Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hazel S. Wilkinson and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail:
w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.024$
$w R$ factor $=0.064$
Data-to-parameter ratio $=33.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

tert-Butylammonium dihydrogenarsenate

The title compound, $\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}\right)\left[\mathrm{H}_{2} \mathrm{AsO}_{4}\right]$, contains a network of tert-butylammonium cations and dihydrogenarsenate anions $\left[d_{\text {av }}(\mathrm{As}-\mathrm{O})=1.682(2) \AA\right]$. The crystal packing involves $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}\left[d_{\mathrm{av}}(\mathrm{H} \cdots \mathrm{O})=1.96 \AA, \theta_{\mathrm{av}}(\mathrm{N}-\mathrm{H} \cdots \mathrm{O})=\right.$ 169° and $\left.d_{\mathrm{av}}(\mathrm{N} \cdots \mathrm{O})=2.837(3) \AA\right]$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ $\left[d_{\mathrm{av}}(\mathrm{H} \cdots \mathrm{O})=1.68 \AA, \theta_{\mathrm{av}}(\mathrm{O}-\mathrm{H} \cdots \mathrm{O})=169^{\circ}\right.$ and $d_{\mathrm{av}}(\mathrm{O} \cdots \mathrm{O})$ \AA] hydrogen bonds, resulting in a layered structure.

Comment

The title compound, (I) (Fig. 1), was prepared as part of our ongoing structural studies of hydrogen-bonding interactions in protonated amine (di)hydrogen arsenates (Lee \& Harrison, $2003 a, b, c)$.

(I)

The $\left[\mathrm{H}_{2} \mathrm{AsO}_{4}\right]^{-}$dihydrogenarsenate group in (I) shows its normal tetrahedral geometry $\left[d_{\text {av }}(\mathrm{As}-\mathrm{O})=1.682\right.$ (2) \AA] , with the protonated $\mathrm{As} 1-\mathrm{O} 3$ and $\mathrm{As} 1-\mathrm{O} 4$ vertices showing their expected lengthening relative to the unprotonated As-O bonds, which have formal partial double-bond character (Table 1). The tert-butylammonium cation shows no unusual geometrical features.

As well as electrostatic attractions, the component species in (I) interact by means of a network of cation-to-anion $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and anion-to-anion $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2). The $\left[\mathrm{H}_{2} \mathrm{AsO}_{4}\right]^{-}$units are linked into polymeric chains propagating along [010] by way of inversion-generated pairs of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bonds, alternately involving $\mathrm{O} 3-\mathrm{H} 1 \cdots \mathrm{O} 1$

Figure 1
The asymmetric unit of (I) (50\% displacement ellipsoids). H atoms are drawn as small spheres of arbitrary radius and the hydrogen bond is indicated by a dashed line. $\mathrm{C}-\mathrm{H} \mathrm{H}$ atoms have been omitted for clarity.

Received 28 July 2004
Accepted 25 August 2004
Online 4 September 2004

Figure 2
Detail of a hydrogen-bonded dihydrogenarsenate/tert-butylammonium sheet in (I). Colour key: $\left[\mathrm{H}_{2} \mathrm{AsO}_{4}\right]^{-}$tetrahedra green, O atoms red, H atoms grey, C atoms blue, N atoms green (all radii arbitrary). The $\mathrm{H} \cdots \mathrm{O}$ portions of the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are highlighted in yellow and orange, respectively. Symmetry codes as in Table 2; additionally, (v) $\mathrm{x}, y-1, z$; (vi) $x, 1+y, z$.
and $\mathrm{O} 4-\mathrm{H} 2 \cdots \mathrm{O} 1$ links (Fig. 2). This results in every $\left[\mathrm{H}_{2} \mathrm{AsO}_{4}\right]^{-}$tetrahedron in the chain making one hydrogen bond to each of its neighbours and accepting one hydrogen bond from each neighbour. The As‥As ${ }^{\mathrm{i}}$ (via $\mathrm{O} 3-\mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{i}}$) and As $\cdots \mathrm{As}^{\text {ii }}$ (via $\mathrm{O} 4-\mathrm{H} 2 \cdots \mathrm{O} 1^{\text {ii }}$) separations are 4.3002 (4) and 4.2662 (3) \AA, respectively (see Table 2 for symmetry codes). Similar hydrogen-bonded chains of $\left[\mathrm{H}_{2} \mathrm{AsO}_{4}\right]^{-}$anions have been seen in piperidinum dihydrogenarsenate, $\left(\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~N}\right)\left[\mathrm{H}_{2} \mathrm{AsO}_{4}\right]$ (Lee \& Harrison, 2003b), although in this case they are generated by a 2_{1} screw axis.

As shown in Table 2, the organic species interacts with the dihydrogenarsenate chains by way of three $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds $\left[d_{\mathrm{av}}(\mathrm{H} \cdots \mathrm{O})=1.96 \AA \AA_{\mathrm{av}}(\mathrm{N}-\mathrm{H} \cdots \mathrm{O})=169^{\circ}\right.$ and $d_{\mathrm{av}}(\mathrm{N} \cdots \mathrm{O})=2.837(3) \AA$], such that each tert-butylammonium cation cross-links a dihydrogenarsenate chain to its neighbour by forming two hydrogen bonds to one chain, and one to the other. This results in neutral (101) layers (Fig. 3) of stoichiometry $\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}\right)\left[\mathrm{H}_{2} \mathrm{AsO}_{4}\right]$, which interact with each other by van der Waals forces.

Experimental

An aqueous tert-butylamine solution (10 ml of 0.5 M) was added to a $\mathrm{H}_{3} \mathrm{AsO}_{4}$ solution (10 ml of 0.5 M), resulting in a clear solution. A mass of plate-shaped and rod-like crystals of (I) grew as the water evaporated over the course of a few days.

Crystal data

$$
\begin{aligned}
& \left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}\right)\left[\mathrm{H}_{2} \mathrm{AsO}_{4}\right] \\
& M_{r}=215.08 \\
& \text { Monoclinic, } P 2_{1} / n \\
& a=9.7364(5) \AA \\
& b=6.3254(3) \AA \\
& c=14.2606(8) \AA \\
& \beta=94.864(1)^{\circ} \\
& V=875.10(8) \AA^{3} \\
& Z=4
\end{aligned}
$$

Figure 3
Projection of (I) onto (010). The colour key is as in Fig. 2.

Data collection

Bruker SMART1000 CCD diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Bruker, 1999)
$T_{\text {min }}=0.226, T_{\text {max }}=0.831$
8742 measured reflections

Refinement

Refinement on $F^{2} \quad \mathrm{H}$-atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.064$
$S=0.88$
3165 reflections
95 parameters

3165 independent reflections 1807 reflections with $I>2 \sigma(I)$

$$
R_{\mathrm{int}}=0.023
$$

$\theta_{\text {max }}=32.5^{\circ}$
$h=-10 \rightarrow 14$
$k=-7 \rightarrow 9$
$l=-21 \rightarrow 21$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0332 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.47 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\min }=-0.51 \mathrm{e}^{-3}$

Table 1
Selected bond distances (\AA).

As1-O2	$1.6412(13)$	As1-O3	$1.7061(13)$
As1-O1	$1.6687(13)$	As1-O4	$1.7101(14)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 1 \cdots \mathrm{O} 1^{\text {i }}$	0.97	1.62	2.5752 (19)	166
$\mathrm{O} 4-\mathrm{H} 2 \cdots \mathrm{O} 1^{\text {ii }}$	0.94	1.74	2.6763 (19)	172
$\mathrm{N} 1-\mathrm{H} 3 \cdots \mathrm{O}$	0.89	1.92	2.801 (2)	168
$\mathrm{N} 1-\mathrm{H} 4 \cdots \mathrm{O} 2^{\text {iii }}$	0.89	1.88	2.765 (2)	173
$\mathrm{N} 1-\mathrm{H} 5 \cdots \mathrm{O}^{\text {iv }}$	0.89	2.07	2.944 (2)	166

Symmetry codes: (i) $-x,-y, 1-z$; (ii) $-x, 1-y, 1-z$; (iii) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$; (iv) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$.

The $\mathrm{O}-\mathrm{H} \mathrm{H}$ atoms were found in difference maps and refined by riding on their carrier O atoms in their as-found relative positions. H atoms bonded to C and N atoms were placed in calculated positions $[\mathrm{d}(\mathrm{C}-\mathrm{H})=0.96 \AA$ and $\mathrm{d}(\mathrm{N}-\mathrm{H})=0.89 \AA]$ and refined as riding, with the rigid NH_{3} or CH_{3} groups allowed to freely rotate about the bond joining the atoms in question to atom C 1 . The constraint $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (O or N parent atom) or $1.5 U_{\text {eq }}$ (methyl C parent atom) was applied as appropriate.

Data collection: SMART (Bruker, 1999); cell refinement: SAINTPlus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97; molecular graphics: ORTEP-3 (Farrugia, 1997) and ATOMS (Shape Software, 1999); software used to prepare material for publication: SHELXL97.

metal-organic papers

HSW thanks the Carnegie Trust for the Universities of Scotland for an undergraduate vacation studentship.

References

Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and $S A D A B S$. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Lee, C. \& Harrison, W. T. A. (2003a). Acta Cryst. E59, m739-m741.
Lee, C. \& Harrison, W. T. A. (2003b). Acta Cryst. E59, m959-m960.
Lee, C. \& Harrison, W. T. A. (2003c). Acta Cryst. E59, m1151-m1153.
Shape Software (1999). ATOMS. Shape Software, 525 Hidden Valley Road, Kingsport, Tennessee, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

supporting information

Acta Cryst. (2004). E60, m1359-m1361 [https://doi.org/10.1107/S1600536804020963]
tert-Butylammonium dihydrogenarsenate

Hazel S. Wilkinson and William T. A. Harrison

tert-Butylammonium dihydrogenarsenate

Crystal data

$\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}\right)\left[\mathrm{H}_{2} \mathrm{AsO}_{4}\right]$
$M_{r}=215.08$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2yn
$a=9.7364$ (5) Å
$b=6.3254(3) \AA$
$c=14.2606(8) \AA$
$\beta=94.864(1)^{\circ}$
$V=875.10(8) \AA^{3}$
$Z=4$

Data collection

Bruker SMART1000 CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
$T_{\text {min }}=0.226, T_{\text {max }}=0.831$

$$
F(000)=440
$$

$D_{\mathrm{x}}=1.633 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3025 reflections
$\theta=2.4-32.4^{\circ}$
$\mu=3.85 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Bar, colourless
$0.55 \times 0.15 \times 0.05 \mathrm{~mm}$

8742 measured reflections
3165 independent reflections
1807 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=32.5^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=-10 \rightarrow 14$
$k=-7 \rightarrow 9$
$l=-21 \rightarrow 21$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.064$
$S=0.88$
3165 reflections
95 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: difmap (O-H) and geom (C-H and $\mathrm{N}-\mathrm{H}$)
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0332 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.47 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.51 \mathrm{e} \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
As1	$0.096480(18)$	$0.25182(3)$	$0.428460(11)$	$0.02877(6)$
O1	$-0.07070(14)$	$0.2606(2)$	$0.44605(10)$	$0.0360(3)$
O2	$0.13620(15)$	$0.3528(2)$	$0.32825(9)$	$0.0424(4)$
O3	$0.15368(15)$	$-0.0032(2)$	$0.43072(9)$	$0.0402(3)$
H1	0.1102	-0.0863	0.4773	0.048^{*}
O4	$0.18923(15)$	$0.3676(3)$	$0.52194(10)$	$0.0482(4)$
H2	0.1545	0.5006	0.5378	0.058^{*}
N1	$0.38027(16)$	$0.2563(2)$	$0.24651(10)$	$0.0334(3)$
H3	0.3062	0.2725	0.2783	0.040^{*}
H4	0.3824	0.1249	0.2243	0.040^{*}
H5	0.3766	0.3474	0.1988	0.040^{*}
C1	$0.5091(2)$	$0.2971(3)$	$0.31140(15)$	$0.0380(5)$
C2	$0.4956(3)$	$0.5164(4)$	$0.35241(18)$	$0.0608(7)$
H6	0.4147	0.5224	0.3865	0.091^{*}
H7	0.4880	0.6185	0.3024	0.091^{*}
H8	0.5755	0.5471	0.3943	0.091^{*}
C3	$0.5148(3)$	$0.1313(4)$	$0.38747(18)$	$0.0643(7)$
H9	0.5211	-0.0062	0.3597	0.097^{*}
H10	0.4328	0.1392	0.4203	0.097^{*}
H11	0.5940	0.1553	0.097^{*}	
C4	$0.6306(3)$	$0.2805(4)$	$0.2509(2)$	$0.0677(8)$
H12	0.6329	0.1418	0.102^{*}	
H13	0.7143	0.3051	0.102^{*}	
H14	0.6217	0.3842	0.102_{*}^{*}	
			0.2916	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
As1	$0.03246(9)$	$0.02705(9)$	$0.02761(8)$	$0.00106(11)$	$0.00722(6)$	$-0.00055(9)$
O1	$0.0324(6)$	$0.0318(7)$	$0.0448(7)$	$0.0000(7)$	$0.0090(5)$	$0.0018(7)$
O2	$0.0539(10)$	$0.0385(9)$	$0.0368(8)$	$0.0031(7)$	$0.0162(7)$	$0.0104(6)$
O3	$0.0507(9)$	$0.0294(7)$	$0.0433(8)$	$0.0085(7)$	$0.0196(6)$	$0.0027(6)$
O4	$0.0452(9)$	$0.0500(10)$	$0.0474(9)$	$0.0071(8)$	$-0.0072(7)$	$-0.0177(7)$
N1	$0.0389(8)$	$0.0304(7)$	$0.0312(7)$	$0.0000(9)$	$0.0053(6)$	$0.0001(8)$
C1	$0.0392(11)$	$0.0367(12)$	$0.0371(10)$	$-0.0018(8)$	$-0.0017(8)$	$0.0006(7)$
C2	$0.0685(18)$	$0.0454(14)$	$0.0640(16)$	$-0.0033(13)$	$-0.0198(13)$	$-0.0125(12)$
C3	$0.0716(19)$	$0.0592(17)$	$0.0592(16)$	$-0.0032(15)$	$-0.0123(13)$	$0.0228(14)$
C4	$0.0391(12)$	$0.099(2)$	$0.0653(16)$	$-0.0058(14)$	$0.0064(11)$	$-0.0033(15)$

Geometric parameters (A, ${ }^{\circ}$)

As1-O2	1.6412 (13)	C1-C4	1.511 (3)
As1-O1	1.6687 (13)	C1-C2	1.515 (3)
As1-O3	1.7061 (13)	C2-H6	0.9600
As1-O4	1.7101 (14)	C2-H7	0.9600
O3-H1	0.9710	C2-H8	0.9600
O4-H2	0.9415	C3-H9	0.9600
N1-C1	1.516 (3)	C3-H10	0.9600
N1-H3	0.8900	C3-H11	0.9600
N1-H4	0.8900	C4-H12	0.9600
N1-H5	0.8900	C4-H13	0.9600
C1-C3	1.506 (3)	C4-H14	0.9600
O2-As1-O1	115.01 (7)	C2-C1-N1	107.28 (18)
$\mathrm{O} 2-\mathrm{As} 1-\mathrm{O} 3$	106.49 (7)	C1-C2-H6	109.5
O1-As1-O3	110.46 (7)	C1-C2-H7	109.5
O2-As1-O4	111.36 (8)	H6-C2-H7	109.5
O1-As1-O4	109.03 (7)	C1-C2-H8	109.5
O3-As1-O4	103.90 (7)	H6-C2-H8	109.5
As1-O3-H1	111.3	H7-C2-H8	109.5
As1-O4-H2	113.1	C1-C3-H9	109.5
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 3$	109.5	C1-C3-H10	109.5
C1-N1-H4	109.5	H9-C3-H10	109.5
H3-N1-H4	109.5	C1-C3-H11	109.5
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 5$	109.5	H9-C3-H11	109.5
H3-N1-H5	109.5	H10-C3-H11	109.5
H4-N1-H5	109.5	C1-C4-H12	109.5
C3-C1-C4	111.7 (2)	C1-C4-H13	109.5
C3-C1-C2	111.0 (2)	H12-C4-H13	109.5
C4- $\mathrm{Cl}^{-} \mathrm{C} 2$	112.1 (2)	C1-C4-H14	109.5
C3-C1-N1	107.39 (18)	H12-C4-H14	109.5
$\mathrm{C} 4-\mathrm{Cl}-\mathrm{N} 1$	107.17 (18)	H13-C4-H14	109.5

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.97	1.62	$2.5752(19)$	166
$\mathrm{O} 4-\mathrm{H} 2 \cdots \mathrm{O}^{1 i}$	0.94	1.74	$2.6763(19)$	172
$\mathrm{~N} 1-\mathrm{H} 3 \cdots \mathrm{O}^{i}$	0.89	1.92	$2.801(2)$	168
$\mathrm{~N} 1-\mathrm{H} 4 \cdots \mathrm{O}^{2 i i}$	0.89	1.88	$2.765(2)$	173
$\mathrm{~N} 1-\mathrm{H} 5 \cdots \mathrm{O}^{i \mathrm{iv}}$	0.89	2.07	$2.944(2)$	166

[^0]
[^0]: Symmetry codes: (i) $-x,-y,-z+1$; (ii) $-x,-y+1,-z+1$; (iii) $-x+1 / 2, y-1 / 2,-z+1 / 2$; (iv) $-x+1 / 2, y+1 / 2,-z+1 / 2$.

