Data collection

Bruker SMART 1K CCD diffractometer
Radiation source: sealed tube
Graphite monochromator
Detector resolution: 8.192 pixels mm^{-1}
thin-slice ω scans
5683 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.102$
$S=0.92$
4165 reflections
321 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$Z=1$
$F(000)=364$
$D_{\mathrm{x}}=1.240 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3543 reflections
$\theta=2.2-28.5^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=160 \mathrm{~K}$
Plate, yellow
$0.70 \times 0.52 \times 0.08 \mathrm{~mm}$

4165 independent reflections
2868 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.014$
$\theta_{\text {max }}=28.6^{\circ}, \theta_{\text {min }}=2.0^{\circ}$
$h=-11 \rightarrow 11$
$k=-13 \rightarrow 11$
$l=-14 \rightarrow 14$

Secondary atom site location: difference Fourier map
Hydrogen site location: difference Fourier map
All H-atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0563 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.23$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.20$ e \AA^{-3}
Extinction correction: SHELXTL, $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.011 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Li	$0.3855(3)$	$0.5671(3)$	$0.5221(2)$	$0.0406(6)$
N 1	$0.27806(13)$	$0.42171(12)$	$0.56848(11)$	$0.0317(3)$

N2	0.52228 (12)	0.50692 (11)	0.65280 (10)	0.0264 (2)
C1	0.14004 (17)	0.36108 (15)	0.56935 (15)	0.0357 (3)
H1	0.0743 (18)	0.3379 (16)	0.4933 (15)	0.044 (4)*
C2	0.09729 (17)	0.33301 (16)	0.66845 (15)	0.0372 (3)
H2	-0.0035 (19)	0.2903 (16)	0.6635 (15)	0.045 (4)*
C3	0.20271 (18)	0.36851 (16)	0.77320 (15)	0.0395 (4)
H3	0.1773 (19)	0.3497 (17)	0.8474 (16)	0.056 (5)*
C4	0.34521 (17)	0.42868 (15)	0.77534 (14)	0.0338 (3)
H4	0.4166 (18)	0.4513 (16)	0.8458 (14)	0.040 (4)*
C5	0.38331 (15)	0.45526 (13)	0.67015 (12)	0.0253 (3)
C6	0.62527 (15)	0.58820 (13)	0.76016 (12)	0.0251 (3)
C7	0.58101 (17)	0.68904 (15)	0.88262 (13)	0.0327 (3)
H7	0.4730 (19)	0.7012 (16)	0.8940 (14)	0.043 (4)*
C8	0.68913 (18)	0.76838 (16)	0.98206 (14)	0.0386 (4)
H8	0.6545 (18)	0.8382 (17)	1.0639 (15)	0.048 (4)*
C9	0.84486 (18)	0.75217 (16)	0.96387 (14)	0.0381 (4)
H9	0.9204 (17)	0.8091 (15)	1.0341 (14)	0.038 (4)*
C10	0.89026 (17)	0.65500 (15)	0.84356 (14)	0.0355 (3)
H10	1.0009 (19)	0.6393 (16)	0.8305 (15)	0.047 (4)*
C11	0.78262 (16)	0.57577 (14)	0.74348 (13)	0.0293 (3)
H11	0.8158 (19)	0.5099 (17)	0.6655 (16)	0.051 (5)*
N3	0.28231 (13)	0.75574 (11)	0.59060 (11)	0.0314 (3)
N4	0.33760 (14)	0.79794 (13)	0.41807 (11)	0.0323 (3)
H4N	0.3784 (19)	0.7106 (17)	0.3870 (15)	0.046 (4)*
C12	0.20863 (18)	0.78881 (16)	0.69984 (14)	0.0370 (3)
H12	0.2276 (17)	0.7254 (16)	0.7419 (14)	0.042 (4)*
C13	0.11184 (19)	0.90076 (15)	0.75203 (14)	0.0385 (4)
H13	0.065 (2)	0.9179 (17)	0.8293 (16)	0.051 (5)*
C14	0.09143 (18)	0.98592 (15)	0.68881 (14)	0.0370 (3)
H14	0.0199 (19)	1.0660 (17)	0.7219 (15)	0.047 (4)*
C15	0.16715 (16)	0.95821 (14)	0.57888 (14)	0.0333 (3)
H15	0.1526 (17)	1.0182 (16)	0.5340 (14)	0.041 (4)*
C16	0.26182 (15)	0.84025 (13)	0.53066 (12)	0.0278 (3)
C17	0.31804 (15)	0.85230 (14)	0.32528 (13)	0.0306 (3)
C18	0.34383 (18)	0.99792 (17)	0.35960 (17)	0.0407 (4)
H18	0.3774 (18)	1.0631 (17)	0.4482 (15)	0.044 (4)*
C19	0.3265 (2)	1.0454 (2)	0.2653 (2)	0.0527 (5)
H19	0.347 (2)	1.144 (2)	0.2929 (18)	0.074 (6)*
C20	0.2847 (2)	0.9495 (2)	0.13783 (19)	0.0540 (5)
H20	0.271 (2)	0.9811 (19)	0.0716 (18)	0.066 (5)*
C21	0.26074 (18)	0.8049 (2)	0.10362 (17)	0.0455 (4)
H21	0.229 (2)	0.7353 (18)	0.0125 (17)	0.056 (5)*
C22	0.27653 (16)	0.75598 (17)	0.19709 (14)	0.0354 (3)
H22	0.2593 (18)	0.6514 (17)	0.1689 (15)	0.047 (4)*

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Li	$0.0473(15)$	$0.0401(13)$	$0.0407(14)$	$0.0186(11)$	$0.0176(11)$	$0.0217(11)$
N 1	$0.0314(6)$	$0.0335(6)$	$0.0311(6)$	$0.0035(5)$	$0.0012(5)$	$0.0154(5)$
N 2	$0.0263(6)$	$0.0302(6)$	$0.0232(5)$	$0.0040(5)$	$0.0053(4)$	$0.0119(4)$
C 1	$0.0318(8)$	$0.0343(8)$	$0.0403(8)$	$0.0017(6)$	$-0.0029(7)$	$0.0168(7)$
C 2	$0.0301(8)$	$0.0339(8)$	$0.0502(9)$	$0.0019(6)$	$0.0064(7)$	$0.0209(7)$
C 3	$0.0409(9)$	$0.0439(9)$	$0.0432(9)$	$0.0010(7)$	$0.0089(7)$	$0.0275(7)$
C 4	$0.0344(8)$	$0.0402(8)$	$0.0330(8)$	$0.0019(6)$	$0.0020(6)$	$0.0220(6)$
C 5	$0.0279(7)$	$0.0228(6)$	$0.0253(6)$	$0.0082(5)$	$0.0052(5)$	$0.0104(5)$
C6	$0.0288(7)$	$0.0243(6)$	$0.0255(6)$	$0.0047(5)$	$0.0039(5)$	$0.0138(5)$
C7	$0.0317(8)$	$0.0351(8)$	$0.0293(7)$	$0.0073(6)$	$0.0065(6)$	$0.0121(6)$
C8	$0.0449(9)$	$0.0379(8)$	$0.0267(7)$	$0.0059(7)$	$0.0057(7)$	$0.0086(6)$
C9	$0.0405(9)$	$0.0359(8)$	$0.0326(8)$	$-0.0028(7)$	$-0.0047(7)$	$0.0118(6)$
C10	$0.0300(8)$	$0.0348(8)$	$0.0415(8)$	$0.0013(6)$	$0.0041(6)$	$0.0168(7)$
C11	$0.0315(7)$	$0.0278(7)$	$0.0274(7)$	$0.0044(6)$	$0.0078(6)$	$0.0107(6)$
N3	$0.0362(7)$	$0.0288(6)$	$0.0312(6)$	$0.0097(5)$	$0.0056(5)$	$0.0146(5)$
N4	$0.0381(7)$	$0.0291(6)$	$0.0334(6)$	$0.0125(5)$	$0.0082(5)$	$0.0164(5)$
C12	$0.0473(9)$	$0.0337(7)$	$0.0330(8)$	$0.0100(7)$	$0.0082(7)$	$0.0168(6)$
C13	$0.0487(9)$	$0.0341(8)$	$0.0308(8)$	$0.0105(7)$	$0.0117(7)$	$0.0116(6)$
C14	$0.0403(9)$	$0.0297(7)$	$0.0358(8)$	$0.0114(6)$	$0.0057(7)$	$0.0095(6)$
C15	$0.0374(8)$	$0.0276(7)$	$0.0341(8)$	$0.0081(6)$	$0.0025(6)$	$0.0129(6)$
C16	$0.0288(7)$	$0.0252(6)$	$0.0272(7)$	$0.0023(5)$	$-0.0003(5)$	$0.0100(5)$
C17	$0.0239(7)$	$0.0359(7)$	$0.0390(8)$	$0.0061(6)$	$0.0061(6)$	$0.0224(6)$
C18	$0.0387(9)$	$0.0379(8)$	$0.0502(10)$	$0.0014(7)$	$0.0030(7)$	$0.0240(8)$
C19	$0.0492(10)$	$0.0510(10)$	$0.0795(14)$	$0.0085(8)$	$0.0151(9)$	$0.0473(10)$
C20	$0.0481(10)$	$0.0799(13)$	$0.0637(12)$	$0.0216(9)$	$0.0189(9)$	$0.0564(11)$
C21	$0.0372(9)$	$0.0666(11)$	$0.0411(9)$	$0.0151(8)$	$0.0113(7)$	$0.0304(9)$
C22	$0.0308(8)$	$0.0410(8)$	$0.0386(8)$	$0.0096(6)$	$0.0097(6)$	$0.0207(7)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Li}-\mathrm{N} 1$	2.036 (3)	C10-C11	1.3768 (19)
$\mathrm{Li}-\mathrm{N} 2$	2.187 (3)	C11-H11	0.916 (17)
$\mathrm{Li}-\mathrm{N} 2{ }^{\text {i }}$	2.022 (3)	N3-C12	1.3465 (18)
$\mathrm{Li}-\mathrm{N} 3$	2.002 (3)	N3-C16	1.3481 (16)
N1-C1	1.3466 (18)	N4-H4N	0.900 (16)
N1-C5	1.3606 (16)	N4-C16	1.3764 (17)
N2-Li ${ }^{\text {i }}$	2.022 (3)	N4-C17	1.4213 (16)
N2-C5	1.3718 (17)	C12-H12	0.989 (14)
N2-C6	1.4035 (15)	C12-C13	1.372 (2)
C1-H1	0.954 (15)	C13-H13	0.942 (17)
$\mathrm{C} 1-\mathrm{C} 2$	1.365 (2)	C13-C14	1.384 (2)
C2-H2	0.962 (16)	C14-H14	0.991 (17)
C2-C3	1.384 (2)	C14-C15	1.372 (2)
C3-H3	0.992 (17)	C15-H15	0.978 (14)
C3-C4	1.371 (2)	C15-C16	1.3999 (18)

C4-H4	0.936 (15)
C4-C5	1.4113 (18)
C6-C7	1.4061 (18)
C6-C11	1.3926 (18)
C7-H7	0.959 (17)
C7-C8	1.376 (2)
C8-H8	0.963 (17)
C8-C9	1.384 (2)
C9-H9	0.969 (14)
C9-C10	1.381 (2)
C10-H10	0.988 (17)
$\mathrm{N} 1-\mathrm{Li}-\mathrm{N} 2$	65.19 (8)
$\mathrm{N} 1-\mathrm{Li}-\mathrm{N} 2{ }^{\text {i }}$	118.30 (13)
N1-Li-N3	112.43 (13)
$\mathrm{N} 2-\mathrm{Li}-\mathrm{N} 2{ }^{\text {i }}$	110.67 (12)
$\mathrm{N} 2-\mathrm{Li}-\mathrm{N} 3$	120.85 (13)
$\mathrm{N} 2{ }^{\text {i }}$-Li-N3	118.54 (12)
$\mathrm{Li}-\mathrm{N} 1-\mathrm{C} 1$	143.87 (12)
$\mathrm{Li}-\mathrm{N} 1-\mathrm{C} 5$	90.45 (11)
C1-N1-C5	119.05 (12)
$\mathrm{Li}-\mathrm{N} 2-\mathrm{Li}^{\text {i }}$	69.33 (12)
$\mathrm{Li}-\mathrm{N} 2-\mathrm{C} 5$	84.03 (10)
Li ${ }^{\text {i }}$ - $\mathrm{N} 2-\mathrm{C} 5$	123.09 (12)
$\mathrm{Li}-\mathrm{N} 2-\mathrm{C} 6$	131.59 (11)
Li ${ }^{\text {i }}$ - $\mathrm{N} 2-\mathrm{C} 6$	114.85 (11)
C5-N2-C6	120.29 (10)
N1-C1-H1	113.8 (9)
N1-C1-C2	123.67 (14)
$\mathrm{H} 1-\mathrm{C} 1-\mathrm{C} 2$	122.5 (9)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.6 (9)
C1-C2-C3	117.76 (14)
$\mathrm{H} 2-\mathrm{C} 2-\mathrm{C} 3$	122.7 (9)
C2-C3-H3	120.8 (9)
C2-C3-C4	120.40 (14)
H3-C3-C4	118.8 (10)
C3-C4-H4	120.1 (9)
C3-C4-C5	119.42 (13)
H4-C4-C5	120.5 (9)
N1-C5-N2	113.04 (11)
N1-C5-C4	119.68 (12)
N2-C5-C4	127.20 (12)
N2-C6-C7	124.44 (12)
N2-C6-C11	118.43 (11)
C7-C6-C11	117.00 (12)
C6-C7-H7	117.7 (9)
C6-C7-C8	121.09 (14)
H7-C7-C8	121.2 (9)

C17-C18	1.3885 (19)
C17-C22	1.385 (2)
C18-H18	0.963 (15)
C18-C19	1.384 (2)
C19-H19	0.934 (19)
C19-C20	1.379 (3)
C20-H20	0.961 (18)
C20-C21	1.378 (2)
C21-H21	0.992 (17)
C21-C22	1.385 (2)
C22-H22	0.988 (16)
H10-C10-C11	119.8 (9)
C6-C11-C10	121.60 (13)
C6-C11-H11	119.4 (10)
C10-C11-H11	118.9 (10)
Li-N3-C12	114.62 (11)
Li-N3-C16	127.06 (11)
C12-N3-C16	117.65 (12)
H4N-N4-C16	116.2 (10)
H4N-N4-C17	114.3 (10)
C16-N4-C17	126.39 (12)
N3-C12-H12	115.4 (9)
N3-C12-C13	124.16 (13)
H12-C12-C13	120.4 (9)
C12-C13-H13	119.4 (10)
C12-C13-C14	117.42 (14)
H13-C13-C14	123.2 (10)
C13-C14-H14	119.8 (9)
C13-C14-C15	120.38 (14)
H14-C14-C15	119.8 (9)
C14-C15-H15	120.4 (9)
C14-C15-C16	118.60 (13)
H15-C15-C16	120.9 (9)
N3-C16-N4	114.41 (12)
N3-C16-C15	121.77 (12)
N4-C16-C15	123.79 (12)
N4-C17-C18	121.58 (13)
N4-C17-C22	118.64 (12)
C18-C17-C22	119.76 (13)
C17-C18-H18	119.0 (9)
C17-C18-C19	119.53 (16)
H18-C18-C19	121.4 (9)
C18-C19-H19	116.3 (11)
C18-C19-C20	120.70 (16)
H19-C19-C20	123.0 (11)
C19-C20-H20	121.6 (11)
C19-C20-C21	119.73 (15)

C7-C8- H 8
C7-C8-C9
H8-C8-C9
C8-C9—H9
C8-C9-C10
H9-C9-C10
C9- $\mathrm{C} 10-\mathrm{H} 10$
C9-C10-C11
$\mathrm{N} 2-\mathrm{Li}-\mathrm{N} 1-\mathrm{C} 1$
$\mathrm{N} 2 \mathrm{i}-\mathrm{Li}-\mathrm{N} 1-\mathrm{C} 1$
N2-Li-N1-C5
$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Li}-\mathrm{N} 1-\mathrm{C} 5$
N3-Li-N1-C1
N3-Li-N1-C5
$\mathrm{N} 1-\mathrm{Li}-\mathrm{N} 2-\mathrm{Li}^{\mathrm{i}}$
N1—Li-N2-C5
N1—Li-N2-C6
$\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{Li}-\mathrm{N} 2-\mathrm{Li}^{i}$
$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Li}-\mathrm{N} 2-\mathrm{C} 5$
$\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{Li}-\mathrm{N} 2-\mathrm{C} 6$
N3-Li-N2-Li ${ }^{i}$
N3-Li-N2-C5
N3-Li-N2-C6
$\mathrm{Li}-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$
C5-N1-C1-C2
N1- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$
C1-C2-C3-C4
C2-C3-C4-C5
$\mathrm{Li}-\mathrm{N} 1-\mathrm{C} 5-\mathrm{N} 2$
$\mathrm{Li}-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$
C1—N1-C5-N2
C1—N1-C5-C4
$\mathrm{Li}-\mathrm{N} 2-\mathrm{C} 5-\mathrm{N} 1$
Li ${ }^{i}-\mathrm{N} 2-\mathrm{C} 5-\mathrm{N} 1$
$\mathrm{Li}-\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 4$
Lii-N2-C5-C4
C6-N2-C5-N1
C6-N2-C5-C4
C3-C4-C5-N1
C3-C4-C5-N2
$\mathrm{Li}-\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 7$
Lii-N2-C6-C7
$\mathrm{Li}-\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 11$
$\mathrm{Li}^{\mathrm{i}}-\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 11$
118.7 (10)
120.83 (14)
120.4 (10)
120.4 (9)
118.78 (14)
120.8 (9)
119.5 (9)
120.66 (14)
162.8 (2)
-96.1 (2)
16.23 (8)
117.34 (14)
47.9 (3)
-98.63 (14)
112.58 (14)
-16.18 (8)
-142.01 (12)
0.0
-128.76 (14)
105.42 (15)
-145.1 (2)
86.15 (15)
-39.7 (2)
-139.68 (19)
1.2 (2)
-0.3 (2)
-0.5 (2)
0.5 (2)
-26.08 (12)
156.96 (13)
175.75 (12)
-1.21 (19)
24.30 (12)
-36.25 (17)
-159.01 (15)
140.44 (14)
159.69 (10)
-23.63 (19)
0.4 (2)
-176.10 (14)
73.60 (18)
157.34 (13)
-102.27 (15)
-18.53 (15)
$\mathrm{H} 20-\mathrm{C} 20-\mathrm{C} 21$
$\mathrm{C} 20-\mathrm{C} 21-\mathrm{H} 21$
$\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 22$
$\mathrm{H} 21-\mathrm{C} 21-\mathrm{C} 22$
$\mathrm{C} 17-\mathrm{C} 22-\mathrm{C} 21$
$\mathrm{C} 17-\mathrm{C} 22-\mathrm{H} 22$
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{H} 22$
$\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$
C11-C6-C7-C8
C6-C7-C8-C9
C7-C8-C9-C10
C8-C9-C10-C11
C9-C10-C11-C6
N2-C6-C11-C10
C7-C6-C11-C10
N1—Li-N3-C12
N1—Li-N3-C16
N2-Li-N3-C12
$\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{Li}-\mathrm{N} 3-\mathrm{C} 12$
N2-Li-N3-C16
$\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{Li}-\mathrm{N} 3-\mathrm{C} 16$
$\mathrm{Li}-\mathrm{N} 3-\mathrm{C} 12-\mathrm{C} 13$
C16-N3-C12-C13
N3-C12-C13-C14
C12-C13-C14-C15
C13-C14-C15-C16
Li-N3-C16-N4
Li-N3-C16-C15
C12-N3-C16-N4
C12-N3-C16-C15
C17-N4-C16-N3
C17-N4-C16-C15
C14-C15-C16-N3
C14-C15-C16-N4
C16-N4-C17-C18
C16-N4-C17-C22
N4-C17-C18-C19
C22-C17-C18-C19
C17-C18-C19-C20
C18-C19-C20-C21
C19-C20-C21-C22
$\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 17$
N4-C17-C22-C21
118.6 (11)
120.4 (10)
120.21 (16)
119.3 (10)
120.07 (15)
122.0 (9)
118.0 (9)
-177.74 (12)
-1.82 (19)
0.7 (2)
0.2 (2)
0.1 (2)
-1.3 (2)
178.31 (11)
2.13 (19)
28.69 (19)
-141.62 (13)
-44.9 (2)
172.62 (14)
144.76 (13)
2.3 (2)
-169.80 (15)
1.5 (2)
-1.1 (2)
-0.5 (2)
1.6 (2)
-8.5 (2)
169.81 (14)
-178.51 (12)
-0.25 (19)
169.57 (12)
-8.6 (2)
-1.3 (2)
176.84 (13)
58.73 (19)
-123.15 (15)
178.61 (14)
0.5 (2)
-0.3 (2)
-0.4 (3)
0.8 (2)
-0.6(2)
-178.20 (13)

$\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 7$	$-37.35(18)$
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 11$	$146.78(12)$

Symmetry code: (i) $-x+1,-y+1,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{~N} 4 — \mathrm{H} 4 N \cdots \mathrm{~N} 2^{\mathrm{i}}$	$0.900(16)$	$2.288(17)$	$3.1763(16)$	$169.1(13)$

Symmetry code: (i) $-x+1,-y+1,-z+1$.

